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1 Symbolic Execution Overview

Symbolic execution is a way of executing a program abstractly, so that one abstract execution
covers multiple possible inputs of the program that share a particular execution path through the
code. The execution treats these inputs symbolically, “returning” a result that is expressed in terms
of symbolic constants that represent those input values.

Symbolic execution is less general than abstract interpretation, because it doesn’t explore all
paths through the program. However, symbolic execution can often avoid approximating in
places where Al must approximate in order to ensure analysis termination. This means that sym-
bolic execution can avoid giving false warnings; any error found by symbolic execution represents
a real, feasible path through the program, and (as we well see) can be witnessed with a test case
that illustrates the error.

1.1 A Generalization of Testing

As the above discussion suggest, symbolic execution is a way to generalize testing. A test in-
volves executing a program concretely on one specific input, and checking the results. In contrast,
symbolic execution considers how the program executes abstractly on a family of related inputs.
Consider the following code example, where a, b, and c are user-provided:

int x=0, y=0, z=0;
if(a) {

z = 2;
}

assert(x +y + z != 3);

Running this code with a =1, b = 2, and ¢ = 1 causes the assertion to fail, and if we are good
testers/lucky, we can stumble upon this combination and generalize to the combination of input
spaces that will lead to it (and hopefully fix it!).

Instead of executing the code on concrete inputs (likea=1,b =2, and ¢ = 1), symbolic execution
evaluates it on symbolic inputs, like a = o, b = 3, ¢ = , and then tracks execution in terms of those
symbolic values. If a branch condition ever depends on unknown symbolic values, the symbolic
execution engine simply chooses one branch to take, recording the condition on the symbolic



values that would lead to that branch. After a given symbolic execution is complete, the engine
may go back to the branches taken and explore other paths through the program.

To get an intuition for how symbolic analysis works, consider abstractly executing a path
through the program above. As we go along the path, we will keep track of the (potentially
symbolic) values of variables, and we will also track the conditions that must be true in order for
us to take that path. We can write this in tabular form, showing the values of the path condition g
and symbolic environment E after each line:

line | g E
0 | true ar— a,b— g c—y
1 | true e,z 0,y 0,20
2| ~a ey, 0,y—0,2—0
5| -anfB=5 e, x> 0,y— 0,20
9| —anfz2z5A04+404+0#3|...,2—~0,y—0,2—0

In the example, we arbitrarily picked the path where the abstract value of a, i.e. ¢, is false,
and the abstract value of b, i.e. 3, is not less than 5. We build up a path condition out of these
boolean predicates as we hit each branch in the code. The assignment to z, y, and z updates the
symbolic state £ with expressions for each variable; in this case we know they are all equal to 0.
At line 9, we treat the assert statement like a branch. In this case, the branch expression evaluates
to 0 + 0 4+ 0 # 3 which is true, so the assertion is not violated.

Now, we can run symbolic execution again along another path. We can do this multiple times,
until we explore all paths in the program (exercise to the reader: how many paths are there in the
program above?) or we run out of time. If we continue doing this, eventually we will explore the

following path:

line | g E
0 | true a— a,b— B,c—y
1 | true x> 0,y—0,2—0
2| x> 0,y—0,2—0
5| -anf<h e, x> 0,y—> 0,20
6| "anB<bAy e,z 0y 1,250
6| "~aAnB<5AYy e, 0y 1,292
9| manfB<bA=(0+1+2#3)|....,2—0,y—> 1,22

Along this path, we have —a A 8 < 5. This means we assign y to 1 and z to 2, meaning that the

assertion 0 + 1 4 2 # 3 on line 9 is false. Symbolic execution has found an error in the program!

1.2 History of Symbolic Analysis

Symbolic execution was originally proposed in the 1970s, but it relied on automated theorem
proving, and the algorithms and hardware of that period weren’t ready for widespread use. With
recent advances in SAT/SMT solving and 4 decades of Moore’s Law applied to hardware, sym-
bolic execution is now practical in many more situations, and is used extensively in program
analysis research as well as some emerging industry tools.

2 Symbolic Execution Semantics

We can write rules for evaluating programs symbolically in WHILE. We will write the rules in a
style similar to the big-step semantics we wrote before, but incorporate symbolic values and keep
track of the path conditions we have taken.



We start by defining symbolic analogs for arithmetic expressions and boolean predicates. We
will call symbolic predicates guards and use the metavariable g, as these will turn into guards for
paths the symbolic evaluator explores. These analogs are the same as the ordinary versions, except
that in place of variables we use symbolic constants:

g = true as = «
| false | n
| not g | Us1 OPq Qs2
| g1 Opy g2
| Qg1 OPr G52

Now we generalize the notion of the environment F, so that variables refer not just to integers
but to symbolic expressions:

E e Var — a,

Now we can define big-step rules for the symbolic evaluation of expressions, resulting in sym-
bolic expressions. Since we don’t have actual values in many cases, the expressions won't evalu-
ate, but variables will be replaced with symbolic constants:

B in big-int

big-var

(x, B) | E(x)

(a1, EY | as1 a2, E) || as
(a1 +az, E) | as1 + as

big-add

We can likewise define rules for statement evaluation. These rules need to update not only the
environment E, but also a path guard g:

big-ski
(g, E,skipy | (g, By &P

<97 E, Sl> U <g/a El> <gl’ Elv 52> U <g”7 E”>
<gv E, s1; 32> U <g”7 E”>

big-seq

(a,E) | as
<ng7x ‘= a> ) <97E[x = a8]>

big-assign

(PEYVg gnrg'shT {gnag E s " E)
{g,E,if P then s; else s2,) || (¢", E")

big-iftrue

(P.E)y g gn—g'SAT {gn—g E s |g" E)
{g,E,if P then s else s9,) | (¢", E")

big-iffalse

The rules for skip, sequence, and assignment are compositional in the expected way, with the
arithmetic expression on the right-hand side of an assignment evaluating to a symbolic expression



rather than a value. The interesting rules are the ones for if. Here, we evaluate the condition to a
symbolic predicate ¢’. In the true case, we use a SMT solver to verify that the guard is satisfiable
when conjoined with the existing path condition. If that’s the case, we continue by evaluating the
true branch symbolically. The false case is analogous.

We leave the rule for while to the reader, following the principles behind the i f rules above.

3 Symbolic Execution Implementation and Industrial Use

Of course programs with loops have infinite numbers of paths, so exhaustive symbolic execution
isnot possible. Instead, tools take hueristics, such as exploring all execution trees down to a certain
depth, or limiting loop iteration to a small constant, or trying to find at least one path that covers
each line of code in the program. In order to avoid analyzing complex library code, symbolic
executors may use an abstract model of libraries.

Symbolic execution has been used in industry for the last couple of decades. One of the most
prominent examples is the use of the PREfix to find errors in C/C++ code within Microsoft [1].
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