
1

Model Checking and
Linear Temporal Logic

17-355/17-665/17-819: Program Analysis

Jonathan Aldrich and Claire Le Goues
Carnegie Mellon University

Based on slides developed by Natasha Sharygina.  Used and adapted by permission.
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Formal Verification by Model Checking

Domain: Continuously operating concurrent systems (e.g. operating
systems, hardware controllers and network protocols)

• Ongoing, reactive semantics
• Non-terminating, infinite computations
• Manifest non-determinism

Instrument: Temporal logic [Pnueli 77] is a formalism for reasoning
about behavior of reactive systems
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Motivation: What can be Verified?

• Architecture
– Will these two components interact properly?

• Allen and Garlan: Wright system checks architectures for deadlock

• Code
– Am I using this component correctly?

• Microsoft’s Static Driver Verifier ensures complex device driver rules 
are followed

– Substantially reduced Windows blue screens

– Is my code safe
• Will it avoid error conditions?
• Will it be responsive, eventually accepting the next input?

• Security
– Is the protocol I’m using secure

• Model checking has found defects in security protocols
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Temporal Logic Model Checking

• Systems are modeled by finite state machines

• Properties are written in propositional temporal logic

• Verification procedure is an exhaustive search
of the state space of the design

• Diagnostic counterexamples

[Clarke,Emerson 81][Queille,Sifakis 82]
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Temporal Logic Model Checking

 

Finite State 
Machine 

True or Counterexample 

Model Checker 

Property 

Preprocessor 
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What is Model Checking?

Does model M satisfy a property P ?
(written M |= P)

What  is “M”?

What  is  “P”?

What is “satisfy”?
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What is “M”?

Example Program:

precondition: numTickets > 0
reserved = false;
while (true) {

getQuery();
if (numTickets > 0 && !reserved)

reserved = true;
if (numTickets > 0 && reserved) {

reserved = false;
numTickets--;

}
}

State Transition Diagram

nT=3, 
r=false

nT=3, 
r=true

nT=2, 
r=false

nT=2, 
r=true

nT=1, 
r=false

nT=1, 
r=true

nT=0, 
r=false

nT=0, 
r=true
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What is “M”?

Example Program:

precondition: numTickets > 0
reserved = false;
while (true) {
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if (numTickets > 0 && !reserved)
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if (numTickets > 0 && reserved) {

reserved = false;
numTickets--;
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What is “M”?

Example Program:

precondition: numTickets > 0
reserved = false;
while (true) {

getQuery();
if (numTickets > 0 && !reserved)

reserved = true;
if (numTickets > 0 && reserved) {

reserved = false;
numTickets--;

}
}

What is interesting about this?

Are tickets available? a

Is a ticket reserved? r

nT=2, 
r=false

nT=2, 
r=true

nT=1, 
r=false

nT=1, 
r=true

nT=0, 
r=false
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What is “M”?

Example Program:

precondition: numTickets > 0
reserved = false;
while (true) {

getQuery();
if (numTickets > 0 && !reserved)

reserved = true;
if (numTickets > 0 && reserved) {

reserved = false;
numTickets--;

}
}

What is interesting about this?

Are tickets available? a

Is a ticket reserved? r

nT=2, 
r=false

nT=2, 
r=true

nT=1, 
r=false

nT=1, 
r=true

nT=0, 
r=false

a !r a r

a !r a r

!a !r
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What is “M”?

Abstracted Program: fewer states

precondition: available == true
reserved = false;
while (true) {

getQuery();
if (available && !reserved)

reserved = true;
if (available && reserved) {

reserved = false;
available = ?;

}
}
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What is “M”?

State Transition Graph or Kripke Model

a !r

a r !a !r

Abstracted Program: fewer states

precondition: available == true
reserved = false;
while (true) {

getQuery();
if (available && !reserved)

reserved = true;
if (available && reserved) {

reserved = false;
available = ?;

}
}

!a r
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What is “M”?

State Transition Graph or Kripke Model

a !r

a r !a !r

Abstracted Program: fewer states

precondition: available == true
reserved = false;
while (true) {

getQuery();
if (available && !reserved)

reserved = true;
if (available && reserved) {

reserved = false;
available = ?;

}
}
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What is “M”?

State: valuations to all variables
concrete state: (numTickets=5, reserved=false)
abstract state: (a=true, r=false)

Initial states: subset of states

Arcs: transitions between states

Atomic Propositions:
a: numTickets > 0
r: reserved = true

State Transition Graph or Kripke Model

a !r

a r !a !r
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What  is “M”?

M =   S, S0, R, L 

Kripke structure:
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What  is “M”?

M =   S, S0, R, L 

Kripke structure:

S – finite set of states
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What  is “M”?

M =   S, S0, R, L 

Kripke structure:

S – finite set of states

S0  S – set of initial states
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What  is “M”?

M =   S, S0, R, L 

Kripke structure:

S – finite set of states

S0  S – set of initial states

R  S  S – set of arcs
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What  is “M”?

M =   S, S0, R, L 

Kripke structure:

S – finite set of states

S0  S – set of initial states

R  S  S – set of arcs

L : S  2AP – mapping from states to a set of 
atomic propositions

a !r

a r !a !r
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Model of Computation

Computation Traces

a 
b

b 
c

c

State Transition Graph 

Unwind State Graph to obtain traces.  A trace is an 
infinite sequence of states. The semantics of a FSM 
is a set of traces.
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Model of Computation

Computation Traces

a 
b

b 
c

c

State Transition Graph 

Unwind State Graph to obtain traces.  A trace is an 
infinite sequence of states. The semantics of a FSM 
is a set of traces.

a b
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Model of Computation

Computation Traces

b 
c

a 
b

b 
c

c

State Transition Graph 

Unwind State Graph to obtain traces.  A trace is an 
infinite sequence of states. The semantics of a FSM 
is a set of traces.

a b
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Model of Computation

Computation Traces

b 
c

a 
b

a 
b

b 
c

c

State Transition Graph 

Unwind State Graph to obtain traces.  A trace is an 
infinite sequence of states. The semantics of a FSM 
is a set of traces.

a b
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Model of Computation

Computation Traces

a b

b 
c

a 
b

a 
b

b 
c

c

State Transition Graph 

Unwind State Graph to obtain traces.  A trace is an 
infinite sequence of states. The semantics of a FSM 
is a set of traces.

b 
c

a b

c
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Model of Computation

Computation Traces

a b

b 
c

c

a 
b c

a 
b

b 
c

c

State Transition Graph 

Unwind State Graph to obtain traces.  A trace is an 
infinite sequence of states. The semantics of a FSM 
is a set of traces.

b 
c

a ba b

c
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Model of Computation

Infinite Computation Tree

a b

b 
c

c

c

a 
b c

a 
b

b 
c

c

State Transition Graph 

Represent all traces with an infinite computation tree
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What  is “P”?

Different kinds of temporal logics

Syntax: What are the formulas in the logic?

Semantics: What does it mean for model M to satisfy formula P?

Formulas: 

- Atomic propositions: properties of states

- Temporal Logic Specifications: properties of traces.
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Computation Tree Logics

Examples: Safety (mutual exclusion): no two processes can be at a critical 
section at the same time

Liveness (absence of starvation): every request will be

eventually granted

Temporal logics differ according to how they handle branching in the underlying 
computation tree.

In a linear temporal logic (LTL), operators are provided for describing system 
behavior along a single computation path.

In a branching-time logic (CTL), the temporal operators quantify over the paths 
that are possible from a given state.

Our Focus
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The Logic LTL

Linear Time Logic (LTL) [Pnueli 77]: logic of temporal sequences.

• :  holds in the current state

• X:  holds in the next state

• F:  holds eventually

• G:  holds from now on

• ( U ):  holds until  holds







 

  


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Typical LTL Formulas

• G (Req  F Ack): whenever Request  occurs, it will be eventually 
Acknowledged.

• G (DeviceEnabled): DeviceEnabled always holds on every computation path.

• G (F Restart): Fairness: from any state one will eventually get to a Restart 
state.  I.e. Restart states occur infinitely often.

• G (Reset  F Restart): whenever the reset button is pressed one will 
eventually get to the Restart state.
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LTL Conventions

• G is sometimes written 

• F is sometimes written ♢
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Notation

• A path π in M is an infinite sequence of states 
s0, s1,… such that for every i  0, (si, si+1)  R

• πi denotes the suffix of π starting at si

• M, π ⊨ f means that f holds along path π in the 
Kripke structure M
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Semantics of LTL Formulas
M, π ⊨ p  π=s…  p  L(s)

p
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Semantics of LTL Formulas
M, π ⊨ p  π=s…  p  L(s)

M, π ⊨ g  M, π ⊭ g

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

p
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Semantics of LTL Formulas
M, π ⊨ p  π=s…  p  L(s)

M, π ⊨ g  M, π ⊭ g

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

M, π ⊨ X g  M, π1 ⊨ g
g

p
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Semantics of LTL Formulas
M, π ⊨ p  π=s…  p  L(s)

M, π ⊨ g  M, π ⊭ g

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

M, π ⊨ X g  M, π1 ⊨ g

M, π ⊨ F g  k0 | M, πk ⊨ g
g

g

p
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Semantics of LTL Formulas
M, π ⊨ p  π=s…  p  L(s)

M, π ⊨ g  M, π ⊭ g

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

M, π ⊨ X g  M, π1 ⊨ g

M, π ⊨ F g  k0 | M, πk ⊨ g

M, π ⊨ G g  k0 | M, πk ⊨ g

g

gg

g

g g

p
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Semantics of LTL Formulas
M, π ⊨ p  π=s…  p  L(s)

M, π ⊨ g  M, π ⊭ g

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

M, π ⊨ X g  M, π1 ⊨ g

M, π ⊨ F g  k0 | M, πk ⊨ g

M, π ⊨ G g  k0 | M, πk ⊨ g

M, π ⊨ g1 U g2  k0 | M, πk ⊨ g2

 0j<k M, πj ⊨ g1

g

gg

g

g g

g1 g1 g2

p
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Semantics of LTL Formulas
M, π ⊨ p  π=s…  p  L(s)

M, π ⊨ g  M, π ⊭ g

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

M, π ⊨ X g  M, π1 ⊨ g

M, π ⊨ F g  k0 | M, πk ⊨ g

M, π ⊨ G g  k0 | M, πk ⊨ g

M, π ⊨ g1 U g2  k0 | M, πk ⊨ g2

 0j<k M, πj ⊨ g1

g

gg

g

g g

g1 g1 g2

p

g2 must eventually hold
semantics of “until” in English are potentially unclear—

that’s why we have a formal definition
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Practice Writing Properties

• If the door is locked, it will not open until someone 
unlocks it
– assume atomic predicates locked, unlocked, open

• If you press ctrl-C, you will get a command line prompt

• The saw will not run unless the safety guard is engaged
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Practice Writing Properties

• If the door is locked, it will not open until someone 
unlocks it
– assume atomic predicates locked, unlocked, open

– G (locked  (open U unlocked))

• If you press ctrl-C, you will get a command line prompt
– G (ctrlC  F prompt)

• The saw will not run unless the safety guard is engaged
– G (safety  running)
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LTL Model Checking Example
• Pressing Start will eventually 

result in heat ~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error
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LTL Model Checking Example
• Pressing Start will eventually 

result in heat
G(Start  F Heat)

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error
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LTL Model Checking

• f (primitive formula)
– Just check the properties of the current state

• X f
– Verify f holds in all successors of the current state

• G f
– Find all reachable states from the current state, and ensure f holds in all of 

them
• use depth-first or breadth-first search

• f U g
– Do a depth-first search from the current state.  Stop when you get to a g or 

you loop back on an already visited state.  Signal an error if you hit a state 
where f is false before you stop.

• F f
– Harder.  Intuition: look for a path from the current state that loops back on 

itself, such that f is false on every state in the path.  If no such path is found, 
the formula is true.

• Reality: use Büchi automata



45

LTL Model Checking Example
• Pressing Start will eventually 

result in heat
G(Start  F Heat)

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error
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LTL Model Checking Example
• The oven doesn’t heat up until 

the door is closed. ~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error
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LTL Model Checking Example
• The oven doesn’t heat up until 

the door is closed.
(Heat) U Close

(Heat) W Close

G ( not Closed => not Heat )

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error
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Efficient Algorithms for
LTL Model Checking

• Use Büchi automata
– Beyond the scope of this course

• Canonical reference on Model Checking:
– Edmund Clarke, Orna Grumberg, and Doron A. 

Peled.  Model Checking.  MIT Press, 1999.
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SPIN: The Promela Language

• PROcess MEta LAnguage

• Asynchronous composition of independent 
processes

• Communication using channels and global 
variables

• Non-deterministic choices and interleavings
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Mutual Exclusion

• Peterson’s solution to the mutual exclusion 
problem

flag0=1 

turn=1

flag1 != 0 && turn != 0

flag1 == 0 || turn == 0

flag0=0 

Critical
Section
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Mutual Exclusion in SPIN

flag0=1 

turn=1

flag1 != 0 && turn != 0

flag1 == 0 || turn == 0

flag0=0 

Critical
Section

bool turn;

bool flag[2];

proctype mutex0() {

again:

flag[0] = 1;

turn = 1;

(flag[1] == 0 || turn == 0);

/* critical section */

flag[0] = 0;

goto again;   

}
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Mutual Exclusion in SPIN

flag0=1 

turn=1

flag1 != 0 && turn != 0

flag1 == 0 || turn == 0

flag0=0 

Critical
Section

bool turn;

bool flag[2];

proctype mutex0() {

again:

flag[0] = 1;

turn = 1;

(flag[1] == 0 || turn == 0);

/* critical section */

flag[0] = 0;

goto again;   

}

guard:
Cannot go past this point
until the condition is true
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Mutual Exclusion in SPIN
bool turn, flag[2];

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = 1 - _pid;

(flag[1 - _pid] == 0 || turn == _pid);

/* critical section */

flag[_pid] = 0;

goto again;   

}
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Mutual Exclusion in SPIN
bool turn, flag[2];

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = 1 - _pid;

(flag[1 - _pid] == 0 || turn == _pid);

/* critical section */

flag[_pid] = 0;

goto again;   

}

Active process:
automatically creates instances of processes



55

Mutual Exclusion in SPIN
bool turn, flag[2];

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = 1 - _pid;

(flag[1 - _pid] == 0 || turn == _pid);

/* critical section */

flag[_pid] = 0;

goto again;   

}

_pid:
Identifier of the process
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Mutual Exclusion in SPIN
bool turn, flag[2];

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = 1 - _pid;

(flag[1 - _pid] == 0 || turn == _pid);

/* critical section */

flag[_pid] = 0;

goto again;   

}

assert:
Checks that there are only 
at most two instances with 
identifiers 0 and 1
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Mutual Exclusion in SPIN
bool turn, flag[2];

byte ncrit;

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = 1 - _pid;

(flag[1 - _pid] == 0 || turn == _pid);

ncrit++;

assert(ncrit == 1); /* critical section */

ncrit--;

flag[_pid] = 0;

goto again;   

}

ncrit:
Counts the number of
Process in the critical section
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Mutual Exclusion in SPIN
bool turn, flag[2];

byte ncrit;

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = 1 - _pid;

(flag[1 - _pid] == 0 || turn == _pid);

ncrit++;

assert(ncrit == 1); /* critical section */

ncrit--;

flag[_pid] = 0;

goto again;   

}

assert:
Checks that there are always
at most one process in the
critical section
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Mutual Exclusion in SPIN
bool turn, flag[2];

bool critical[2];

#define critical1 critical[1]

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = 1 - _pid;

(flag[1 - _pid] == 0 || turn == _pid);

critical[_pid] = 1;

/* critical section */

critical[_pid] = 0;

flag[_pid] = 0;

goto again;   

}

LTL Properties:

The processes are never both in the critical 
section

No matter what happens, a process will 
eventually get to a critical section

Once process 0 raises its flag, it will 
eventually get into the critical section



60

Mutual Exclusion in SPIN
bool turn, flag[2];

bool critical[2];

#define critical1 critical[1]

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = 1 - _pid;

(flag[1 - _pid] == 0 || turn == _pid);

critical[_pid] = 1;

/* critical section */

critical[_pid] = 0;

flag[_pid] = 0;

goto again;   

}

LTL Properties:

The processes are never both in the critical 
section

G (critical[0] == 0 || critical[1] == 0)
[] (!critical0 || !critical1)

No matter what happens, a process will 
eventually get to a critical section

F critical[0]
<> critical0

Once process 0 raises its flag, it will 
eventually get into the critical section

G (turn -> F critical0)
[] (turn -> <> critical0)
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Mutual Exclusion in SPIN
bool turn, flag[2];

bool critical[2];

#define critical1 critical[1]

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = 1 - _pid;

(flag[1 - _pid] == 0 || turn == _pid);

critical[_pid] = 1;

/* critical section */

critical[_pid] = 0;

flag[_pid] = 0;

goto again;   

}

LTL Properties:

The processes are never both in the critical 
section

G (critical[0] == 0 || critical[1] == 0)
[] (!critical0 || !critical1)

* caveat: can’t use array indexes in SPIN LTL 
properties--have to duplicate code
** caveat: can’t use next (X) due to SPIN 
limitations
***caveat: SPIN accepts a “never” property rather 
than an “always” property, so LTL formulas 
should be negated before passing them to SPIN.
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State Space Explosion

Problem:

Size of the state graph can be exponential in size of the 

program (both in the number of the program variables and the 

number of program components)

M = M1 || … || Mn

If each Mi has just 2 local states, potentially 2n global states

Research Directions: State space reduction
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Model Checking Performance

•Model Checkers today can routinely handle systems with between 
100 and 300 state variables.

•Systems with 10120 reachable states have been checked.

•By using appropriate abstraction techniques, systems with an 
essentially unlimited number of states can be checked.
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Notable Examples
• IEEE Scalable Coherent Interface – In 1992 Dill’s group at 

Stanford used Murphi to find several errors, ranging from 
uninitialized variables to subtle logical errors

• IEEE Futurebus – In 1992 Clarke’s group at CMU found previously 
undetected design errors

• PowerScale multiprocessor (processor, memory controller, and 
bus arbiter) was verified by Verimag researchers using CAESAR 
toolbox

• Lucent telecom. protocols were verified by FormalCheck – errors 
leading to lost transitions were identified

• PowerPC 620 Microprocessor was verified by Motorola’s Verdict 
model checker.
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The Grand Challenge:
Model Check Software

Extract finite state machines from programs written in conventional 
programming languages

Use a finite state programming language:
• executable design specifications (Statecharts, xUML, etc.).

Unroll the state machine obtained from the executable of the program.
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The Grand Challenge:
Model Check Software

Use a combination of the state space reduction techniques to avoid 
generating too many states.
• Verisoft (Bell Labs)
• FormalCheck/xUML (UT Austin, Bell Labs)
• ComFoRT (CMU/SEI)

Use static analysis to extract a finite state skeleton from a program. 
Model check the result.
• Bandera – Kansas State
• Java PathFinder – NASA Ames
• SLAM/Bebop - Microsoft
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Bonus: Computation Tree Logic (CTL)
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Computation Tree Logics
Formulas are constructed from path quantifiers and temporal operators:

1. Path Quantifiers: 
• A – ‘’for every path’’
• E – ‘’there exists a path’’

2. Temporal Operator:

• X -  holds next time

• F -  holds sometime in the future
• G -  holds globally in the future
•  Uβ -  holds until β holds

LTL: start with an A and then use only Temporal Operators
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The Logic CTL

In a branching-time logic (CTL), the temporal operators quantify over the paths that 
are possible from a given state (s0).  Requires each temporal operator (X, F, G, and 
U) to be preceded by a path quantifier (A or E).

M, s0 EG c

M, s0 AF c

M, s0 EF c

M, s0 AG c

c

c

c

c

c

c

c

c c

c

cc

c
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Typical CTL Formulas

• EF (Started  Ready): it is possible to get to a state where Started holds but 
Ready does not hold.

• AG (Req  AF Ack): whenever Request  occurs, it will be eventually 
Acknowledged.

• AG (DeviceEnabled): DeviceEnabled always holds on every computation 
path.

• AG (EF Restart): from any state it is possible to get to the Restart state.



71

Trivia
• AG(EF p) cannot be 

expressed in LTL
– Reset property: from every 

state it is possible to get to p
• But there might be paths 

where you never get to p

– Different from A(GF p)
• Along each possible path, for 

each state in the path, there 
is a future state where p
holds

• Counterexample: ababab…

a

b p
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Trivia
• A(FG p) cannot be 

expressed in CTL
– Along all paths, one eventually 

reaches a point where p
always holds from then on

• But at some points in some 
paths where p always holds, 
there might be a diverging 
path where p does not hold

– Different from AF(AG p)
• Along each possible path 

there exists a state such that 
p always holds from then on

• Counterexample: the path that 
stays in s0

p

b p

s0

s1 s2
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Linear vs. branching-time logics

some advantages of LTL

• LTL properties are preserved 
under “abstraction”:   i.e., if M
“approximates” a more complex 
model M’, by introducing more 
paths, then

M ² y ) M’ ² y
• “counterexamples” for LTL are 

simpler: consisting of single 
executions (rather than trees).

• The automata-theoretic approach 
to LTL model checking is simpler
(no tree automata involved).

• anecdotally, it seems most 
properties people are interested in 
are linear-time properties. 

some advantages of BT logics

• BT allows expression of some 
useful properties like ‘reset’.

• CTL, a limited fragment of the 
more complete BT logic CTL*, 
can be model checked in time 
linear in the formula size (as 
well as in the transition system). 
But formulas are usually far
smaller than system models, so 
this isn’t as important as it may 
first seem.

• Some BT logics, like m-calculus
and CTL, are well-suited for the 
kind of fixed-point computation 
scheme used in symbolic model 
checking. 
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Formulas over States and Paths

• State formulas
– Describe a property of a state in a model M

– If p ∈ AP, then p is a state formula

– If f and g are state formulas, then f, f  g and f  g are state 
formulas

– If f is a path formula, then E f and A f are state formulas

• Path formulas
– Describe a property of an infinite path through a model M

– If f is a state formula, then f is also a path formula

– If f and g are path formulas, then f, f  g, f  g, X f, F f, G f, 
and f U g are path formulas
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Notation

• A path π in M is an infinite sequence of states 
s0, s1,… such that for every i  0, (si, si+1)  R

• πi denotes the suffix of π starting at si

• If f is a state formula, M, s ⊨ f means that f
holds at state s in the Kripke structure M

• If f is a path formula, M, π ⊨ f means that f
holds along path π in the Kripke structure M
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Semantics of Formulas

M, s ⊨ p  p  L(s)

M, s ⊨ f  M, s ⊭ f

M, s ⊨ f1  f2  M, s ⊨ f1 M, s ⊨ f2
M, s ⊨ f1  f2  M, s ⊨ f1 M, s ⊨ f2
M, s ⊨ E g1  π=s… | M, π ⊨ g1

M, s ⊨ A g1  π=s… M, π ⊨ g1

M, π ⊨ f  π=s…  M, s ⊨ f

M, π ⊨ g  M, π ⊭ g

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

M, π ⊨ g1  g2  M, π ⊨ g1 M, π ⊨ g2

M, π ⊨ X g  M, π1 ⊨ g

M, π ⊨ F g  k0 | M, πk ⊨ g

M, π ⊨ G g  k0 | M, πk ⊨ g

M, π ⊨ g1 U g2  k0 | M, πk ⊨ g2

 0j<k M, πj ⊨ g1
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Bonus: Example
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An Example

mtype = { NONCRITICAL, TRYING, CRITICAL };
show mtype state[2];
proctype process(int id) {
beginning:
noncritical:

state[id] = NONCRITICAL;
if
:: goto noncritical;
:: true;
fi;

trying:
state[id] = TRYING;
if
:: goto trying;
:: true;
fi;

critical:
state[id] = CRITICAL;
if
:: goto critical;
:: true;
fi;
goto beginning;}

init { run process(0); run process(1); }

NC

C

T
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An Example

mtype = { NONCRITICAL, TRYING, CRITICAL };
show mtype state[2];
proctype process(int id) {
beginning:
noncritical:

state[id] = NONCRITICAL;
if
:: goto noncritical;
:: true;
fi;

trying:
state[id] = TRYING;
if
:: goto trying;
:: true;
fi;

critical:
state[id] = CRITICAL;
if
:: goto critical;
:: true;
fi;
goto beginning;}

init { run process(0); run process(1); }
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An Example

mtype = { NONCRITICAL, TRYING, CRITICAL };
show mtype state[2];
proctype process(int id) {
beginning:
noncritical:

state[id] = NONCRITICAL;
if
:: goto noncritical;
:: true;
fi;

trying:
state[id] = TRYING;
if
:: goto trying;
:: true;
fi;

critical:
state[id] = CRITICAL;
if
:: goto critical;
:: true;
fi;
goto beginning;}

init { run process(0); run process(1); }
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An Example

mtype = { NONCRITICAL, TRYING, CRITICAL };
show mtype state[2];
proctype process(int id) {
beginning:
noncritical:

state[id] = NONCRITICAL;
if
:: goto noncritical;
:: true;
fi;

trying:
state[id] = TRYING;
if
:: goto trying;
:: true;
fi;

critical:
state[id] = CRITICAL;
if
:: goto critical;
:: true;
fi;
goto beginning;}

init { run process(0); run process(1); }
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An Example

mtype = { NONCRITICAL, TRYING, CRITICAL };
show mtype state[2];
proctype process(int id) {
beginning:
noncritical:

state[id] = NONCRITICAL;
if
:: goto noncritical;
:: true;
fi;

trying:
state[id] = TRYING;
if
:: goto trying;
:: true;
fi;

critical:
state[id] = CRITICAL;
if
:: goto critical;
:: true;
fi;
goto beginning;}

init { run process(0); run process(1); }
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An Example

mtype = { NONCRITICAL, TRYING, CRITICAL };
show mtype state[2];
proctype process(int id) {
beginning:
noncritical:

state[id] = NONCRITICAL;
if
:: goto noncritical;
:: true;
fi;

trying:
state[id] = TRYING;
if
:: goto trying;
:: true;
fi;

critical:
state[id] = CRITICAL;
if
:: goto critical;
:: true;
fi;
goto beginning;}

init { run process(0); run process(1); }

NC

C

T
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Enabled Statements

• A statement needs to be enabled for the 
process to be scheduled.

bool a, b;

proctype p1()

{

a = true;

a & b;

a = false;

}

proctype p2()

{

b = false;

a & b;

b = true;

}

init { a = false; b = false; run p1(); run p2(); }
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Enabled Statements

• A statement needs to be enabled for the 
process to be scheduled.

bool a, b;

proctype p1()

{

a = true;

a & b;

a = false;

}

proctype p2()

{

b = false;

a & b;

b = true;

}

init { a = false; b = false; run p1(); run p2(); }

These statements are enabled 
only if both a and b are true.
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Enabled Statements

• A statement needs to be enabled for the 
process to be scheduled.

bool a, b;

proctype p1()

{

a = true;

a & b;

a = false;

}

proctype p2()

{

b = false;

a & b;

b = true;

}

init { a = false; b = false; run p1(); run p2(); }

These statements are enabled 
only if both a and b are true.

In this case b is always false 
and therefore there is a 
deadlock.
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Other constructs

• Do loops
do

:: count = count + 1;

:: count = count - 1;

:: (count == 0) -> break

od
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Other constructs

• Do loops

• Communication over channels
proctype sender(chan out)

{

int x;

if

::x=0;

::x=1;

fi

out ! x;

}
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Other constructs

• Do loops

• Communication over channels

• Assertions
proctype receiver(chan in)

{

int value;

in ? value;

assert(value == 0 || value == 1)

}
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Other constructs

• Do loops

• Communication over channels

• Assertions

• Atomic Steps
int value;

proctype increment()

{ atomic {

x = value;

x = x + 1;

value = x;

} }


