Introduction to Program Analysis

17-355/17-665/17-819: Program Analysis

Jonathan Aldrich and Claire Le Goues

°
institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 1 I S r SOFTWARE
RESEARCH

institute for
I S SOFTWARE
RESEARCH

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 3 I S SOFTWARE
RESEARCH

institute for
| S SOFTWARE
RESEARCH

Is there a bug in this code?

@
institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 5 I S SOFTWARE
RESEARCH

1./* from Linux 2.3.99 drivers/block/raid5.c */
2.static struct buffer head *
3.get free buffer(struct stripe head * sh,

4.

o I O Ul

10.
11.
12.
13.
14.
15.}

int b size) {

struct buffer head *bh;

unsigned long flags;

ERROR: function returns with

save_flags(flags); interrupts disabled!
cli(); // disables interrug

1f ((bh = sh->buffer pgg == NULL)

return NULL;
sh->buffer pool = bh -> b next;
bh->b size = b size;
restore flags(flags); // re-—-enables interrupts

return bh;

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000 °

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 6 I S SOFTWARE
RESEARCH

Could you have found it?

 How often would that bug trigger?

 What happens if you return from a driver
with interrupts disabled?

* Consider: that’s one function
—...in @ 2000 LOC file
— ...in a module with 60,000 LOC
—...IN THE LINUX KERNEL

 Moral: Some defects are very difficult to find
via testing, inspection.

°

institute for

(c) 2018 Jonathan Aldrich and Claire Le Goues 7 I S SOFTWARE
RESEARCH

O J o U b w ND

11

12.
13.

14
15

lo.
17.
18.
19.

. pat enable = { sti() ; }
: | { restore flags(flags); } ; \\\\N//

. pat disable = { cli() ; }

sm check interrupts {

// variables; used in patterns

. decl { unsigned } flags;

// vpatterns specify enable/disable functions
e P Y enable =» err(double enable)

//states; first state is initial
is enabled : disable =» is disabled

| enable = { err (“double enable”); }
is disabled : enable =» is enabled

| disable = { err (“double disable”); }
.//special pattern that matches when is_disabled
.// end of path is reached in this state
| $end of path$ =>

{ err(Yexiting with inter disabled!”); }

Example from Engler et al., Checking system rules Using end path > 4 err(exiting with inter disa blEd)
} System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 8 I S SOFTWARE
RESEARCH

1./* from Linux 2.3.99 drivers/block/raid5.c */
2.static struct buffer head *
3.get free buffer(struct stripe head * sh,

4. int b size) {

5. struct buffer head *bh;

6. unsigned long flags;

7. save flags (flags); Initial state: is_enabled
8. «cli(); // disables interrups

9. 1f ((bh = sh->buffer pool) == NULL)

10. return NULL;

11. sh->buffer pool = bh -> b next;
12. Dbh->b size = b size;

13. restore flags(flags); // re-enables interrupts
14. return bh;
15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000 °

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 9 I S SOFTWARE
RESEARCH

1./* from Linux 2.3.99 drivers/block/raid5.c */
2.static struct buffer head *
3.get free buffer(struct stripe head * sh,

4, int b size) {

5. struct buffer head *bh;

6. unsigned long flags;

7. save flags (flags); Transition to: is_disabled
8. «cli(); // disables interrug

9. 1f ((bh = sh->buffer pool) == NULL)

10. return NULL;

11. sh->buffer pool = bh -> b next;
12. Dbh->b size = b size;

13. restore flags(flags); // re-enables interrupts
14. return bh;
15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000 °

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 10 I S SOFTWARE
RESEARCH

1./* from Linux 2.3.99 drivers/block/raid5.c */
2.static struct buffer head *
3.get free buffer(struct stripe head * sh,

4.

O J O Ul

10.
11.
12.
13.
14.
15.}

int b size) {

struct buffer head *bh;
unsigned long flags;

save flags (flags); Final state: is_disabled
cli(); // disables interrud
1f ((bh = sh->buffer pgs == NULL)

return NULL;
sh->buffer pool = bh -> b next;
bh->b size = b size;
restore flags(flags); // re-enables interrupts

return bh;

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000 °

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 11 I S SOFTWARE
RESEARCH

1./* from Linux 2.3.99 drivers/block/raid5.c */
2.static struct buffer head *

3.get free buffer(struct stripe head * sh,

4.

o I O Ul

10.
11.
12.
13.
14.
15.}

int b size) {

struct buffer head *bh;
unsigned long flags;
save flags (flags); Transition to: is_enabled

cli(); // disables interrudg
if ((bh = sh—>buffer_pool)

return NULL;
sh->buffer pool = bh
bh->b size = b size;
restore flags(flags); // re-—-enables interrupts

return bh;

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000 °

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 12 I S SOFTWARE
RESEARCH

1./* from Linux 2.3.99 drivers/block/raid5.c */
2.static struct buffer head *
3.get free buffer(struct stripe head * sh,

4. int b size) {

5. struct buffer head *bh;

6. unsigned long flags;

7. save flags(flags); Final state: is_enabled
8. «cli(); // disables interrud

9. 1f ((bh = sh->buffer pool)
10. return NULL;
11. sh->buffer pool
12. bh->b size =D
13. restore flagg
14. return Dbh;
15.}

b next;

lags); // re-enables interrupts

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000 °

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 13 I S SOFTWARE
RESEARCH

Defects of interest...

* Are on uncommon or difficult-to-force
execution paths.
— Which is why it’s hard to find them via testing.

* Executing (or interpreting/otherwise
analyzing) all paths concretely to find such

defects is infeasible.

 What we really want to do is check the
entire possible state space of the program.

°
institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 14 I S SOFTWARE
RESEARCH

Defects Static Analysis can Catch

* Defects that result from inconsistently following
simple, mechanical design rules.

— Security: Buffer overruns, improperly validated input.
— Memory safety: Null dereference, uninitialized data.
— Resource leaks: Memory, OS resources.

— API Protocols: Device drivers; real time libraries; GUI
frameworks.

— Exceptions: Arithmetic/library/user-defined

— Encapsulation: Accessing internal data, calling private
functions.

— Data races: Two threads access the same data without
synchronization

Key: check compliance to simple, mechanical design rules

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 15 I S SOFTWARE
RESEARCH

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

@
institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 16 I S SOFTWARE
RESEARCH

Principle techniques

* Dynamic:

— Testing: Direct execution of code on test data
in a controlled environment.

— Analysis: Tools extracting data from test runs.
e Static:

— Analysis: Tools reasoning about the program
without executing it.

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 17 I S SOFTWARE
RESEARCH

Fundamental concepts

* Abstraction.
— Elide details of a specific implementation.

— Capture semantically relevant details; ignore
the rest.

* The importance of semantics.

— We prove things about analyses with respect
to the semantics of the underlying language.

* Implementation

— You do not understand analysis until you have
written several.

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 18 I S SOFTWARE
RESEARCH

The Bad News: Rice's Theorem
"Any nontrivial property about the

language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

@
institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 19 I S SOFTWARE
RESEARCH

OK, so?

* If you could infallibly statically tell if any
program had a non-trivial property (never
dereferences null, always releases all file
handles, etc, etc), you could also solve the
halting problem.

 ...but the halting problem is definitely
impossible.

* So: no static analysis is perfect. They will always
have false positives or false negatives (or both),
or will not provably terminate.

°
institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 20 I S SOFTWARE
RESEARCH

Proof by contradiction (sketch)

Assume that you have a function that can determine if a
program p has some nontrivial property (like
divides by zero):

int silly(program p, 1nput 1) {
p(1);
return 5/0;

}

bool halts(program p, 1nput 1) {
return divides by zero(silly(p,1));

}

\]O\(ﬂl-b(JONH

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 21 I S SOFTWARE
RESEARCH

Error Reported True positive False positive
(correct analysis result)

No Error Reported False negative True negative
(correct analysis result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 22 I S SOFTWARE
RESEARCH

Sound Analysis

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 23 I S SOFTWARE
RESEARCH

HOW THE CLASS WILL WORK

@
institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 24 I S SOFTWARE
RESEARCH

Language definitions

* Concrete syntax: The rules by which
programs can be expressed as strings of
characters.

— Use finite automata and context-free
grammars, automatic lexer/parser
generators

* Abstract syntax: a subset of the parse
tree of the program.

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 25 I S SOFTWARE
RESEARCH

WHILE abstract syntax

« Categories: Concrete syntax would
— SE Stmt statements be similar, but would add

— a€E Aexp arithmetic expressions things like (parentheses)
_ X, y€EVar variables for _disambi.guation
— n€E Num number literals during parsing
— P € BExp boolean predicates
— | € labels statement addresses (line numbers)
* Syntax:
- S = x = a | skip | S; ; S,
| 1f P then §S; else S, | while P do S
— a = x | n | a; op, a,
— op, :=+ | = | * | /|
— P ::= true | false | not P | P, op, P, | al op, a2
— O0py, ::= and | or |
—op, :=< | s | =] >] 2]

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 26 I S SOFTWARE
RESEARCH

Example WHILE program
Y = Xy

z = 1;
while y > 1 do

@
institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 27 I S SOFTWARE
RESEARCH

Exercise: Building an AST
Y = Xy

z = 1;
while y > 1 do

@
institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 28 I S SOFTWARE
RESEARCH

WHILESADDR:
An Intermediate Representaiton

e Simpler, more uniform than WHILE syntax
* (Categories:

— | € Instruction instructions
— X, y € Var variables
—n € Num number literals
* Syntax:
— 1 1= X = n | x =y | X :=y op z
| goto n | 1f x op, 0 goto n
—op, :=+ | - | * | /| .
—op, 1= < | < | =] > | 2|

— P € Num~>/

@
institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 29 I S SOFTWARE
RESEARCH

Exercise: Translating to WHILE3ADDR

* (Categories:

— | € Instruction instructions
— X, y € Var variables
—n € Num number literals
* Syntax:
— 1 1= X :=n | x =y | X :=y op z
| goto n | 1f x op, 0 goto n
—op, :=+ | - | * | /| .
—op, 1= < | < | = | > 2|

— P € Num~>/

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 30 I S SOFTWARE
RESEARCH

WHILESADDR Extensions (more later)

* Syntax:
- T

I
X
I
S
X
I
N
X
[
<
O
T
N

x := *p
*p = X
X :=y.r
X.r :=y

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 31 I S SOFTWARE
RESEARCH

Syntactic Analysis

* Walks a program representation, searching for errors

— Example: bad shift analysis

For each 1nstruction I 1n the program
1f I 1s a shift instruction
if (type of I's left operand is int
&& I's right operand is a constant
&& value of constant < 0 or > 31)

warn (“Shifting by less than 0 or more
than 31 is meaningless’)

institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 32 | S SOFTWARE
RESEARCH

Practice: String concatenation in a loop

* Write pseudocode for a simple syntactic analysis that
warns when string concatenation occurs in a loop
— In Java and .NET it is more efficient to use a StringBuffer
— Assume any appropriate AST elements

institute for
33 | S SOFTWARE
RESEARCH

For next time

e Get on Piazza and Canvas

e Read our lecture notes and the course
syllabus

°
institute for
(c) 2018 Jonathan Aldrich and Claire Le Goues 34 I S SOFTWARE
RESEARCH

