Homework 6: Interprocedural Analysis

17-355/17-665/17-8190: Program Analysis
Claire Le Goues and Jonathan Aldrich

clegoues@cs.cmu.edu, aldrich@cs.cmu.edu

Checkpoint Due: Thursday, March 1, 2018, 11:59 pm
Full Assignment Due: Tuesday, March 6, 2018, 11:59 pm

200 points total

Assignment Objectives:
e Implement a larger-scale, more realistic program analysis
e Solidify and demonstrate understanding of the course material on alias and/or interproce-
dural analysis.

Handin Instructions. Place all your homework files in your private GitHub repository in a folder
called hw6. After the deadline, we will clone your repository and run your analysis tool (including
tests). You should include a way to build and run tests for your analysis (e.g., using ant or a
Makefile). Include a README . md file explaining how to run your analysis against the test case(s)
you provide.

Context-Sensitive Interprocedural Analysis Implementation

In this assignment, you will implement a context-sensitive interprocedural analysis. There are two
options:

e Sign Analysis. You may implement a context-sensitive, interprocedural version of Sign
Analysis. The advantage of this approach is that you can build on your existing intraproce-
dural Sign Analysis implementation. Like the analysis you implemented before, your Sign
Analysis will warn if an array dereference uses a definitely-negative or possibly-negative
index. However, it will be more precise than your prior analysis because it will consider
interprocedural data flows in a context-sensitive way.

e Constant-derived string analysis. You may implement a context-sensitive, interprocedural
constant-derived string analysis. This option allows you to explore a new kind of analysis
that is important to real analysis tools; it is essentially the inverse of Taint Analysis. The goal
of this analysis is to determine which strings in the program are entirely derived from string
constants. A string is constant-derived if it is a literal string constant, if it flows from a literal
string constant (via assignments to variables and fields), or if it results from combining two
constant-derived strings (e.g., in Java sl + s2, where s1 and s2 are constants or derived from
constants themselves).!

'Note thatin Java, s1 +s2 is implemented asnew StringBuilder () .append (a) .append (b) .toString();—
this is the code that will Soot will see.



An important application of this kind of analysis is to ensure that certain uses of strings
are secure. For example, a format string passed as the first argument to java.util.
Formatter. format should always be a compile-time constant, or derived from one; oth-
erwise, your code is likely to have a format string vulnerability. Likewise, a query passed
to java.sgl.Connection.prepareStatement should be a compile-time constant, or
derived from one; otherwise your code is likely to have a SQL injection vulnerability. For
example, I believe Google runs a static analysis similar to this on every Java compilation to
ensure the lack of SQL vulnerabilities. Your analysis should output a warning if either of
these methods are called with a string that is not (or might not be) constant-derived accord-
ing to your analysis.

You may, if you wish, implement a general taint analysis of a constant-derived string anal-
ysis. The difference is that taint analysis tracks which strings may (or must) derive from
user input, while constant-derived analysis tracks which strings may (or must) derive from
compile-time string constants.

Implement your analysis in Soot or some other program analysis infrastructure. Write ap-
propriate test cases to ensure your analysis is working properly. One or more test cases should
require context sensitivity—i.e., the test case would fail if your analysis was interprocedural but
not context-sensitive.

Write a README . md that describes what you did: what analysis you implemented, in what in-
frastructure, and for what language. Explain what context-sensitivity strategy you used. Describe
how to compile your analysis and how to run the tests, in enough detail that the instructor should
be able to compile and test it without contacting you.

Checkpoint. Commit a version of your analysis to your GitHub repository by the checkpoint
deadline listed above. You should have some interprocedural analysis working, but it is OK if
there are still bugs or if context sensitivity is not yet working. Your README .md file should, as
above, describe how to compile and run your analysis on some test case that illustrates something
working interprocedurally. The checkpoint is worth 40 points, i.e., 20% of the total credit for the
assignment.



