
Lecture Notes: Program Analysis Correctness

17-355/17-665/17-819O: Program Analysis (Spring 2018)
Claire Le Goues and Jonathan Aldrich

clegoues@cs.cmu.edu, aldrich@cs.cmu.edu

The

1 Termination

As we think about the correctness of program analysis, let us first think more carefully about the
situations under which program analysis will terminate. In a previous lecture, we analyzed the
performance of Kildall’s worklist algorithm. A critical part of that performance analysis was the
the observation that running a flow function always either leaves the dataflow analysis informa-
tion unchanged, or makes it more approximate—that is, it moves the current dataflow analysis
results up in the lattice. The dataflow values at each program point describe an ascending chain:

Ascending Chain A sequence σk is an ascending chain iff n ď m implies σn Ď

σm
We can define the height of an ascending chain, and of a lattice, in order to bound the number of
new analysis values we can compute at each program point:

Height of an Ascend-
ing Chain

An ascending chain σk has finite height h if it contains h` 1
distinct elements.

Height of a Lattice A lattice pL,Ďq has finite height h if there is an ascending
chain in the lattice of height h, and no ascending chain in
the lattice has height greater than h

We can now show that for a lattice of finite height, the worklist algorithm is guaranteed to
terminate. We do so by showing that the dataflow analysis information at each program point
follows an ascending chain. Consider the following version of the worklist algorithm:

forall (Instruction i P program)
σris “ K

σ[beforeStart] = initialDataflowInformation
worklist = { firstInstruction }

while worklist is not empty
take an instruction i off the worklist
var thisInput = K

forall (Instruction j P predecessors(i))
thisInput = thisInput \ σrjs

1



let newOutput = flow(i, thisInput)
if (newOutput ‰ σris)

σris = newOutput
worklist = worklist Y successors(i)

Question: what are the differences between this version and the previous version? Convince yourself that it
still does the same thing.

We can make the termination argument inductively: At the beginning of the analysis, the anal-
ysis information at every program point (other than the start) is K (by definition). Thus the first
time we run each flow function for each instruction, the result will be at least as high in the lattice
as what was there before (because nothing is lower in a lattice than K). We will run the flow func-
tion for a given instruction again at a program point only if the dataflow analysis information just
before that instruction changes. Assume that the previous time we ran the flow function, we had
input information σi and output information σo. Now we are running it again because the input
dataflow analysis information has changed to some new σ1i—and by the induction hypothesis, we
can assume it is higher in the lattice than before, i.e. σi Ď σ1i.

What we need to show is that the output information σ1o is at least as high in the lattice as
the old output information σo—that is, we must show that σo Ď σ1o. This will be true if our flow
functions are monotonic:

Monotonicity A function f is monotonic iff σ1 Ď σ2 implies fpσ1q Ď fpσ2)

Now we can state the termination theorem:

Theorem 1 (Dataflow Analysis Termination). If a dataflow lattice pL,Ďq has finite height, and the
corresponding flow functions are monotonic, the worklist algorithm will terminate.

Proof. Follows the logic given above when motivating monotonicity. Monotonicity implies that
the dataflow value at each program point i can only increase each time σris is assigned. This can
happen a maximum of h times for each program point, where h is the height of the lattice. This
bounds the number of elements added to the worklist to h ˚ e, where e is the number of edges
in the program’s control flow graph. Since we remove one element of the worklist for each time
through the loop, we will execute the loop at most h ˚ e times before the worklist is empty. Thus,
the algorithm will terminate.

2 Montonicity of Zero Analysis

We can formally show that zero analysis is monotone; this is relevant both to the proof of termi-
nation, above, and to correctness, next. We will only give a couple of the more interesting cases,
and leave the rest as an exercise to the reader:

Case fZvx :“ 0wpσq “ rx ÞÑ Zsσ:
Assume we have σ1 Ď σ2
Since Ď is defined pointwise, we know that rx ÞÑ Zsσ1 Ď rx ÞÑ Zsσ2

Case fZvx :“ ywpσq “ rx ÞÑ σpyqsσ:
Assume we have σ1 Ď σ2
Since Ď is defined pointwise, we know that σ1pyq Ďsimple σ2pyq

Therefore, using the pointwise definition of Ď again, we also obtain rx ÞÑ σ1pyqsσ1 Ď

rx ÞÑ σ2pyqsσ2

2



(αsimple and Ďsimple are simply the unlifted versions of α and Ď, i.e. they operate on individual
values rather than maps.)

3 Correctness

What does it mean for an analysis of a WHILE3ADDR program to be correct? Intuitively, we would
like the program analysis results to correctly describe every actual execution of the program. To
establish correctness, we will make use of the precise definitions of WHILE3ADDR we gave in the
form of operational semantics in the first couple of lectures. We start by formalizing a program
execution as a trace:

Program Trace A trace T of a program P is a potentially infinite sequence
tc0, c1, ...u of program configurations, where c0 “ E0, 1 is
called the initial configuration, and for every i ě 0 we have
P $ ci ; ci`1

.

Given this definition, we can formally define soundness:

Dataflow Analysis
Soundness

The result tσi | i P P u of a program analysis running on
program P is sound iff, for all traces T of P , for all i such
that 0 ď i ă lengthpT q, αpciq Ď σni

In this definition, just as ci is the program configuration immediately before executing in-
struction ni as the ith program step, σi is the dataflow analysis information immediately before
instruction ni.

Exercise 1. Consider the following (incorrect) flow function for zero analysis:

fZvx :“ y ` zwpσq “ rx ÞÑ Zsσ

Exercise 1. Give an example of a program and a concrete trace that illustrates that this flow func-
tion is unsound.

The key to designing a sound analysis is to make sure that the flow functions map abstract
information before each instruction to abstract information after that instruction in a way that
matches the instruction’s concrete semantics. Another way of saying this is that the manipulation
of the abstract state done by the analysis should reflect the manipulation of the concrete machine
state done by the executing instruction. We can formalize this as a local soundness property:

Local Soundness A flow function f is locally sound iff P $ ci ; ci`1 and
αpciq Ď σi and fvP rniswpσiq “ σi`1 implies αpci`1q Ď σi`1

In English: if we take any concrete execution of a program instruction, map the input machine
state to the abstract domain using the abstraction function, find that the abstracted input state is
described by the analysis input information, and apply the flow function, we should get a result
that correctly accounts for what happens if we map the actual concrete output machine state to
the abstract domain.

Exercise 2. Consider again the incorrect zero analysis flow function described above. Specify an
input state ci and use that input state to show that the flow function is not locally sound.

3



We can now show that the flow functions for zero analysis are locally sound. Although techni-
cally the overall abstraction function α accepts a complete program configuration pE,nq, for zero
analysis we can ignore the n component and so in the proof below we will simply focus on the
environment E. We show the cases for a couple of interesting syntax forms; the rest are either
trivial or analogous:

Case fZvx :“ 0wpσiq = rx ÞÑ Zsσi:
Assume ci “ E,n and αpEq “ σi
Thus σi`1 “ fZvx :“ 0wpσiq “ rx ÞÑ ZsαpEq
ci`1 “ rx ÞÑ 0sE,n` 1 by rule step-const
Now αprx ÞÑ 0sEq “ rx ÞÑ ZsαpEq by the definition of α.
Therefore αpci`1q Ď σi`1, which finishes the case.

Case fZvx :“ mwpσiq “ rx ÞÑ N sσi where m ‰ 0:
Assume ci “ E,n and αpEq “ σi
Thus σi`1 “ fZvx :“ mwpσiq “ rx ÞÑ N sαpEq
ci`1 “ rx ÞÑ msE,n` 1 by rule step-const
Now αprx ÞÑ msEq “ rx ÞÑ N sαpEq by the definition of α and the assumption that
m ‰ 0.
Therefore αpci`1q Ď σi`1 which finishes the case.

Case fZvx :“ y op zwpσiq “ rx ÞÑ?sσi:
Assume ci “ E,n and αpEq “ σi
Thus σi`1 “ fZvx :“ y op zwpσiq “ rx ÞÑ?sαpEq
ci`1 “ rx ÞÑ ksE,n` 1 for some k by rule step-const
Now αprx ÞÑ ksEq Ď rx ÞÑ?sαpEq because the map is equal for all keys except x, and for
x we have αsimplepkq Ďsimple? for all k, where αsimple and Ďsimple are the unlifted versions of
α and Ď, i.e. they operate on individual values rather than maps.
Therefore αpci`1q Ď σi`1 which finishes the case.

Exercise 3. Prove the case for fZvx :“ ywpσq “ rx ÞÑ σpyqsσ.

Now we can show that local soundness can be used to prove the global soundness of a dataflow
analysis. To do so, let us formally define the state of the dataflow analysis at a fixed point:

Fixed Point A dataflow analysis result tσi | i P P u is a fixed point iff
σ0 Ď σ1 where σ0 is the initial analysis information and σ1 is
the dataflow result before the first instruction, and for each
instruction i we have σi “

Ů

jPpredspiq fvP rjswpσjq.

And now the main result we will use to prove program analyses correct:

Theorem 2 (Local Soundness implies Global Soundness). If a dataflow analysis’s flow function f is
monotonic and locally sound, and for all traces T we have αpc0q Ď σ0 where σ0 is the initial analysis
information, then any fixed point tσi | i P P u of the analysis is sound.

Proof. Consider an arbitrary program trace T . The proof is by induction on the program configu-
rations tciu in the trace.

4



Case c0:
αpc0q Ď σ0 by assumption.
σ0 Ď σn0 by the definition of a fixed point.
αpc0q Ď σn0 by the transitivity of Ď.

Case ci`1:
αpciq Ď σni by the induction hypothesis.
P $ ci ; ci`1 by the definition of a trace.
αpci`1q Ď fvP rniswpαpciqq by local soundness.
fvP rniswpαpciqq Ď fvP rniswpσniq by monotonicity of f .
σni`1 “ fvP rniswpσniq \ ... by the definition of fixed point.
fvP rniswpσniq Ď σni`1 by the properties of \.
αpci`1q Ď σni`1 by the transitivity of Ď.

Since we previously proved that Zero Analysis is locally sound and that its flow functions
are monotonic, we can use this theorem to conclude that the analysis is sound. This means, for
example, that Zero Analysis will never neglect to warn us if we are dividing by a variable that
could be zero.

This discussion leads naturally into a fuller treatment of abstract interpretation, which we will
turn to in subsequent lectures/readings.

5


