17-355/17-665/17-819 Program Analysis
Program Synthesis Exercises

April 16, 2019

Name:

Andrew ID:

These exercises provide an introduction to SyPet, a program synthesizer for
Java libraries that automatically constructs programs by composing APIs.

1 From Java libraries to Petri nets

SyPet uses a Petri net representation of Java libraries. Suppose you have the
following two Java classes:

class Point { class MyPoint {
Point(); MyPoint(int x, int y);
int getXQ; int getXQ;
int getYQ; int getYQ;
void setX(int); }
void setY(int);
}

Suppose you want to synthesize a method convert that converts the object
MyPoint to Point:

Point convert(Mypoint pt){

// to be synthesized



Andrew ID:

» Build the Petri net representation of the Point and MyPoint classes.
» What are the places and transitions of the Petri net?
» What is the initial marking in the Petri net to synthesize the convert method?

» What is the final marking in the Petri net to synthesize the convert method?



Andrew ID:

2 Petri net reachability

A reachable path in a Petri net is a sequence of transitions that starts from the
initial marking and ends in the final marking.

» Find a reachable path that is not the solution to the convert method.

» Find a reachable path that corresponds to the solution of the convert method.



Andrew ID:

3 Sketch completion

A reachable path in the Petri corresponds to a program sketch since it does not
specify arguments for each method call.

» Write the code for the convert method with holes that correspond to the
following sequence of API calls:

int getX(MyPoint)
int getY(MyPoint)
Point Point()

void setX(Point, int)
void setY(Point, int)

» Assume that each variable must be used at least once. How many concrete
programs can be created from this sketch?



