
Lecture Notes:
Widening Operators and Collecting Semantics

17-355/17-665/17-819O: Program Analysis (Spring 2018)
Claire Le Goues and Jonathan Aldrich

clegoues@cs.cmu.edu, aldrich@cs.cmu.edu

1 A Collecting Semantics for Reaching Definitions

The approach to dataflow analysis correctness outlined in the previous lectures generalizes natu-
rally when we have a lattice that can be directly abstracted from program configurations c from
our execution semantics. Sometimes, however, it would be useful to track other kinds of infor-
mation, that we cannot get directly from a particular state in program execution. For example,
consider reaching definitions, which we discussed as an example analysis last week. Although we
can track which definitions reach a line using the previously-outlined approach, we cannot see
where the variables used in an instruction I were last defined.

To solve this problem, we can augment our semantics with additional information that cap-
tures the required information. For example, for reaching definitions, we want to know, at any
point in a particular execution, which definition reaches the current location for each program vari-
able in scope.

We call a version of the program semantics that has been augmented with additional informa-
tion necessary for some particular analysis a collecting semantics. For reaching definitions, we can
define a collecting semantics with a version of the environment E, which we will call ERD, that
has been extended with a index n indicating the location where each variable was last defined.

ERD P Var Ñ Zˆ N

We can now extend the semantics to track this information. We show only the rules that differ
from those described in the earlier lectures:

P rns “ x :“ m

P $ E,n; Erx ÞÑ m,ns, n` 1
step-const

P rns “ x :“ y

P $ E,n; Erx ÞÑ Erys, ns, n` 1
step-copy

P rns “ x :“ y op z Erys op Erzs “ m

P $ E,n; Erx ÞÑ m,ns, n` 1
step-arith

Essentially, each rule that defines a variable records the current location as the latest definition
of that variable. Now we can define an abstraction function for reaching definitions from this
collecting semantics:

1

αRDpERD, nq “ tm | Dx P domainpERDq such that ERDpxq “ i,mu

From this point, reasoning about the correctness of reaching definitions proceeds analogously
to the reasoning for zero analysis outlined in the previous lectures.

Formulating a collecting semantics can be tricky for some analyses, but it can be done with a
little thought. For example, consider live variable analysis. The collecting semantics requires us
to know, for each execution of the program, which variables currently in scope will be used before
they are defined in the remainder of the program. We can compute this semantics by assuming a
(possibly infinite) trace for a program run, then specifying the set of live variables at every point
in that trace based on the trace going forward from that point. This semantics, specified in terms
of traces rather than a set of inference rules, can then be used in the definition of an abstraction
function and used to reason about the correctness of live variables analysis.

2 Interval Analysis

Let us consider a program analysis that might be suitable for array bounds checking, namely
interval analysis. As the name suggests, interval analysis tracks the interval of values that each
variable might hold. We can define a lattice, initial dataflow information, and abstraction function
as follows:

L “ Z8 ˆ Z8 where Z8 “ ZY t´8,8u
rl1, h1s Ď rl2, h2s iff l2 ď8 l1 ^ h1 ď8 h2
rl1, h1s \ rl2, h2s “ rmin8pl1, l2q,max8ph1, h2qs

J “ r´8,8s
K “ r8,´8s

σ0 “ J

αpxq “ rx, xs

We have extended the ď operator and the min and max functions to handle sentinels representing
positive and negative infinity in the obvious way. For example ´8 ď8 n for all n P Z. For
convenience we write the empty interval K as r8,´8s.

Note also that this lattice is defined to capture the range of a single variable. As usual, we
can lift it to a map from variables to interval lattice elements. Thus we (again) have dataflow
information σ P VarÑ L

We can also define a set of flow functions. Here we provide one for addition; the rest should
be easy for the reader to develop:

fIvx :“ y ` zwpσq “ rx ÞÑ rl, hssσ where l “ σpyq.low `8 σpzq.low
and h “ σpyq.high`8 σpzq.high

fIvx :“ y ` zwpσq “ σ where σpyq “ K _ σpzq “ K

In the above we have extended mathematical ` to operate over the sentinels for 8,´8, for
example such that @x ‰ ´8 : 8`x “ 8. We define the second case of the flow function to handle
the case where one argument is K, possibly resulting in the undefined case ´8`8.

If we run this analysis on a program, whenever we come to an array dereference, we can check
whether the interval produced by the analysis for the array index variable is within the bounds of
the array. If not, we can issue a warning about a potential array bounds violation.

2

Just one practical problem remains. Consider: what is the height of the above-defined lattice, and
what consequences does this have for our analysis in practice?

3 The Widening Operator

As in the example of interval analysis, there are times in which it is useful to define a lattice of
infinite height. We would like to nevertheless find a mechanism for ensuring that the analysis will
terminate. One way to do this is to find situations where the lattice may be ascending an infinite
chain at a given program point, and effectively shorten the chain to a finite height. We can do so
with a widening operator. To motivate the widening operator, consider applying interval analysis
to the program below:

1 : x :“ 0
2 : if x “ y goto 5
3 : x :“ x` 1
4 : goto 2
5 : y :“ 0

Using the worklist algorithm (strongly connected components first), gives us:

stmt worklist x y
0 1 J J

1 2 [0,0] J

2 3,5 [0,0] J

3 4,5 [1,1] J

4 2,5 [1,1] J

2 3,5 [0,1] J

3 4,5 [1,2] J

4 2,5 [1,2] J

2 3,5 [0,2] J

3 4,5 [1,3] J

4 2,5 [1,3] J

2 3,5 [0,3] J

...

Consider the sequence of interval lattice elements for x immediately after statement 2. Count-
ing the original lattice value as K (not shown explicitly in the trace above), we can see it is the as-
cending chain K, r0, 0s, r0, 1s, r0, 2s, r0, 3s, Recall that ascending chain means that each element
of the sequence is higher in the lattice than the previous element. In the case of interval analysis,
[0,2] (for example) is higher than [0,1] in the lattice because the latter interval is contained within
the former. Given mathematical integers, this chain is clearly infinite; therefore our analysis is not
guaranteed to terminate (and indeed it will not in practice).

A widening operator’s purpose is to compress such infinite chains to finite length. The widen-
ing operator considers the most recent two elements in a chain. If the second is higher than the
first, the widening operator can choose to jump up in the lattice, potentially skipping elements
in the chain. For example, one way to cut the ascending chain above down to a finite height is to
observe that the upper limit for x is increasing, and therefore assume the maximum possible value
8 for x. Thus we will have the new chain K, r0, 0s, r0,8s, r0,8s, ... which has already converged
after the third element in the sequence.

3

The widening operator gets its name because it is an upper bound operator, and in many
lattices, higher elements represent a wider range of program values.

We can define the example widening operator given above more formally as follows:

W pK, lcurrentq “ lcurrent

W prl1, h1s, rl2, h2sq “ rminW pl1, l2q,maxW ph1, h2qs

where minW pl1, l2q “ l1 if l1 ď l2
and minW pl1, l2q “ ´8 otherwise

where maxW ph1, h2q “ h1 if h1 ě h2
and maxW ph1, h2q “ 8 otherwise

Applying this widening operator each time just before analyzing instruction 2 produces:

stmt worklist x y
0 1 J J

1 2 [0,0] J

2 3,5 [0,0] J

3 4,5 [1,1] J

4 2,5 [1,1] J

2 3,5 [0,8] J

3 4,5 [1,8] J

4 2,5 [1,8] J

2 5 [0,8] J

5 H [0,8] [0,0]

Before we analyze instruction 2 the first time, we compute W pK, r0, 0sq “ r0, 0s using the
first case of the definition of W . Before we analyze instruction 2 the second time, we compute
W pr0, 0s, r0, 1sq “ r0,8s. In particular, the lower bound 0 has not changed, but since the upper
bound has increased from h1 “ 0 to h2 “ 1, the maxW helper function sets the maximum to 8.
After we go through the loop a second time we observe that iteration has converged at a fixed
point. We therefore analyze statement 5 and we are done.

Let us consider the properties of widening operators more generally. A widening operator
W plprevious:L, lcurrent:Lq : L accepts two lattice elements, the previous lattice value lprevious at a pro-
gram location and the current lattice value lcurrent at the same program location. It returns a new
lattice value that will be used in place of the current lattice value.

We require two properties of widening operators. The first is that the widening operator must
return an upper bound of its operands. Intuitively, this is required for monotonicity: if the oper-
ator is applied to an ascending chain, an ascending chian should be a result. Formally, we have
@lprevious, lcurrent : lprevious Ď W plprevious, lcurrentq ^ lcurrent Ď W plprevious, lcurrentq.

The second property is that when the widening operator is applied to an ascending chain
li, the resulting ascending chain lWi must be of finite height. Formally we define lW0 “ l0 and
@i ą 0 : lWi “W plWi´1, liq. This property ensures that when we apply the widening operator, it will
ensure that the analysis terminates.

Where can we apply the widening operator? Clearly it is safe to apply anywhere, since it must
be an upper bound and therefore can only raise the analysis result in the lattice, thus making
the analysis result more conservative. However, widening inherently causes a loss of precision.
Therefore it is better to apply it only when necessary. One solution is to apply the widening

4

operator only at the heads of loops, as in the example above. Loop heads (or their equivalent, in
unstructured control flow) can be inferred even from low-level three address code—see a compiler
text such as Appel and Palsberg’s Modern Compiler Implementation in Java.

We can use a somewhat smarter version of this widening operator with the insight that the
bounds of a lattice are often related to constants in the program. Thus if we have an ascend-
ing chain K, r0, 0s, r0, 1s, r0, 2s, r0, 3s, ... and the constant 10 is in the program, we might change
the chain to K, r0, 0s, r0, 10s, If we are lucky, the chain will stop ascending that that point:
K, r0, 0s, r0, 10s, r0, 10s, If we are not so fortunate, the chain will continue and eventually sta-
bilize at r0,8s as before: K, r0, 0s, r0, 10s, r0,8s.

If the program has the set of constants K, we can define a widening operator as follows:

W pK, lcurrentq “ lcurrent

W prl1, h1s, rl2, h2sq “ rminKpl1, l2q,maxKph1, h2qs

where minKpl1, l2q “ l1 if l1 ď l2
and minKpl1, l2q “ maxptk P K|k ď l2uq otherwise

where maxKph1, h2q “ h1 if h1 ě h2
and maxKph1, h2q “ minptk P K|k ě h2u otherwise

We can now analyze a program with a couple of constants and see how this approach works:

1 : x :“ 0
2 : y :“ 1
3 : if x “ 10 goto 7
4 : x :“ x` 1
5 : y :“ y ´ 1
6 : goto 3
7 : goto 7

Here the constants in the program are 0, 1 and 10. The analysis results are as follows:

stmt worklist x y
0 1 J J

1 2 [0,0] J

2 3 [0,0] r1, 1s
3 4,7 r0, 0sF ,KT r1, 1s
4 5,7 [1,1] r1, 1s
5 6,7 [1,1] r0, 0s
6 3,7 [1,1] r0, 0s
3 4,7 r0, 1sF ,KT r0, 1s
4 5,7 [1,2] r0, 1s
5 6,7 [1,2] r´1, 0s
6 3,7 [1,2] r´1, 0s
3 4,7 r0, 9sF , r10, 10sT r´8, 1s
4 5,7 [1,10] r´8, 1s
5 6,7 [1,10] r´8, 0s
6 3,7 [1,10] r´8, 0s
3 7 r0, 9sF , r10, 10sT r´8, 1s
7 H [10,10] r´8, 1s

5

Applying the widening operation the first time we get to statement 3 has no effect, as the
previous analysis value was K. The second time we get to statement 3, the range of both x and y
has been extended, but both are still bounded by constants in the program. The third time we get
to statement 3, we apply the widening operator to x, whose abstract value has gone from [0,1] to
[0,2]. The widened abstract value is [0,10], since 10 is the smallest constant in the program that is at
least as large as 2. For y we must widen to r´8, 1s. The analysis stabilizes after one more iteration.

In this example I have assumed a flow function for the if instruction that propagates different
interval information depending on whether the branch is taken or not. In the table, we list the
branch taken information for x as K until x reaches the range in which it is feasible to take the
branch. K can be seen as a natural representation for dataflow values that propagate along a path
that is infeasible.

6

