
Homework 9: Symbolic and Concolic Execution

17-355/17-665/17-819O: Program Analysis
Claire Le Goues and Jonathan Aldrich

clegoues@cs.cmu.edu, aldrich@cs.cmu.edu

Due: Thursday, April 12 11:59 pm

100 points total

Assignment Objectives:
• Understand soundness criteria for substituting subexpressions of a path condition with concrete

values in concolic execution
• Understand Symbolic Execution and Implement Forward Verification Condition Generation for

symbolically executed paths.

Handin Instructions. Please submit the written assignment Canvas as a PDF by the due date.
Name it [your-andrew-id]-hw9.pdf. Submit your solution to Q2 in a folder called hw9 in your
GitHub repository.

Question 1, Concolic Path Condition Soundness, (50 points).
Concolic execution is motivated by the presence of subexpressions within a path condition

that are difficult for a SMT solver to reason about. The key idea of concolic execution is to replace
these subexpressions with appropriate concrete values.

Where possible, we would like this replacement to be sound. Intuitively, the replacment is
sound if any solution to the new path condition is also a solution to the old one. This means
that even after the substitution, concolic execution will successfully drive the program down the
desired path. Let’s make this idea more formal.

Let g be a negated path condition as defined in the lecture notes. LetM be a map from symbolic
constants α to integers n. We write [M ]g for the boolean expression we get by substituting all the
symbolic constants in g with the corresponding integer values given in M ; this is only defined
if the free symbolic constants FC(g) are the same as domain(M). We define [M ]as similarly for
substitution of symbolic constants with values in arithmetic expressions.

Given g and a map M that represents the inputs to a concrete test case execution, concolic
execution may replace a subexpression as of g with the concrete value n achieved in testing. Note
that n = [M ]as. Let the new guard be g′ = [n/as]g (again, we consider this after negating the last
constraint in the path).

We say that g′ is a sound concolic path condition if for all alternative test inputs M ′ such that
[M ′]g′ is true, we have [extend(M ′,M)]g true. Here, the extend function extends the symbolic
constants in M ′ with any that are necessary to match the domain of M . More precisely, ∀α′ ∈
domain(M ′), extend(M ′,M)[α′] =M ′[α′] and ∀α ∈ (domain(M)−domain(M ′)), extend(M ′,M)[α] =
M [α].

1



The notes gave an example of a path condition g and a sound concolic replacement g′ for it. In
particular, g was x0 == (y0 ∗ y0)%50 after negation and g′ was x0 == 49 after negation. This is
trivially sound because the only solution is x0 == 49, which when extended with y0 == 7 from the
original test case yields a new test input that fulfills the original path condition x0 == (y0∗y0)%50.

a) (10 points) Give an example path condition g, test input M , and concolic path condition g′

resulting from replacing a subexpression as of g with a concrete value n = [M ]as, wuch that g′ is
unsound.

b) (10 points) Witness the unsoundness by also providing a test input M ′ that satisfies g′ but not g.

c) (10 points) Give a condition on g,M, g′ and/or as that is sufficient to ensure that g′ is sound.

d) (20 points) Prove that your condition is sufficient for soundness.

Question 2, Forward VCGen with Symbolic Execution, (50 points).
For this task, you will implement per-path verification condition (VC) generation to prove

whether a variable is possibly negative along all program paths, similar to sign analysis in previ-
ous homework.

Typical Symbolic Executors implement rules to emit verification conditions based on a pro-
gram grammar (c.f., Symbolic Execution notes). In this task, we will take a shortcut and only
consider concrete programs, instead of a full grammar. Your job is to manually instrument state-
ments to generate and collect verification conditions for Python programs, just like a real symbolic
executor would.

Example. Figure 1 shows a small function signed. We care about two variables: the input variable
x and a local variable y. We want to check that y is nonnegative along all paths, such that it is safe
for C-like array access. We introduce two symbolic variables to track the values of x and y: x0 and
y0 on Lines 1 and 2.

Some example verification constraints have been added in red. The first constraint is simply
satisfiable (Line 5). The final constraint checks whether y0 is negative is satisfiable. If the solver
finds a satisfying model where y0 is negative, we say that an error occurs for that path. On the
other hand, if the solver finds that y0 < 0 is UNSAT, the path is safe.

VC generation has been added for the path taken by the if statement on Line 7. For example,
Line 8 conjuncts the constraint x0 < 0 with the current_VC, corresponding to the if-condition. Line
9 further updates the current_VC to account for the assignment y=x.

This path is SAT, implying it is unsafe since y0 < 0. However, the path on the else branch
is in fact safe (and emitting the correct constraints should result in the solver saying UNSAT).
Unfortunately, because there are no constraints generated for this path yet, we can’t tell that it’s
safe: the solver emits SAT. Your task is to implement the missing VC generation for this branch,
as well as the other programs in this folder, so that the signedness for y is tracked correctly on
each path (which will make the tests pass). You should add VC generation for each statement and
branch conditional. See the online README for more details.

Setup and Test. To test that your verification condition solution is correct, we need a way to
execute along all of the paths. To do that, we’re in fact going to use an existing Python Symbolic
Executor, PyExZ3.1 Follow the Install Instructions for PyExZ3, and run python3 run tests.py

1Of course, PyExZ3 is going to generate its own verification conditions internally so that it can execute all paths for
the Python programs, like the one in Figure 1. Neat huh?

2

https://github.com/CMU-program-analysis/recitations/blob/master/hw-9/test
https://github.com/CMU-program-analysis/recitations/blob/master/hw-9/test/README.md
https://github.com/CMU-program-analysis/PyExZ3


1 x0 = Int(’x0’)
2 y0 = Int(’y0’)
3
4 def signed(x):
5 current VC = True
6
7 if (x < 0):
8 current VC = And(current VC, x0 < 0)
9 y = x

10 current VC = And(current VC, y0 == x0)
11 else:
12 # FIXME: add sound verification conditions to make the test pass
13 y = x
14
15 # y must be nonnegative
16 current VC = And(current VC, y0 < 0)
17
18 # Check: one path is safe, the other is unsafe.

Figure 1: Simplified signed.py

test to make sure it works. You can then run, for example, python3 pyexz3.py signed.py
on the test programs.

Submission. Copy the test files into your hw9 directory, and modify them so that they pass the
test when run with python3 pyexz3.py <filename>.py. Commit the changes. Note that
passing the tests is a necessary, but not sufficient condition for credit: you must implement sound
(and tight) verification condition generation for the example programs.

3

https://github.com/CMU-program-analysis/recitations/blob/master/hw-9/test

