([
Carnegie institute for
lellon I S SOFTWARE
University RESEARCH

The Hitchhiker's Guide to

Search-Based Program Repair
Chris Timperley

94 4

00 Onkom y(wok,‘) §/.17w 9.032 sy 015
9.087 ¥YC 295 <ok

/000 ‘ :MT} - onghom A
1Fo 030 Me -me EFSISRLS ceta) 76/5725055(-2)

33y Pro » 2. 130yr6YS

Con ek 2.03067e95
(72 -2 | 033 ./,,..,U ;,r,w./ SruJ Jeod
{m B o, o

o

1/7° :)Jdl"f"— CO;UA: ‘apj. (Slnc. <J\¢<¥)

1S4y

@5l *7‘) ?C\ ne =
\moﬁS‘)n F(\m\ (

O'{ bucl Lein1 {oqni-

i-\r_;\' :xd'na\ s
’g/"’° QAJMY,J’ s‘
Que U.A&A

1947

Ever since...

2008

Genetic Programming to

modify existing programs,

rather than building them
from scratch.

Demonstrates concept of
automated program repair.

Evolutionary repair of faulty software.
Andrea Arcuri. 2011.
Applied Soft Computing 11, 4 (June 2011), 3494-3514.

Evolutionary Repair of Faulty Software

Andrea Arcuri

The School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B1S
2TT, UK. Email: a.arcuri@cs.bham.ac.uk

Abstract

Testing and fault localization are very expensive software engineering tasks that have been
tried to be automated. Although many successful techniques have been designed. the actual
change of the code for fixing the discovered faults is still a human-only task. Even in the ideal
case in which automated tools could tell us exactly where the location of a fault is, it is not
always trivial how to fix the code. In this paper we analyse the possibility of automating the
complex task of fixing faults. We propose to model this task as a search problem. and hence
0 use for example evolutionary algorithms to solve it. We then discuss the potential of this
approach and how its current limits can be addressed in the future. This task is extremely
challenging and mainly unexplored in literature. Hence, this paper only covers an initial
investigation and gives directions for future work. A rescarch prototype called JAFF and a
case study are presented to give first validation of this approach

Keyword: Repair, Fault Localization, Automated Debugging, Genetic Programming, Search
Based Software Engincering, Coevolution.

1 Introduction

Software testing is used to reveal the presence of faults in computer programs [S0]. Even if no
fault is found, testing cannot guarantee that the software is fault-free. However, testing can be
used to increase our confidence in the software reliability. Unfortunately, testing is expensive,
time consuming and tedious. It is estimated that testing requires around 50% of the total cost of
software development [14]. This is the reason why there has been a lot of effort spent to automate
this expensive software engineering task.

Even if an optimal automated system for doing software testing existed, we still need to know
where the faults are located, that in order to be able to fix them. Automated techniques can help
the tester in this task [26, 65, 78].

Although in some cases it is possible to automatically locate the faults, there is still the need
to modify the code to remove the faults. Is it possible to automate the task of fixing faults? This
would be the natural next step if we seek a full automation of software engineering. And it would
be particularly helpful in the cases of complex software in which, although the faulty part of code
can be identified, difficult to provide a patch for the fault. This would also be a step forward
10 achieve corporate visions like for example IBM's Autonomic Computing [40].

There has been work on fixing code automatically (e.g., [63, 61, 68, 25]). Unfortunately. in
that work there are heavy ints on the type of modifications that can be y done
on the source code. Hence, only limited classes of faults can be addressed. The reason for putting
these constraints is that there are infinite ways to do modifications on a program, and checking all
of them is impossible.

PEOPLE EXPERIMENTS PUBLICATIONS

GenProg

Evolutionary Program Repair

The Problem

Software engineering is expensive, summing to over one half of ¢
of the US GDP annually. Software maintenance accounts for over
of that life cycle cost, and a key aspect of maintenance is fixing b
existing programs. Unfortunately, the number of reported bugs {
available development resources. It is common for a popular pro, |
hundreds of new bug reports filed every day.

€ mai is

P ive. GenProg reduces software
maintenance costs by automatically producing patches (repairs)
defects.

Our Approach

Many bugs can be fixed with just a few changes to a program's so
Human repairs often involve inserting new code and deleting or |
existing code. GenProg uses those same building blocks to searcl
automatically.

GenProg uses genetic programming to search for repairs. Our ey,

VIDEOS REPOSITORY

Automatically Finding Patches Using Genetic Programming *

Westley Weimer ThanhVu Nguyen

Univerity of Virginia University of New Mexico

Veinergvirginia.edu tnguyenics.unn.edu
Abstract

Automatic program repair has been longstanding goal
in software engineering, vet debugging remains a largely
manual process. We introduce a fully automated method
Jfor locating and repairing bugs in software. The approach
works on off-the-shelf legacy applications and does not re-
quire formal specifications. program annotations or special
coding practices. Once a program fault is discovered. an

gram variants until one is found that both retains required
Jfunctionality and also avoids the defect in question. Sian-
rd test cases are used lo exercise the fault and 10 encode
program requirements. Afier a successful repair has been
discovered, it is minimized using structural differencing al-
gorithms and delta debugging. We describe the proposed
ing that

it can successfully repair ten diferent C programs totaling
63,000 lines in under 200 seconds, on average.

1 Introduction

Fixing bugs is a difficult, time-consuming, and manual
process. Some reports place software maintenance, tradi-
tionally defined as any modification made on a system after
its delivery. at 90% of the total cost of a typical software
project [27]. Molifying existing code, repairing defects,
and otherwise evolving software are major parts of those
costs [24]. The number of outstanding software defects typ-
ically exceeds the resources available to address them [4].

Claire Le Goues Stephanie Forrest
University of Virginia University of New Mexico
legoues@virginia.edu forrestcs.umn.edu

To alleviate this burden, we propose an automatic tech-
nique for repairing program defects. Our approach does
not require difficul formal specifications, program anno-
tations or special coding practices. Instead. it works on
off-the-shelf legacy applications and readily-available test-
cases. We use genelic programming (o evolve program vari-
ants until one is found that both retains required function-
ality and also avoids the defect in question. Our technique
takes as input a program, a set of successful positive test-
cases that encode required program behavior, and a failing
negative testcase that demonstrates a defect.

Genetic progranuming (GP) is a computational method
inspired by biological evolution, which discovers computer
programs tilored 10 pasticular task [19]. GP maintains a
population of individual programs. Computational analogs
of biological mutation and crossover produce program vari-
ants. Each variants suitability is evalusted using a user-
defined fitness function, and succe sful variarts are selected
GP da

of problems e.g., see [11), but 10 our knowledge it has not
been used 10 evolve off-the-shelflegacy software.

A significant impediment for an exolutionary algorithin
like GP is the potentially infinite-size search space it must
Sample 10 find a correct program. To address this problem,
we introduce two ey innovations. First. we restrict the al-
gorithi 1o only produce changes that are based on struc-
tures in other parts of the program. In essence, we hypoth-
esize that a program thatis missing important functionality
(e @ null check) will be able to copy and adapt it from
another location in the program. Second, we constrain the

proje i
and unknown bugs [21] because they lack the development
resources 10 deal with every defect. For example, in 2005,
one Mozilla developer claimed that, “everyday, almost 300
bugs appear [....] far too much for only the Mozilla pro-
grammers to handle” [S. p. 363].

“This reverch wat suppatsd i ot by Natonal Science Foundation

Noaicialendoremen should be frred.

ICSE"09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/525.00 © 2009 IEEE.

is. the portions of the program that were on the execution
path that produced the error). Combining these insights, we
demonsirate automatically generated repairs for ten C pro-
grams totaling 63,000 lines of code.

We use GP to maintain a population of variants of that
program. Each variant is represented as an abstmct syn-
tax tree (AST) paired with 2 weighted program path. We
modify variants using o genetic algorithm operations,
crossover and mutation, specifically targeted 1o this repre-

Rearces sy

2009

GenProg demonstrates
program repair on
real-world C programs

Workflow (Generation) ! O 1 8

‘ Bug Detected @ Triggers

Sapienz Trigger Patch Fix Patch Validated
Auto Triage Generator Generator Revision

1 Facebook unveils SapFix:
e e I . I L | a search-based program
repair technique

‘ Full Diff ‘ Partial Diff

/\ .
XXX

Validated Auto Fix Developer Developer Accepted
Revision Processor Reviews Interaction
Tracker
Rejected/

Expired

https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/

BUGGY
CODE

Fault

Localisation

QD

LOCALISED
CODE

Q

Patch

Generation

CANDIDATE
PATCH

Patch

Validation

FIXED
CODE

Motivating Example i &1 T

News Opinion Sport Culture Lifestyle | Mo

UK World Business Football UK politcs Envitonment Education Socisty Science Tech Globl development Citiss Obiuaries

Technology blog Zune b.ricking code uncqvered It's aleap Editorially
year mistake, and not Microsoft's independent,

open to everyone

‘Wechosea different approach—
will you support it?

‘Support The Guardian —>

Microsoft Says Leap Year Bug Caused Zune Failures mostvewedints

by Trexgoes onsaleon
eltay, sparking

6OPOOO leonilogiis outary

Tigor Woods Masters win

ESiu s wasno ol edemption-
i Ttwaseve
Marina e
Picture this: Youtre gearing up to create a kil playist on your 0GB ZUne for worz e s 4@ lunderingscheme
your annual New Year's bash. Al of a sudden, your Zune locks up, reboots I T
itself, and freezes. What the heck is going on? Q—ﬁ‘ gy iy
)

In September, Microsoft released the Zune 3
along with its newest hardware, the Zune 120GB and 16GB models. At the

software and firmware update

Stretly living room:

reathtakingly horriic

Sydney realestatead goes.
time, Microsoft mentioned that it would be phasing out the older models . viral

slowly--but the company didn't say the change would be this dramatic.

As early as yesterday evening, reports of 30GB Zunes crashing began to
surface on Microsoft support forums and gadget blogs. Microsoft updated the

Zune support Web site with the following acknowledgement: "Customers with
30GB Zune devices may experience issues when booting their Zune
hardware. We're aware of the problem and are working to correctit. Sorry for
the inconvenience, and thanks for your patience!”

[Further reading: The best high-res digital audio players]

We contacted a Microsoft spokesperson, who confirmed the issue with this E—
official statement

"Early this morning we were alerted by our customers that there was a
widespread issue affecting our 2006 model Zune 30GB devices (a large
number of which are still actively being used). The technical team jumped on
the problem immediately and isolated the issue: a bug in the internal clock
driver related to the way the device handles a leap year.

"That being the case, the issue should be resolved over the next 24 hours as
the time change moves to January 1, 2009. We expect the internal clock on
the Zune 30GB devices will automatically reset tomorrow (noon, GMT). By
tomorrow you should allow the battery to fully run out of power before the unit
can restart successfully then simply ensure that your device is recharged,

then tun it back on,

fi tak

tp:
http://www.techhive.com/article/156240/microsoft_zune_failure.html
https://www.silicon.co.uk/wp: ipg

JImedi -house-brick-picture-id1843743337k=6&m=184374333&s=612x61 QOQIBWFoJXxvh1zee i itizY5uAQy-Jw=

http://www.theguardian.com/technology/blog/2009/jan/01/zune-firmware-mistake
http://www.techhive.com/article/156240/microsoft_zune_failure.html
https://www.silicon.co.uk/wp-content/uploads/2010/02/02/zunephone2.jpg

Can you spot the bug?

i

©}

nt getYear(int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear(year)) {
if (days > 366) {
days -= 366;
year += 1;
}
} else {
days -= 365;
year += 1;
}
}

return year;

Determines the current year as a function of the number of days since
1st Jan 1980.

Vs

G

assert getYear(9) == 1980;

~N

v

J

[assert getYear(366) == 1980; x]

Vs

G

assert getYear(365) == 1980;

N

v

J

[asser‘t getYear(1827) == 1984; x]

Ve

(.

assert getYear(367) == 1981;

N

V/

Ve

(.

assert getYear(1826) == 1984;

v

Positive Tests

Negative Tests

10

10: days -= 365;

Fault

Localisation

QD

LOCALISED
CODE

Q

Patch

Generation

CANDIDATE
PATCH

Patch

Validation

FIXED
CODE

1

Spectrum-Based Fault Localisation (SBFL)

Computes a measure of suspiciousness (i for each component ¢ within the
program (i.e., a line or statement), based on its correlation with positive and
negative test execution.

e Components that are executed by passing tests are deemed less suspicious.
e Components that are executed by failing tests are deemed more suspicious.
e \We restrict our attention to the set of implicated components:

(cecCly,>0)

12

SBFL (1/4). Coverage

int getYear(int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear(year)){
if (days > 366) {
days -= 366;
year += 1;
} else { }
} else {
days -= 365;
year += 1;

}

return year;

int getYear(int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear(year)){
if (days > 366) {
days -= 366;
year += 1;
} else { }
} else {
days -= 365;
year += 1;

}

return year;

int getYear(int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear(year)){
if (days > 366) {
days -= 366;
year += 1;
} else { }
} else {
days -= 365;
year += 1;

}

return year;

int getYear(int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear(year)){
if (days > 366) {
days -= 366;
year += 1;
} else { }
} else {
days -= 365;
year += 1;

}

return year;

13

SBFL (2/4): Fault Spectra

S1
S2
S3
S4
S5
S6
S7
S8
S9
S$10
S11

year(-366)
year = 1980;

while (days > 365)

if (isLeapYear(year))
if (days > 366)

days -= 366;

year += 1;

else { }

else

days -= 365;

year += 1;

return year;

PASS

-~ O] Ol O] O] Ol O] O]l O] = =~

year(367)

PASS

A Ol ol ol ol A Al Al Al A A

year(1000)

PASS

[N R N e N = Y I e T S N R U (. U . U [) Y

year(366)

FAIL

Ol Ol Ol Ol A Ol O A =

14

SBFL (3/4): Fault Spectra

S1
S2
S3
S4
S5
S6
S7
S8
S9
$10

year = 1980;

while (days > 365)

ep

ef

np

nf

if (isLeapYear(year))

if (days > 366)

days -= 366;

year += 1;

else { }

\53153‘451;5

: num. passing tests that cover the line.

: num. failing tests that cover the line.

: num. passing tests that don’t cover the line.
: num. failing tests that don’t cover the line.

else

days -= 365;

year += 1;

S11

return year;

W = 2 a2l O NI NN N WO W

O O O O | Ol O | 2 |l

O Ol Ol Ol Wl = Al]l Al O O

Al Al Al Al o Al Al ol o o o

15

SBFL (4/4). Suspiciousness

S1
S2
S3
S4
S5
S6
S7
S8
S9
$10

year = 1980;

while (days > 365)

ep

ef

np

nf

€r
ef+nys+e,

Ef

if (isLeapYear(year))

if (days > 366)

days -= 366;

year += 1;

else { }

else

days -= 365;

year += 1;

S11

return year;

W = 2 a2l O NI NN N WO W

O O O O | Ol O | 2 |l

O Ol Ol Ol Wl = Al]l Al O O

Al Al Al Al o Al Al ol o o o

Vies+ng)- (e +ep)

€f €p

€ftng €t ny

e
€f +nf
€p €r
eptnp eptng

0, Gfepfe=0
1.0, ife;f>0Ae=0

0.1, otherwise

16

SBFL (4/4). Suspiciousness

f
€f -+ -n.f -+ Eip
ep ef np nf 1} €f
S1 year = 19860; 3 1 0 0 0.1
82 while (days > 365) 3 1 0 0 0.1 \/(ef +nys) - (ef +ep)
S3 if (isLeapYear(year)) 2 1 1 0 0.1
S4 if (days > 366) 2 1 1 0 0.1 & __ %
S5 days -= 366; 2 0 1 1 0.0 ertng et
S6 year += 1; 2 0 1 1 0.0 .
f
S7 else { } 0 1 3 0 1.0 ertny
€p €r
S8 else 1 0 0 1 0.0 ep+np eftny
S9 days -= 365; 1 0 0 1 0.0
S10 year += 1; 1 0 0 1 0.0 0, ifef+e,=0
811| return year; 3 0 0 1 0.0 1.0, ifef>0Ae,=0

0.1, otherwise

Shin Yoo. 2012. Evolving human competitive spectra-based fault localisation techniques. In Proceedings of the 4th International Conference on Search Based Software Engineering (SSBSE'12), Gordon Fraser and Jerffeson Teixeira de Souza (Eds.). 244-258.

1 int getvear(int days) { 1: dnt get¥ear(int days) {
2 2 1080;
3 3 365) {
a: a pYear(year)) {
s: 50 > 366) {
6 6 -= 366;
7 7 =15
S 8 Yelse{}
Fault s:) else {
10 days = 365;

Localisation w
13}
15: } ‘

LOCALISED
CODE

Patch

Generation

CANDIDATE
PATCH

Patch

Validation

FIXED
CODE

18

int getYear(int days) {
int year = 1980;
days = atoi(argv[1]);
- while (days <= 365) {
+ while (days > 365) {
if (isLeapYear(year)) {
if (days > 366) {
days -= 366;

Candidate Patch

Patch Validation

$ make

Rebuild

Run Tests

19

1 int getvear(int days) { 1: dnt get¥ear(int days) {
2 2 1080;
3 3 365) {
a: a pYear(year)) {
s: 50 > 366) {
6 6 -= 366;
7 7 =15
S 8 Yelse{}
Fault s:) else {
10 days = 365;

Localisation w
13}
15: } ‘

LOCALISED
CODE

Patch
Generation

CANDIDATE
PATCH

Patch
Validation

FIXED
CODE

Patch Generation: Two Paradigms

Semantics-Based Repair
Angelix, SearchRepair, NOPOL, ...

if (g,) {
days -= a,;
year += 0_;

}

Replaces suspicious expressions with symbolic
variables (e.g., a,).

Uses concolic execution to find angelic values that
would cause a given test to pass.

Uses program synthesis to construct a
replacement expression that produces the angelic
values.

Validate the candidate patch.

Syntax-Based Repair

GenProg, RSRepair, SPR, AE, PAR, ...

int getYear(int days) {
int year = 1980;
- while (days <= 365) {
+ while (days > 365) {
if (isLeapYear(year)) {
if (days > 366) {

Applies repair operators to suspicious statements
within the program to produce concrete patches.
Validate candidate patch.

Operates directly on source code: searches over
the space of possible syntactic changes.

21

Syntax-Based Repair

Source Code

int

: int getvear(int days) {

n 1980;
uhile (days > 365) {

Test Suite

Repair Model

(Syntactic) Fix Space

int getYear(int days) {
int year = 1980;
- while (days <= 365) {
+ while (days > 365) {
if (isLeapYear(year)) {
if (days > 366) {
days -= 366;

year += 1;

Search Algorithm

22

Repair Model

Repair Templates Implicated Statements Code Snippets (Syntactic) Fix Space

1: int getYear(int days) {

2: int year = 1980;

3: while (days > 365) { X e s —

4: if (isLeapYear(year)) { - . . -
InsertStatement(s, @) TR « s int getYear(int days) {

6: days -= 366; int year = 1980;

7: year += 1; “x = 5;” - while (days <= 365) {

'8 Yelse {] + while (days > 365) {

9: } else { if (isLeapYear(year)) {

10: days -= 365; if (days > 366) {

11: year += 1; days -= 366;

12: }

13) year += 1;

14: return year; 1

15: }
1

Repair Model: Templates

Describes a transformation to the AST of the buggy program, which may or may
not take a set of code snippets as its arguments.

Generic Templates Specialised Templates

Highly expressive: can represent most changes. Low expressiveness: tailored to particular bugs.

Insert null check

Insert bounds check

Insert class cast check

Apply off-by-one correction to array access
Assign lower bound to array access

Assign upper bound to array access

Add, remove, or replace parameter in method call
Replace method

Delete Statement

Replace Statement

Append Statement

Swap Statements

Replace Expression

Insert Conditional

Insert Conditional Control Flow

24

Repair Model: GenProg

Uses a generic set of statement-level templates:

Delete Statement
Replace Statement
Swap Statements
Append Statement

In theory, this set of operators should be expressive enough to allow us to fix the
vast majority of bugs.

Where do the statements come from?

25

Repair Model

Repair Templates

InsertStatement(s, @)

Implicated Statements

1: int getYear(int days) {

2: int year = 1980;
3: while (days > 365) {

4: if (islLeapYear(year)) {
5: if (days > 366) {

6: days -= 366;

78 year += 1;

'8 Yelse{]

9: } else {

10: days -= 365;

11: year += 1

12: }

13:)

14: return year;

15: }

Code Snippets

(Syntactic) Fix Space

int getYear(int days) {
int year = 1980;
- while (days <= 365) {
+ while (days > 365) {
if (isLeapYear(year)) {
if (days > 366) {
days -= 366;

year += 1;

26

Repair Model: Code Snippets

We need a source of code snippets to serve as template parameters.

e Searching the space of all possible statements is infeasible.
e \We need a heuristic for selecting template parameter values.

27

Plastic Surgery Hypothesis

GenProg balances tractability and expressiveness by using code from the buggy
program to compose its repairs. GenProg (and many other approaches) exploit
what is now known as the plastic surgery hypothesis:

“Changes to a codebase contain snippets that already exist in the
codebase at the time of the change, and these snippets can be efficiently

found and exploited.” [1]

e Barr et al. measure line-level graftability of 15,273 commits across several large Java projects.
e 43% of changes are graftable from the exact version of software being changed.
e 30% of grafts could be found within the same file at which the human-written change occurred.

[1] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro. 2014. The plastic surgery hypothesis. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE
2014). ACM, New York, NY, USA, 306-317. DOI: https://doi.org/10.1145/2635868.2635898

28

Exercise 1: Form pairs and find repairs.

while (days > 365) { ... }

: int getYear(int days) { Repair Templates: year = 1980;
int year = 1980;
while (days > 365) { e Delete Statement
1f (isteapyear(year)) { e Replace Statement year += 1;

if (days > 366) { e Append Statement
days -= 366;

year += 1;
} else { }

} else {
days -= 365;
year += 1;

}

}

return year;

2}

days -= 366;

else { ...

days -= 365;

return year;

else {}

if (days > 366) { ... }

if (isLeapYear(year)) { ... } else {}

if (days <= 365) { break; }

break;

3 repairs ...

Likelihood of picking a repair: ~1.43%

210 edits

30

We can use probabilistic models to improve our
odds of success.

31

Probabilistic Repair Models

Learn a classifier, p(e | x), that estimates the probability that an edit e is correct
based on the features x of that edit:

Edit Location (i.e., use fault localisation)
Repair Template [1]

Statement Kind [2]

Syntactic Features [3]

[1] Fan Long and Martin Rinard. 2015. Staged program repair with condition synthesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 166-178. DOI:
https://doi.ora/10.1145/2786805.2786811

[2] Mauricio Soto, Ferdian Thung, Chu-Pan Wong, Claire Le Goues, and David Lo. 2016. A deeper look into bug fixes: patterns, replacements, deletions, and additions. In Proceedings of the 13th International Conference on Mining Software

Repositories (MSR '16). ACM, New York, NY, USA, 512-515. DOI: https:/doi.ora/10.1145/2901739.2903495

[3] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '16). ACM, New York, NY, 32
USA, 298-312. DOI: https://doi.org/10.1145/2837614.2837617

https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2901739.2903495

Syntax-Based Repair

Source Code

int

: int getvear(int days) {

n 1980;
uhile (days > 365) {

Test Suite

Repair Model

(Syntactic) Fix Space

int getYear(int days) {
int year = 1980;
- while (days <= 365) {
+ while (days > 365) {
if (isLeapYear(year)) {
if (days > 366) {
days -= 366;

year += 1;

Search Algorithm

33

Random and Exhaustive Search

Use the probabilistic model to either (a) sample and evaluate edits at random [1],
or (b) rank all possible edits and evaluate them in ranked order [2].

Simple and surprisingly effective. Used by most repair approaches.
Usually restricted to single-edit patches. (Combinatorial explosion.)
Treats the search as a decision problem: should | apply this patch?
Allows us to substantially reduce the cost of candidate patch evaluation.

[1] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The strength of random search on automated program repair. In Proceedings of the 36th International Conference on Software Engineering (ICSE 2014). ACM,

New York, NY, USA, 254-265. DOI: https:/doi.org/10.1145/2568225.2568254
[2] Westley Weimer, Zachary P. Fry, and Stephanie Forrest. 2013. Leveraging program equivalence for adaptive program repair: models and first results. In Proceedings of the 28th IEEE/ACM International Conference on Automated Software 3 4

Engineering (ASE'13). IEEE Press, Piscataway, NJ, USA, 356-366. DOI: https://doi.org/10.1109/ASE.2013.6693094

https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1109/ASE.2013.6693094

How can we reduce the cost of patch validation?

1: int getYear(int days) {

2: int year = 1980;

3: while (days > 365

(day) 4 [assert getYear(365) == 1980;]

4 if (isLeapYear(year)) {

5: if (days > 366) { assert getYear(0) == 1980;

6 days -= 366; - N

t == M

7 year += 1; | assert getYear(367) 1981;)

8 } assert getYear(1826) == 1984;

9 } else {) g
10: days -= 365; [assert getYear(1827) == 1984;]
11: year += 1;

[assert getYear(366) == 1980;]
12: }
13: }

14: return year;

Random and Exhaustive Search: Optimisations

1. Avoid redundant tests: Only execute tests that cover the modified parts
of the program.

2. Short-circuit test suite evaluation: Stop evaluating the rest of the test
suite on the first instance of failure -- the outcome of the test suite
evaluation (i.e., PASS or FAIL) won’t be changed.

3. Minimise number of test executions: Use (online) test prioritisation to
minimise the expected number of test executions.

36

GenProg’s Genetic Algorithm [1]

Uses feedback from patch validation to evolve multi-edit patches.

e Evolves a population of individuals that represent candidate patches.
e Each individual is represented as a sequence of edits.

e Each individual has a fitness value that is used to guide the search.
o Indicates proximity to an acceptable repair.
o Based on outcomes of test suite.

[1] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012. GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions on Software Engineering 38, 1 (January 2012), 54-72. DOI:

http://dx.doi.ora/10.1109/TSE.2011.104

37

http://dx.doi.org/10.1109/TSE.2011.104

Genetic Algorithm

Population

A

2

>

Selection Crossover

ity
) | \
1 et ot matnas arse, cha vy
) o
) e
i ==

Mutation

Mutant Pop.

i

38

Fithess Function

Computes a weighted sum of number of positive/negative tests that passed.

f=w T +W T
POS POS neg neg

Rewards fixing the bug W~ T | and punishes regressions W~ T
7’l€g neg p

0S pOS

Problems:

e In practice, we usually only have a single negative test.
e Lack of gradient to guide the search. Difficult to identify partial solutions.

e EXxpensive to compute!
39

Exercise 2: A Cryptic Checksum Conundrum

while (next != “\n’) {

scanf(“%c”, &next);

sum += next;

}

sum = sum % 64 + 22;

return sum;

Takes a single line as input.
Should sum the integer codes of
the ASCII characters, excluding
the newline, modulo 64, plus the
code for the space character.

As before, you may only use the while (next != “\n’) { ...}
following repair operators:
if (next == “\n’) { break; }
e Delete Statement
e Replace Statement
e Append Statement

scanf(“%c”, &next);

. .y - sum += next;
Hint: more than one edit is

required.
sum = sum % 64 + 22;

return sum;

Vinicius Paulo L. Oliveira, Eduardo Faria de Souza, Claire Le Goues and Celso G. Camilo-Junior. Improved representation and genetic operators for linear genetic programming for automated program repair. EMSE, 2018.

1 int getvear(int days) { 1: dnt get¥ear(int days) {
2 2 1080;
3 3 365) {
a: a pYear(year)) {
s: 50 > 366) {
6 6 -= 366;
7 7 =15
S 8 Yelse{}
Fault s:) else {
10 days = 365;

Localisation w
13}
15: } ‘

LOCALISED
CODE

Patch

Generation

CANDIDATE
PATCH

Patch

Validation

FIXED
CODE

int getYear(int days) {
int year = 1980;
days = atoi(argv[1]);
- while (days <= 365) {
+ while (days > 365) {
if (isLeapYear(year)) {
if (days > 366) {
days -= 366;

Candidate Patch

Patch Validation

$ make

Rebuild

Run Tests

42

Warning: Don't trust your test suite

1: int getYear(int days) {
2: int year = 1980;

3: while (days > 365) {

4 if (isLeapYear(year)) {
5: if (days > 366) {

6 days -= 366;

7 year += 1;

8 } else { return year; }
9 } else {

10: days -= 365;

11: year += 1;

12: }

13: }

14: return year;

15: }

43

Genetic Algorithm

iR =g

SBFL (1/4): Coverage

int getvear(int days) int getveardint days) { int gatveardint days) { it extarin don ¢
int year = 1980; int year » 1980; int year = 1980; int year = 1980;
while (days > 265) (while (days > 365) { while (days > 365) (wite s 5 35 ¢
e o > 46 ¢ 16 (oys > 366 { 15 (oys > 366) { 1 Gays > 366) {
; ays - 266 - ays -= 3663
yeor 2 15 yeor 42 1 esr va 1
Yese ()) else () Yeuse ()
) etse ¢) etse ¢) etse ¢
days -a 36 days -a 365, days -2 365
year 42 1 year o= 15 year 421
))
)))
return year; eturn year eturn year ret
)

3 repairs ..

----- 210 edits

Likelihood of picking a repair: ~1.43%

Syntax-Based Repair

Warning: Don't trust your test suite

int getvear(int days) {

: it year = 1980;

while (days > 365)

iF (isLeapvear(year))
1F (days > 366) {
days -= 366;
year += 1;

) else { return year; }

) else
days = 365;

year o= 1;

