
17-355/17-665/17-819 Program Analysis
Program Synthesis Exercises

April 16, 2019

Name:

Andrew ID:

These exercises provide an introduction to SyPet, a program synthesizer for
Java libraries that automatically constructs programs by composing APIs.

1 From Java libraries to Petri nets

SyPet uses a Petri net representation of Java libraries. Suppose you have the
following two Java classes:

class Point {

Point();

int getX();

int getY();

void setX(int);

void setY(int);

}

class MyPoint {

MyPoint(int x, int y);

int getX();

int getY();

}

Suppose you want to synthesize a method convert that converts the object
MyPoint to Point:

Point convert(Mypoint pt){

// to be synthesized

}

1



Andrew ID:

I Build the Petri net representation of the Point and MyPoint classes.

IWhat are the places and transitions of the Petri net?

IWhat is the initial marking in the Petri net to synthesize the convertmethod?

IWhat is the final marking in the Petri net to synthesize the convertmethod?

2



Andrew ID:

2 Petri net reachability

A reachable path in a Petri net is a sequence of transitions that starts from the
initial marking and ends in the final marking.

I Find a reachable path that is not the solution to the convertmethod.

I Find a reachable path that corresponds to the solution of the convertmethod.

3



Andrew ID:

3 Sketch completion

A reachable path in the Petri corresponds to a program sketch since it does not
specify arguments for each method call.

I Write the code for the convert method with holes that correspond to the
following sequence of API calls:

int getX(MyPoint)

int getY(MyPoint)

Point Point()

void setX(Point, int)

void setY(Point, int)

I Assume that each variable must be used at least once. How many concrete
programs can be created from this sketch?

4


