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1 Motivation

Companies today spend a huge amount of time and energy testing software to determine whether
it does the right thing, and to find and then eliminate bugs. A major challenge is writing a set of
test cases that covers all of the source code, as well as finding inputs that lead to difficult-to-trigger
corner case defects.

Symbolic execution, discussed in the last lecture, is a promising approach to exploring differ-
ent execution paths through programs. However, it has significant limitations. For paths that are
long and involve many conditions, SMT solvers may not be able to find satisfying assignments
to variables that lead to a test case that follows that path. Other paths may be short but involve
computations that are outside the capabilities of the solver, such as non-linear arithmetic or cryp-
tographic functions. For example, consider the following function:

testme(int x, int y){
if(bbox(x)==y){

ERROR;
} else {

// OK
}

}

If we assume that the implementation of bbox is unavailable, or is too complicated for a the-
orem prover to reason about, then symbolic execution may not be able to determine whether the
error is reachable.

Concolic testing overcomes these problems by combining concrete execution (i.e. testing) with
symbolic execution.1 Symbolic execution is used to solve for inputs that lead along a certain
path. However, when a part of the path condition is infeasible for the SMT solver to handle, we
substitute values from a test run of the program. In many cases, this allows us to make progress
towards covering parts of the code that we could not reach through either symbolic execution or
randomly generated tests.

2 Goals

We will consider the specific goal of automatically unit testing programs to find assertion viola-
tions and run-time errors such as divide by zero. We can reduce these problems to input genera-
tion: given a statement s in program P , compute input i such that P piq executes s.2 For example,

1The word concolic is a portmanteau of concrete and symbolic
2This formulation is due to Wolfram Schulte
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if we have a statement assert x > 5, we can translate that into the code:

1 if (!(x > 5))
2 ERROR;

Now if line 2 is reachable, the assertion is violated. We can play a similar trick with run-time
errors. For example, a statement involving division x = 3 / i can be placed under a guard:

1 if (i != 0)
2 x = 3 / i;
3 else
4 ERROR;

3 Overview

Consider the testme example from the motivating section. Although symbolic analysis cannot
solve for values of x and y that allow execution to reach the error, we can generate random test
cases. These random test cases are unlikely to reach the error: for each x there is only one y that
will work, and random input generation is unlikely to find it. However, concolic testing can use
the concrete value of x and the result of running bbox(x) in order to solve for a matching y value.
Running the code with the original x and the solution for y results in a test case that reaches the
error.

In order to understand how concolic testing works in detail, consider a more realistic and more
complete example:

1 int double (int v) {
2 return 2*v;
3 }
4

5 void bar(int x, int y) {
6 z = double (y);
7 if (z == x) {
8 if (x > y+10) {
9 ERROR;

10 }
11 }
12 }

We want to test the function bar. We start with random inputs such as x � 22, y � 7. We
then run the test case and look at the path that is taken by execution: in this case, we compute
z � 14 and skip the outer conditional. We then execute symbolically along this path. Given inputs
x � x0, y � y0, we discover that at the end of execution z � 2 � y0, and we come up with a path
condition 2 � y0! � x0.

In order to reach other statements in the program, the concolic execution engine picks a branch
to reverse. In this case there is only one branch touched by the current execution path; this is the
branch that produced the path condition above. We negate the path condition to get 2 � y0 �� x0
and ask the SMT solver to give us a satisfying solution.

Assume the SMT solver produces the solution x0 � 2, y0 � 1. We run the code with that input.
This time the first branch is taken but the second one is not. Symbolic execution returns the same
end result, but this time produces a path condition 2 � y0 �� x0 ^ x0 ¤ y0 � 10.
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Now to explore a different path we could reverse either test, but we’ve already explored the
path that involves negating the first condition. So in order to explore new code, the concolic
execution engine negates the condition from the second if statement, leaving the first as-is. We
hand the formula 2 � y0 �� x0 ^ x0 ¡ y0 � 10 to an SMT solver, which produces a solution
x0 � 30, y0 � 15. This input leads to the error.

The example above involves no problematic SMT formulas, so regular symbolic execution
would suffice. The following example illustrates a variant of the example in which concolic exe-
cution is essential:

1 int foo(int v) {
2 return v*v\%50;
3 }
4

5 void baz(int x, int y) {
6 z = foo(y);
7 if (z == x) {
8 if (x > y+10) {
9 ERROR;

10 }
11 }
12 }

Although the code to be tested in baz is almost the same as bar above, the problem is more
difficult because of the non-linear arithmetic and the modulus operator in foo. If we take the
same two initial inputs, x � 22, y � 7, symbolic execution gives us the formula z � py0 � y0q%50,
and the path condition is x0! � py0 � y0q%50. This formula is not linear in the input y0, and so it
may defeat the SMT solver.

We can address the issue by treating foo, the function that includes nonlinear computation,
concretely instead of symbolically. In the symbolic state we now get z � foopy0q, and for y0 � 7
we have z � 49. The path condition becaomse foopy0q! � x0, and when we negate this we get
foopy0q �� x0, or 49 �� x0. This is trivially solvable with x0 �� 49. We leave y0 � 7 as before;
this is the best choice because y0 is an input to foopy0q so if we change it, then setting x0 � 49 may
not lead to taking the first conditional. In this case, the new test case of x � 49, y � 7 finds the
error.

4 Implementation

Ball and Daniel [1] give the following pseudocode for concolic execution (which they call dynamic
symbolic execution):

1 i = an input to program P
2 while defined(i):
3 p = path covered by execution P(i)
4 cond = pathCondition(p)
5 s = SMT(Not(cond))
6 i = s.model()

Broadly, this just systematizes the approach illustrated in the previous section. However, a
number of details are worth noting:
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First, when negating the path condition, there is a choice about how to do it. As discussed
above, the usual approach is to put the path conditions in the order in which they were generated
by symbolic execution. The concolic execution engine may target a particular region of code for
execution. It finds the first branch for which the path to that region diverges from the current test
case. The path conditions are left unchanged up to this branch, but the condition for this branch
is negated. Any conditions beyond the branch under consideration are simply omitted. With this
approach, the solution provided by the SMT solver will result in execution reaching the branch
and then taking it in the opposite direction, leading execution closer to the targeted region of code.

Second, when generating the path condition, the concolic execution engine may choose to
replace some expressions with constants taken from the run of the test case, rather than treating
those expressions symbolically. These expressions can be chosen for one of several reasons. First,
we may choose formulas that are difficult to invert, such as non-linear arithmetic or cryptographic
hash functions. Second, we may choose code that is highly complex, leading to formulas that are
too large to solve efficiently. Third, we may decide that some code is not important to test, such
as low-level libraries that the code we are writing depends on. While sometimes these libraries
could be analyzable, when they add no value to the testing process, they simply make the formulas
harder to solve than they are when the libraries are analyzed using concrete data.
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