
Lecture Notes: Small-Step Operational Semantics

17-363/17-663: Programming Language Pragmatics (Fall 2021)
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

1 Operational Semantics

As we saw in the previous lecture, big-step semantics has some advantages: it intuitively captures
the structure of a simple interpreter for the language. However, it has some drawbacks as well.
Since big-step semantics produces a value from a program in a single “big step,” it says little
about the intermediate states the program might go through, and it cannot even model a program
that does not terminate. For programs like servers that run indefinitely, what happens while the
program is running is the main thing of interest.

To reason about intermediate program states, we can instead define a small-step operational
semantics, which models how a program executes one step at a time. For example, imagine the
reduction of expressions such as ((1+2)+3)+(4+5). In a big-step semantics, this expression would
evaluate to the value 15 in one step; the derivation tree would include 4 different addition oper-
ations. In constrast, a small-step semantics would break each addition operation into a separate
step. The reduction would go in steps that iteratively transform the expression, as follows:

((1 + 2) + 3) + (4 + 5)
→ (3 + 3) + (4 + 5)

→ 6 + (4 + 5)
→ 6 + 9

→ 15

In this example, each step evalutes one addition operation somewhere in the abstract syntax
tree representing the expression; there are 4 additions, so there are four steps in the reduction.

In a small-step semantics, a possibly infinite sequence of such steps constitutes the whole run
of the program. In between steps, we model the state of the program with a program configura-
tion. For today, we’ll model the program configuration as an AST representation of the executing
program; later, we may add other elements, such as a store that models the contents of memory
or an environment that models the contents of variables on the stack. We’ll model execution by
changing the program, so that the program in the program configuration always expresses what
is left to be done. Our steps are thus rewritings from one program to another, starting with the
source program and ending with the value produced by the program–if execution ends at all, that
is.

We’ll use the following syntax for a simple language with constructs similar to those found in
ML (but without static types) or JavaScript:

e ::= x | n | e+ e | let x = e in e | x ⇒ e | e(e)

1

This is similar to the language we used in the previous class, but a little bit simplified. n
represents a concrete number. We’ve modeled JavaScript’s const declaration with a let statement
which is a bit more convenient since it is an expression, and so we don’t have to model statements
separately. We also include JavaScript-style arrow functions instead of using the more heaviweight
version that requires statements in the body.

Let’s define the semantics of the language in a small-step style, starting with arithmetic ex-
pressions. We define the judgment e1 → e2 to mean “Expression e1 takes a single step, resulting
in expression e2.” We can define a rule for addition as follows:

n1 + n2 = n3

n1+n2 → n3
step-plus

This rule applies to expressions that add two concrete numbers, n1 and n2, reducing the ex-
pression with a number n3 that is the sum of the two original numbers. The premise expresses
that we use the semantics of the plus operator from mathematics (e.g. as formalized two lectures
ago) to determine n3.

Of course, an addition expression may be adding expressions that are not numbers, but have
interesting structure of their own. In that case we must first reduce those subexpressions to a
value, then do the addition. Unlike with big-step semantics, however, we don’t want to reduce
a big expression down to a value all at once. Instead, if the left subexpression isn’t a value, we’ll
take a single step to work on reducing it to one:

e1 → e′1
e1 + e2 → e′1 + e2

congruence-plus-left

This is a congruence rule, meaning that it doesn’t change the plus expression itself, but it
represents a step that changes the left argument of plus. Here’s an example of using that rule
(twice) in a derivation of a single step for the expression ((1+2)+3)+(4+5):

1 + 2 = 3
1+2 → 3

step-plus

(1 + 2) + 3 → 3 + 3
congruence-plus-left

((1 + 2) + 3) + (4 + 5) → (3 + 3) + (4 + 5)
congruence-plus-left

Once the left hand side has reduced to a value, we can apply another congruence rule:

e1 value e2 → e′2
e1 + e2 → e1 + e′2

congruence-plus-right

This second congruence rule will be applied over and over again until the right hand side of
the plus is a number, at which point we can actually perform the addition. Here we appeal to a
separate judgment to determine that e1 is a value. There are two rules in that judgment, stating
that numbers and functions are values:

n value value-number
x ⇒ e value

value-function

We could add more such rules if we had other kinds of values, such as booleans, strings, or
object references. Here is a derivation for a step further along in the execution of our expression.
Let’s assume the expression has been reduced in two steps to 6 + (4 + 5). The next step is:

2

6 value value-number 4+5 = 9
4+5 → 9

step-plus

6 + (4 + 5) → 6 + 9
congruence-plus-right

Now we can formalize a complete execution of a program with a transitive judgment e →∗ e′,
read “e reduces to e′ in zero or more steps.” We can define this judgment formally with two rules:

e →∗ e multi-reflexive e → e′ e′ →∗ e′′
e →∗ e′′ multi-inductive

With these definitions we could create a derivation for a complete execution. The whole tree is
large, so I’ll just show the parts definining transitive reduction with →∗:

. . .

((1 + 2) + 3) + (4 + 5)
→ (3 + 3) + (4 + 5)

. . .
(3 + 3) + (4 + 5) → 6 + (4 + 5)

. . .
6 + (4 + 5) → 6 + 9

. . .
6 + 9 → 15 15 →∗ 15

6 + 9 →∗ 15
6 + (4 + 5) →∗ 15

(3 + 3) + (4 + 5) →∗ 15

((1 + 2) + 3) + (4 + 5) →∗ 15 multi-inductive

Let’s now define small-step execution rules for the other constructs in the language:

e1 → e′1
let x = e1 in e2 → let x = e′1 in e2

congruence-let

e1 value
let x = e1 in e2 → [e1/x]e2

step-let

e1 → e′1
e1(e2) → e′1(e2)

congruence-call-fn

e1 value e2 → e′2
e1(e2) → e1(e

′
2)

congruence-call-arg

e2 value
(x ⇒ e)(e2) → [e2/x]e

step-call

The let statement evaluates e1 to a value one step at a time using multiple applications of the
congruence rule. When it is a value, the step-let rule applies, and we substitute the value for the
variable in the body of the let statement. Function calls have two congruence rules, because we
must first evaluate the function down to a value, then the argument. When both are values, step-
call replaces x with the argument value in the function body. The next small step will begin to
evaluate the function body.

Exercise 1. Show the derivation for a single step of execution of the following program:
1 + (x ⇒ x+ 2)(3)

3

Exercise 2. To get some additional practice about how substitution works, show the derivations
for the first three single steps of execution for the following program:

let x = 1 in (let y = (let x = 3 in x) in x+ y)
Based on our semantics, we can prove theorems about execution. For example, we’d like to

show that our rules are deterministic.
Theorem [Evaluation is Deterministic]: If e → e′ and e → e′′, then e′ = e′′.
Proof: by induction on the derivation of e′ → e′′. We case analyze on the rule used. We’ll show

the two cases for the let rules:

Case
e1 value

let x = e1 in e2 → [e1/x]e2
step-let

:
We now case analyze on the rule used in e → e′′. Since e is of the form let x = e1 in e2, there

are only two possibilities.
If the rule step-let is used, e′′ will be [e1/x]e2 which is the same as e′, completing the subcase.
The other possibility is congruence-let. But if we case analyze on the derivation of e1 value, we

find that e1 is either a number or a function, and there is no evaluation rule for either that would
make up the premise of congruence-let. Thus this subcase is impossible.

Case
e1 → e′1

let x = e1 in e2 → let x = e′1 in e2
congruence-let

:
Again, we now case analyze on the rule used in e → e′′. Since e is of the form let x = e1 in e2,

there are only two possibilities.
If the rule congruence-let is used, then by the induction hypothesis we know that e1 → e′1 in the

subderivation of e → e′′. Thus e′′ will be let x = e′1 in e2 which is the same as e′, completing the
subcase.

The other possibility is step-let. But if we case analyze on the derivation of e1 → e′1, we discover
that e1 does not have either a number or a function form in either of them, and it must have one
of those two forms to construct the required premise e1 value. Thus this subcase is impossible.

4

