Lecture Notes: Satisfiability Modulo Theories

17-355/17-665/17-819: Program Analysis (Spring 2019)
Jonathan Aldrich

aldrich@cs.cmu.edu

1 Motivation: Tools to Check Hoare Logic Specifications

Recall the lectures on Hoare Logic. We use weakest preconditions to generate a formula of the
form P = Q. Usually P and @ have free variables z, e.g. P could be x > 3 and () could be =z > 1.
We want to prove that P = (@ no matter what = we choose, i.e. no matter what the model (an
assignment from variables to values) is. This is equivalent to saying P = @ is valid. We'd like
tools to check this automatically. That won't be feasible for all formulas, but as we will see it is
feasible for a useful subset of formulas.

2 The Concept of Satisfiability Modulo Theories

First, let’s reduce validity to another problem, that of satisfiability. A formula F with free variable
x is valid iff for all =, F' is true. That’s the same thing as saying there is no x for which F is false.
But that’s furthermore the same as saying there is no = for which —F is true. This last formulation
is asking whether —F is satisfiable. It turns out to be easier to seach for a single satisfying model
(or prove there is none), then to show that a formula is valid for all models. There are a lot of
satisfiability modulo theories (SMT) solvers that do this.

What does the “modulo theories” part of SMT mean? Well, strictly speaking satisfiability is
for boolean formulas: formulas that include boolean variables as well as boolean operators such
as A, V, and —. They may include quantifiers such as V and 3, as well. But if we want to have
variables over the integers or reals, and operations over numbers (e.g. +, >), we need a solver for
a theory, such as the theory of Presburger arithmetic (which could prove that 2 x z = = + z), or
the theory of arrays (which could prove that assigning x[y] to 3 and then looking up z[y| yields
3). SMT solvers include a basic satisfiability checker, and allow that checker to communicate with
specialized solvers for those theories. We'll see how this works later, but first let’s look at how we
can check ordinary satisfiability.

3 DPLL for Satisfiability

The DPLL algorithm, named for its developers Davis, Putnam, Logemann, and Loveland, is an ef-
ficient approach to solving boolean satisfiability problems. To use DPLL, we will take a formula F
and transform it into conjuctive normal form (CNF)—i.e. a conjunction of disjunctions of positive
or negative literals. For example (a V =b) A (-a V ¢) A (b V ¢) is a CNF formula.

If the formula is not already in CNF, we can put it into CNF by using De Morgan’s laws, the
double negative law, and the distributive laws:

~(PVQ) <= —-PA-Q
~(PANQ) <= -PV-Q
-—P <= P
(PAQVR) < (PAQ)V(PAR))
(PV(QAR) <« (PVQ)A(PVR))

Let’s illustrate DPLL by example. Consider the following formula:

(a)AN(bVe)A(maVeVd)A(meVd)A(—eV—dV=a)A(bVd)

There is one clause with just a in it. This clause, like all other clauses, has to be true for the
whole formula to be true, so we must make a true in order for the formula to be satisfiable. We
can do this whenever we have a clause with just one literal in it, i.e. a unit clause. (Of course, if a
clause has just —b, that tells us b must be false in any satisfying assignment). In this example, we
use the unit propagation rule to replace all occurrences of a with true. After simplifying, this gives
us:

bVe)A(eVd)A(meVd)A(meVad)A(bVd)

Now here we can see that b always occurs positively (i.e. without a — in front of it within a CNF
formula). If we choose b to be true, that eliminates all occurrences of b from our formula, thereby
making it simpler—but it doesn’t change the satisfiability of the underlying formula. An analo-
gous approach applies when ¢ always occurs negatively, i.e. in the form —c. We say that a literal
that occurs only positively, or only negatively, in a formula is pure. Therefore, this simplification
is called the pure literal elimination rule, and applying it to the example above gives us:

(cVd)A(meVd)A(—eV—d)

Now for this formula, neither of the above rules applies. We just have to pick a literal and
guess its value. Let’s pick c and set it to true. Simplifying, we get:

(d) A (=d)
After applying the unit propagation rule (setting d to true) we get:

(true) A (false)
which is equivalent to false, so this didn’t work out. But remember, we guessed about the
value of c. Let’s backtrack to the formula where we made that choice:
(cVd)A(meVd)A(—eV —d)

and now we’ll try things the other way, i.e. with ¢ = false. Then we get the formula

(d)
because the last two clauses simplified to true once we know c is false. Now unit propagation
sets d = true and then we have shown the formula is satisfiable. A real DPLL algorithm would
keep track of all the choices in the satisfying assignment, and would report back that a is true, b is
true, c is false, and d is true in the satisfying assignment.

This procedure—applying unit propagation and pure literal elimination eagerly, then guessing
a literal and backtracking if the guess goes wrong—is the essence of DPLL. Here’s an algorithmic
statement of DPLL, adapted slightly from a version on Wikipedia:

function DPLL(¢)
if ¢ = true then
return true
end if
if ¢ contains a false clause then
return false
end if
for all unit clauses / in ¢ do
¢ < UNIT-PROPAGATE(!, ¢)
end for
for all literals [occurring pure in ¢ do
¢ < PURE-LITERAL-ASSIGN(I, ¢)
end for
[< CHOOSE-LITERAL(¢)
return DPLL(¢ A1) V DPLL(¢ A =)
end function

Mostly the algorithm above is straightforward, but there are a couple of notes. First of all,
the algorithm does unit propagation before pure literal assignment. Why? Well, it’s good to
do unit propagation first, because doing so can create additional opportunities to apply further
unit propagation as well as pure literal assignment. On the other hand, pure literal assignment
will never create unit literals that didn’t exist before. This is because pure literal assignment can
eliminate entire clauses but it never makes an existing clause shorter.

Secondly, the last line implements backtracking. We assume a short-cutting V operation at the
level of the algorithm. So if the first recursive call to DPLL returns true, so does the current call-but
if it returns fall, we invoke DPLL with the chosen literal negated, which effectively backtracks.

Exercise 1. Apply DPLL to the following formula, describing each step (unit propagation, pure
literal elimination, choosing a literal, or backtracking) and showing now it affects the formula
until you prove that the formula is satisfiable or not:

(aVb)A(aVe)A(maVe)A(aV—c)A(—aV —c)A(=d)

There is a lot more to learn about DPLL, including hueristics for how to choose the literal 1 to
be guessed and smarter approaches to backtracking (e.g. non-chronological backtracking), but in
this class, let’s move on to consider SMT.

4 Solving SMT Problems

How can we solve a problem that involves various theories, in addition to booleans? Consider a
conjunction of the following formulas:!

f(f(z) = fy) =a
f(0)=a+2
=1y

IThis example is due to Oliveras and Rodriguez-Carbonell

This problem mixes linear arithmetic with the theory of uninterpreted functions (here, f is
some unknown function). The first step in the solution is to separate the two theories. We can
do this by replacing expressions with fresh variables, in a procedure named Nelson-Oppen after
its two inventors. For example, in the first formula, we’d like to factor out the subtraction, so we
generate a fresh variable and divide the formula into two:

flel)=a // in the theory of uninterpreted functions now
el = f(x) — f(y) //still a mixed formula

Now we want to separate out f(x) and f(y) as variables e2 and e3, so we get:

el =e2 —e3 //in the theory of arithmetic now
e2 = f(z) // in the theory of uninterpreted functions
e3 = f(y) // in the theory of uninterpreted functions

We can do the same for f(0) = a + 2, yielding:

f(ed) =eb
ed=0
eb=a+2

We now have formulas in two theories. First, formulas in the theory of uninterpreted functions:

flel) = a
e2 = f(z)
e3 = f(y)
f(ed) =e€b
r=1y

And second, formulas in the theory of arithmetic:

el =e2—e3
ed =0
eb=a-+2
rT=y

Notice that 2 = y is in both sets of formulas. In SMT, we use the fact that equality is something
that every theory understands...more on this in a moment. For now, let’s run a solver. The solver
for uninterpreted functions has a congruence closure rule that states, for all f,z, and y, if z = y
then f(xz) = f(y). Applying this rule (since # = y is something we know), we discover that
f(z) = f(y). Since f(x) = e2 and f(y) = €3, by transitivity we know that e2 = e3.

But e2 and e3 are symbols that the arithmetic solver knows about, so we add e2 = e3 to the set
of formulas we know about arithmetic. Now the arithmetic solver can discover that e2 — e3 = 0,
and thus el = e4. We communicate this discovered equality to the uninterpreted functions theory,
and then we learn that a = €5 (again, using congruence closure and transitivity).

This fact goes back to the arithmetic solver, which evaluates the following constraints:

el =e2—e3
e4d =0
eb=a+2
rT=y
e2 =e3
a=eb

Now there is a contradiction: a = €5 but e5 = a + 2. That means the original formula is
unsatisfiable.

In this case, one theory was able to infer equality relationships that another theory could di-
rectly use. But sometimes a theory doesn’t figure out an equality relationship, but only certain
correlations - e.g. el is either equal to e2 or 3. In the more general case, we can simply gener-
ate a formula that represents all possible equalities between shared symbols, which would look
something like:

(el=e2Vel #e2)N(e2=e3Ve2#e3)A (el =e3Vel #e3)A ...

We can now look at all possible combinations of equalities. In fact, we can use DPLL to do this,
and DPLL also explains how we can combine expressions in the various theories with boolean
operators such as A and V. If we have a formula such as:

x>0 Ny=xz+1A(y>2Vy<l1)

(note: if we had multiple theories, I am assuming we’ve already added the equality constraints
between them, as described above)

We can then convert each arithmetic (or uninterpreted function) formula into a fresh proposi-
tional symbol, to get:

pl Ap2 A (p3 V p4)

and then we can run a SAT solver using the DPLL algorithm. DPLL will return a satisfying
assignment, such as pl, p2, =p3, p4. We then check this against each of the theories. In this case,
the theory of arithmetic finds a contradiction: p1, p2, and p4 can’t all be true, because pl and p2
together imply that y > 1. We add a clause saying that these can’t all be true and give it back to
the SAT solver:

plLADP2A (p3V pd) A (—pl V —p2 V —p3)

Running DPLL again gives us pl, p2, p3, =p4. We check this against the theory of arithmetic,
and it all works out. This combination of DPLL with a theory T is called DPLL-T.

We discussed above how the solver for the theory of uninterpreted functions work; how does
the arithmetic solver work? In cases like the above example where we assert formulas of the form
y = = + 1 we can eliminate y by substituting it with = + 1 everywhere. In the cases where we only
constrain a variable using inequalities, there is a more general approach called Fourier-Motzkin
Elimination. In this approach, we take all inequalities that involve a variable x and transform
them into one of the following forms:

A<z
r<B

where A and B are linear formulas that don’t include x. We can then eliminate z, replacing
the above formulas with the equation A < B. If we have multiple formulas with z on the left
and/or right, we just conjoin the cross product. There are various optimizations that are applied in
practice, but the basic algorithm is general and provides a broad understanding of how arithmetic
solvers work.

