
Introduction

17-363/17-663: Programming Language Pragmatics

Copyright © 2016 Elsevier, Jonathan Aldrich

Next edition: Scott & Aldrich!

Prof. Jonathan Aldrich



Introduction

• Language Design and Language 
Implementation go together
– An implementor has to understand the 

language

– A language designer has to understand 
implementation issues

– A good programmer has to understand both!



Introduction

• Why are there so many programming 
languages?
– evolution -- we've learned better ways of doing 

things over time

– socio-economic factors: proprietary interests, 
commercial advantage

– orientation toward special purposes

– orientation toward special hardware

– diverse ideas about what works well
(and what people like)



Introduction

• What makes a language successful?
– easy to learn (BASIC, Python, LOGO, Scheme)

– expressive, powerful (C++, Common Lisp, Scala, Rust)

– easy to implement (BASIC, Forth)

– possible to compile to very good (fast/small) code 
(Fortran, C)

– backing of a powerful sponsor (C#, Ada, Swift)

– wide dissemination at minimal cost (Pascal, Java)

– market lock-in (Javascript)



Introduction

• Why do we have programming languages?  
What is a language for?
– way of thinking / way of expressing algorithms

– languages from the user's point of view

– abstraction of virtual machine -- way of 
specifying what you want the hardware to do 
without getting down into the bits

– languages from the implementor's point of view



Why study programming languages?

• Help you choose a language.
– C++ vs. Rust for systems programming

– Fortran vs. Julia for numerical computations

– Python vs. JavaScript for web-based applications

– Ada vs. C for embedded systems

– Common Lisp vs. Scheme vs. ML for symbolic 
data manipulation

– Java vs. .NET for networked PC programs



Why study programming languages?

• Make it easier to learn new languages
• Familiarity with related languages

• Understanding core concepts that reappear

• Use language/compiler ideas in your projects
• Almost every complex system has a language 

somewhere!

• Learn how to reason rigorously
• PL has some of the best intellectual tools!



Why study programming languages?

• Help you make better use of whatever 

language you use

– Specialized features

– unions, first-class functions, …

– Implementation costs

– Garbage collection, tail recursion

– Emulating missing features

– Recursion (with loops and stacks)

– First-class functions (with objects)…or vice versa!



Language Paradigms



How is this course different?

• Overall: emphasizes the interaction between 

language design and implementation

• Vs. 15-410

• More focus on language design and theory; fulfills the 

Logic & Languages elective, not the Systems elective

• Vs. 15-312

• “Pragmatic” focus – we study ideas and theory in the 

context of industrial languages and their design choices

• Use of an educational proof assistant to make theory 

both more approachable and rigorous



Course Staff

Prof. Jonathan Aldrich TA Sam Estep



Course Administration

• Lectures 2x/week

• Active learning exercises in every class

• In person expectation; video as fallback (COVID is not 

gone)

• Textbook: Programming Language Pragmatics

• Required: supplements lecture with more depth

• Please give me feedback—I’m coauthoring the next 

edition!

• Recitation

• Lab-like, helpful for homework.  Bring your laptop!



“How do I get an A?”

• 50% Homework –due Thursdays 11:59pm

• Build a compiler (4 coding assignments)

• Reason about languages (4 theory assignments)

• SASyLF educational theorem proving tool

• 20% - 2 midterm exams covering core concepts

• 25% Project

• Extend the compiler in some interesting way, or explore 

theory

• 5% Participation (assessed via in-class exercises)

• Can miss up to 2 sessions (lecture or recitation) w/o 

losing credit



Communication

• Website

• Schedule, syllabus, slides, assignments

• Piazza for announcements, communication

• Use Piazza as much as possible

• Make questions public if possible, so others can benefit!

• Canvas – class videos, just in case

• Note: you are generally expected to come to class.  You can make 

up in-class exercises only if there’s a reason you couldn’t attend in 

person.

• Office hours (or just come by)

• Sam: Tuesdays at 12:15-1:15pm or 3-4pm

• Jonathan: Thursdays at 11, 4, 5

• Let’s vote!



Read the Syllabus

A high level summary of some policies:

• Late work: 5 free late days

– 10% penalty per day after these are used up

– No credit more then 5 days late

– Special circumstances: contact the instructor

• Collaboration policy
– Your work must be your own

– 100% penalty for cheating

– Read full policy carefully

• No electronics in lecture
– But bring them to recitation!



CMU can be pretty intense

• A 12-credit course is expected to take ~12 hours a week.

• We aim to provide a rigorous but tractable course.

– More frequent assignments rather than big monoliths

– Two midterm exams to cover core material as you learn it

• Please keep us apprised of how much time the class is 
actually taking and whether it is interfacing badly with 
other courses.

– We have no way of knowing if you have three midterms in one 
week.

– Sometimes, we misjudge assignment difficulty. 

• If it’s 2 am and you’re panicking…put the homework 
down, send us an email, and go to bed.



Executing programs

• Consider the following program
• In a simple imperative language, Hoare’s WHILE

• How do we run this sequence of characters?

y := x;
z := 1;
while y > 1 do 

z := z * y; 

y := y – 1



Programs as trees

• What if we organize it as a tree in memory

• Now we can walk the tree and execute it

y := x;
z := 1;
while y > 1 do 

z := z * y; 

y := y – 1



Interpreters

• Interpreter runs at execution time
• Operates over the program as a data structure

• A simple and flexible approach—but slow
• We examine the program to determine what to 

do, over and over again



Compilers

• A compiler translates the high-level source 
program into an equivalent target program 
(typically in machine language), and then 
goes away:



Virtual Machine Targets

• A common case is compilation to a virtual 
machine target
• E.g. Java source to JVM bytecode

• The virtual machine can itself be an interpreter 
or a compiler

• Why is this useful?



Compilation: Preprocessing

• The C Preprocessor (conditional compilation)
– Preprocessor deletes portions of code, which allows 

several versions of a program to be built from the 
same source



Compilation vs. Preprocessing

• Note that compilation does NOT have to produce 
machine language for some sort of hardware 

• Compilation is translation from one language into 
another, with full analysis of the meaning of the input

• Compilation entails semantic understanding of what 
is being processed; pre-processing does not

• A pre-processor will often let errors through.  A 
compiler hides further steps; a pre-processor does not



Compilation Strategies

• Source-to-Source Translation (C++)
– C++ implementations based on the early AT&T 

compiler generated an intermediate program in C, 
instead of an assembly language:



Compilation Strategies

• Bootstrapping

Pascal to Machine
(in Pascal)

Pascal to P-Code
(in P-Code)

P-Code Interpreter
(in Fortran)

Pascal to Machine
(in P-Code)

Pascal to Machine
(in Pascal)

Pascal to Machine
(in P-Code)

P-Code Interpreter
(in Fortran)

Pascal to Machine
(in Machine)

runs on

runs on



Compilation vs. Interpretation

• Compilation produces the fastest programs

• So why interpret?

– Allows delaying decisions to run time

• Names to objects, types of objects, even what code is run

– Used in dynamic/scripting languages (Scheme, Python, Shell 

scripts, …)

• Compilation can account for these, but becomes complex and 

somewhat slower anyway

– Small code size

– Good diagnostics—interpreter state is available

– Fast startup (don’t have to wait for the compiler)

– Easy to write and port



An Overview of Compilation

• Phases of Compilation



Scanning / Lexical Analysis

• Input program:

• Output of scanner is a stream of tokens:

y := x;
z := 1;
while y > 1 do 
z := z * y; 
y := y – 1

od

y := x ; z := 1 ; while y > 1 do z := z * y ; y 
:= y – 1 od



Scanning / Lexical Analysis

• divides the program into "tokens", which are the 
smallest meaningful units; this saves time, since 
character-by-character processing is slow

– scanning is recognition of a regular language, e.g., via a DFA

• removes comments

• saves text of identifiers, strings, numbers

• eags tokens with line numbers, for error messages

• main benefits: efficiency, simplifies later stages
– you can design a parser to take characters instead of tokens as 

input, but it isn't pretty



Parsing

y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

;

:=                  ;

y      x       :=       while

z    1     >          ;

y   1    :=        :=

z        *       y       -

z      y        y 1



Semantic analysis

• Semantic analysis is the discovery of meaning
in the program
– The compiler actually does what is called 

STATIC semantic analysis. That's the meaning 
that can be figured out at compile time

– E.g. typechecking, which catches errors and helps 
generate code (e.g. floating point vs. integer add)

– Some things (e.g., array subscript out of bounds) 
usually can't be figured out until run time.  Things 
like that are part of the program's DYNAMIC 
semantics



Concrete vs. Abstract Syntax Trees

• Concrete syntax trees capture exactly the 
syntax in the source program

• Abstract syntax trees (ASTs) simplify things
• E.g. getting rid of parentheses, which are only necessary to 

show the intended tree structure



An Overview of Compilation

• Intermediate form (IF) done after semantic 
analysis (if the program passes all checks)
– IFs are often chosen for machine independence, 

ease of optimization, or compactness (these are 
somewhat contradictory)

– They often resemble machine code for some 
imaginary idealized machine; e.g. a stack machine, 
or a machine with arbitrarily many registers  

– Many compilers actually move the code through 
more than one IF



An Overview of Compilation

• Optimization takes an intermediate-code 
program and produces another one that does 
the same thing faster, or in less space 
– The term is a misnomer; we just improve code  

(but see superoptimization)

– Can be very complex and take a long time—but 
also produce significant speedup

– The optimization phase is optional



An Overview of Compilation

• Code generation produces assembly language or 
(sometime) relocatable machine language
• Allocating registers to store data

• Machine-specific optimizations



Programming Language Pragmatics

• PL is an exciting field to study
• Interesting theory

• Important impact on practice

• Lots of applications

• Will help you become a better programmer

• For next time:
• Get the textbook and read through chapter 2.2

• The first homework will be out Thursday/Friday


