
Lecture Notes: Typing Rules

17-363/17-663: Programming Language Pragmatics (Fall 2021)
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

1 Semantic Analysis

After parsing, semantic analysis and (intermediate) code generation are the next two phases of a
typical compiler. The semantic analyzer starts by constructing an abstract syntax tree (AST). If the
parser produces a concrete syntax tree, then the AST can be produced by traversing it. Otherwise,
the AST is typically produced by a series of inline semantic actions that are triggered when various
productions are recognized by the parser.

The semantic analyzer’s main job is then to enforce semantic rules and to gather information
that is needed by the code generator. The information gathering and enforcement focuses primar-
ily on evaluating name bindings and applying typing rules. Name bindings tell us which variable
declaration corresponds to each use in the program, while types tell us what operations to apply.
For example, if an add operation is applied to two integers, we will later need to generate an in-
teger add instruction. If the add operation is applied to an integer and a floating point number,
then we will later need to generate code to convert the first integer to a floating point number
and use a floating point add instruction applied to the two numbers. Typically the information
generated by the semantic analyzer is stored either in the AST itself, as annotations, or in auxiliary
data structures such as the symbol table.

2 Typing Rules

We can capture the work of the semantic analyzer with typing rules, analogous to the operational
semantics rules we described earlier. We’ll demonstrate the idea by applying typing rules to the
little language we described earlier:

e ::= x | n | e+ e | let x = e in e | x : τ ⇒ e | e(e)
τ ::= nat | τ → τ

We’ve extended the syntax in two ways. First of all, function arguments are now annotated
with a type τ . This ensures that whoever calls a function knows what kind of value to pass in,
and it also enables the typechecker to verify that the right kind of value is actually passed. Sec-
ond, we’ve given a grammar for types: right now types just consist of natural numbers (nat) and
function types. A function type τ1 → τ2 denotes a function that takes an argument of type τ1 and
returns a result of type τ2 (as before, our simple model only includes 1-argument functions; this is
easy but a bit tedious to generalize).

To reason about typing a program, we’ll use the judgment e : τ which can be read “e has type
τ .” We’ll expand this judgment shortly, when we talk about variables. For now, let’s write our
first inference rule:

1

n : nat T-num

This rule simply states that the type of a number literal is nat. We can write a more interesting
rule for arithmetic operations like addition. The premises check that the things we are adding up
are numbers, and the conclusion tells us that we get a number as a result:

e1 : nat e2 : nat
e1 + e2 : nat T-plus

How shall we typecheck a variable x? Intuitively, the only way we can know the type of x is if
we have kept track of the type with which it was declared. We will therefore extend our judgment
to the form Γ ` e : τ , which can be read “In the context of typing environment Γ, expression e has
type τ .” Γ is a symbol that represents a list of bindings from variable to type. We can express this
with a grammar:

Γ ::= • | Γ, x : τ

Here • represents the empty typing environment, and then the other alternative builds up one
environment from another by adding a binding from x to type τ . We will write x : τ ∈ Γ to mean
that the last binding for x in Γ is to τ . It is important to distinguish “last binding” here because in
general Γ might contain several bindings for a variable x if that variable has an outer binding that
shadows an inner one.

Now we can write typing rules for variables and let expressions:

x : τ ∈ Γ
Γ ` x : τ

T-var
Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2
T-let

The first rule says that a variable x has type τ if the binding x : τ appears in the typing
environment Γ. The second rule, for let, first typechecks the expression e1, discovering that in
environment Γ it has type τ1. We then typecheck the body of the let, e2, in a typing environment
that consists of Γ extended with a binding x : τ1. The type of the body τ2 is also the type of the
whole let expression.

The form of judgment we are using, with an environment Γ to the left of the turnstile symbol `,
is called a hypothetical judgment, because it means that e has type τ assuming (hypothetically) that
the variables in Γ have the types given there. We’ll modify our typing rules for number literals
and addition to also use this hypothetical judgment form:

Γ ` n : nat T-num
Γ ` e1 : nat Γ ` e2 : nat

Γ ` e1 + e2 : nat
T-plus

In the case of T-num, the typing environment isn’t used; we just include it so that the form of
the judgment is consistent across all rules. This consistency is important because of rules like T-let
that have the judgment in the premise, and assume a standard form for it. The T-plus rule doesn’t
use Γ directly, but it’s very important to pass it on, because one of the subexpressions e1 or e2
might be a variable, or have a variable further inside it. So T-plus typechecks the subexpressions
in the same typing environment that was used for the overall addition expression.

2

Exercise 1. Show the derivation for typing the following program:
let x = 1 in x+ 2

Answer:

• ` 1 : nat T-num
•, x : nat ` x : nat T-var •, x : nat ` 2 : nat T-num

•, x : nat ` x+ 2 : nat
T-plus

• ` let x = 1 in x+ 2 : nat T-let

We can now write the last two typing rules, for function definition and function application:

Γ, x : τ2 ` e1 : τ1
Γ ` x : τ2 ⇒ e1 : τ2 → τ1

T-fn
Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1(e2) : τ1
T-apply

The function typing rule checks the body of the function assuming that the argument has the
annotated type τ2. The apply rule requires the expression in function position to have a function
type, and the expression in argument position to have a type matching the function’s argument
type; the overall result is the function’s result type.

3

