
Lecture Notes: Optimization

17-363/17-663: Programming Language Pragmatics (Fall 2021)
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

1 Local Value Numbering

The Local Value Numbering optimization goes through a basic block one statement at a time,
producing a new basic block that is equivalent to the old one, but optimized. As we go along, we
build up a map that tracks which virtual registers hold a particular value. We assume the basic
block is made up of a series of instructions, and every instruction that writes to a register writes
to a unique virtual register.

Consider the following program:

v1 :“ x
v2 :“ 3
v3 :“ v1` v2
v4 :“ 1
v5 :“ x
v6 :“ 2
v7 :“ v4` v6
v8 :“ v5` v7
v9 :“ v8´ v3
y :“ v9
v10 :“ v3 ˚ v6
return v10

If we apply the rules described in the textbook section 17.3.2, we get the following answer:

v1 :“ x
v3 :“ v1` 3
v10 :“ v3 ăă 1
y :“ 0
return v10

The final map will read as follows:

1



key value
x v1

v2 3
v1 + 3 v3

v4 1
v5 v1
v6 2
v7 3
v8 v3
v9 0
y v9

v3 ăă 1 v10

2 Live Variable Analysis

Live variable analysis can be summarized with a set of flow functions that describe how individual
instructions affect the dataflow information. A flow function takes as input an instruction and
input set of dataflow information, which in this case is the set of live variables immediately after
the instruction. It produces updated dataflow information, in this case the set of live variables
immediately before the instruction. Here are the flow functions for live variable analysis:

fLV vx :“ ewpσq “ if x P σ then pσ ´ txuq Y usespeq else σ

fLV vx :“ fpyqwpσq “ pσ ´ txuq Y usespeq

fLV vgoto nwpσq “ σ

fLV vif cond goto nwpσq “ σ Y usespeq

fLV vreturn ewpσq “ usespeq

In the flow functions, σ is the set of live variables. usespeq means all the variables used in
e. The return value rule initializes the dataflow information with the set of variables used in
the returned expression. The rule for arbitrary (side-effect-free) expressions does nothing if the
assigned variable is not live, because we anticipate the expression will be removed by dead code
analysis. But if the assigned variable is live, we remove it from the set and we add all the variables
used in the right-hand side. Function calls may have side effects, so we assume their arguments
are live regardless of whether the variable holding result of the call is live or not.

Consider the following program:

2



start :
y :“ x
z :“ 1

header :
if y “ 0 goto 7

body :
z :“ z ˚ y
y :“ y ´ 1
x :“ x` 1
goto 3

end :
y :“ 0
return z

We can analyze this code as follows, showing the code below and above each basic block, for
each time the block is analyzed. Remember that live variables is a backwards analysis, so we start
by analyzing end, and we analyze each block bottom up, from the “below/after” information to
the “above/before” information.

block below above
end H tzu

header tzu ty, zu
body ty, zu ty, zu

header ty, zu ty, zu
start ty, zu txu

Notice that we have to analyze header twice, because the input analysis information (from
below the basic block) changes. In particular, we analyze the header the first time with input
tzu, but after we analyze the body we find that the information above body can be ty, zu. We
take the union of this information with the information above end, to get ty, zu as the new input
information below the header. Thus we need to analyze the header again to see if a different result
is produced given the new input information that y is also live coming into the header. It turns
out this does not change the output (above) information for the header block. Thus the other basic
blocks only need to be analyzed once.

If we use this live variable information to optimize the program with dead code elimination,
we will remove the instructions y :“ 0 and x :“ x` 1 because both are side-effect free instructions
that write to a variable that is not live at that program point.

3


