Lecture Notes:
Widening Operators and Collecting Semantics

17-355/17-665: Program Analysis (Spring 2017)
Jonathan Aldrich

aldrich@cs.cmu.edu

1 A Collecting Semantics for Reaching Definitions

The approach to dataflow analysis correctness outlined in the previous two lectures generalizes
naturally when we have a lattice that can be directly abstracted from program configurations
c from our execution semantics. Sometimes, however, we cannot get the information we need
directly from a particular state in program execution. An example is reaching definitions. When
we look at a particular execution of an instruction I, we cannot see where the values of variables
used in were last defined.

In order to solve this problem, we need to augment our semantics with additional information
that captures the required information. For example, for the reaching definitions analysis, we need
to know, at any point in a particular execution, which definition reaches the current location for
each program variable in scope.

We call a version of the program semantics that has been augmented with additional informa-
tion necessary for some particular analysis a collecting semantics. For reaching definitions, we can
define a collecting semantics with a version of the environment E, which we will call Erp, that
has been extended with a index n indicating the location where each variable was last defined.

ERD e Var - 7Z x N

We can now extend the semantics to track this information. We show only the rules that differ
from those described in the earlier lectures:

Pln] =xz:=m
P+ E,n~ Elx— m,n],n+1

step-const

Pln]=z:=y
Pr E,n~ Elxw— Ely]l,n],n+1

step-copy

Plnl=x:=yopz E|ylop E[z] =m
P+~ E,n~ Elxr— m,n|,n+1

step-arith

Essentially, each rule that defines a variable records the current location as the latest definition
of that variable.

Now we can define an abstraction function for reaching definitions from this collecting seman-
tics:

arp(Erp,n) = {m | 3z € domain(Erp) such that Erp(x) = i,m}

From this point, reasoning about the correctness of reaching definitions proceeds analogously
to the reasoning for zero analysis outlined in the previous lectures.

Formulating a collecting semantics is even trickier for some analyses, but it can be done with
a little thought. Consider live variable analysis. The collecting semantics requires us to know, for
each execution of the program, which variables currently in scope will be used before they are
defined in the remainder of the program. We can compute this semantics by assuming a (possibly
infinite) trace for a program run, then specifying the set of live variables at every point in that
trace based on the trace going forward from that point. This semantics, specified in terms of traces
rather than a set of inference rules, can then be used in the definition of an abstraction function
and used to reason about the correctness of live variables analysis.

Here is the abstraction function:

a(Ti,j) ={z | Jp=j x € uses(k) AVm : j<m < k= x¢defs(m)}

The correctness condition for live variable analysis works from the program semantics, which
relates a trace 1" at time j to the same trace at the next time step, j + 1 (the latter is in fact a
subsequence of the former). We apply the abstraction function to each trace, and then apply the
backwards flow function to verify that the results of analysis applied to the abstracted second
trace generalize the results of abstracting from the first trace.

2 Interval Analysis

Let us consider a program analysis that might be suitable for array bounds checking, namely
interval analysis. As the name suggests, interval analysis tracks the interval of values that each
variable might hold. We can define a lattice, initial dataflow information, and abstraction function
as follows:

L = Zo xZy where Zy, = Z U {—00, 00}
[l1,h1] E [l2,he] Tff lo <o li A D1 <o h2

[ll, hl] [[lg, hg] = [minoo(ll, 12), maatoo(hl, hg)]
T = [—o0,0,0]
1 = [oo,—0]
oo = T
afr) = [z,z]

In the above, we have extended the < operator and the min and max functions to handle sen-
tinels representing positive and negative infinity in the obvious way. For example —o0 < n for
all n € Z. For convenience we write the empty interval L as [0, —c0].

The lattice above is defined to capture the range of a single variable. As usual, we can lift this
lattice to a map from variables to interval lattice elements. Thus we have dataflow information
o€ Var — L

We can also define a set of flow functions. Here we provide one for addition; the rest should
be easy for the reader to develop:

filr ==y +z](oc) =[xz~ [l,h]]c wherel = o(y).low +« o(z).low
and h = o(y).high +« 0(2).high

filz:==y+2](0) =0 where o(y) = L v o(z) = L

In the above we have extended mathematical + to operate over the sentinels for oo, —c0, for
example such that Vo # —o0 : o0 +2 = 0. We define the second case of the flow function to handle
the case where one argument is |, possibly resulting in the undefined case —o0 + co.

If we run this analysis on a program, whenever we come to an array dereference, we can check
whether the interval produced by the analysis for the array index variable is within the bounds of
the array. If not, we can issue a warning about a potential array bounds violation.

Just one practical problem remains. Consider, what is the height of the lattice defined above,
and what consequences does this have for our analysis in practice?

3 The Widening Operator

As in the example of interval analysis, there are times in which it is useful to define a lattice of
infinite height. We would like to nevertheless find a mechanism for ensuring that the analysis will
terminate. One way to do this is to find situations where the lattice may be ascending an infinite
chain at a given program point, and effectively shorten the chain to a finite height. We can do so
with a widening operator.

In order to understand the widening operator, consider applying interval analysis to the pro-
gram below:

z:=0

ifx =ygotoh
zi=x+1
goto 2
y:=0

U = W N =

If we use the worklist algorithm, solving strongly connected components first, the analysis will
run as follows:

stmt | worklist X y
0 1 T T
1 2 [00] T
2 3,5 [0,0] T
3 45 [11] T
4 2,5 [1,1] T
2 3,5 [01] T
3 45 [1,2] T
4 2,5 [1,2] T
2 3,5 [02] T
3 45 [1,3] T
4 2,5 [1,3] T
2 3,5 [03] T

Let us consider the sequence of interval lattice elements for x immediately after statement 2.
Counting the original lattice value as L (not shown explicitly in the trace above), we can see it
is the ascending chain 1, [0, 0], [0, 1], [0, 2], [0, 3], Recall that ascending chain means that each
element of the sequence is higher in the lattice than the previous element. In the case of interval
analysis, [0,2] (for example) is higher than [0,1] in the lattice because the latter interval is contained
within the former. Given mathematical integers, this chain is clearly infinite; therefore our analysis
is not guaranteed to terminate (and indeed it will not in practice).

A widening operator’s purpose is to compress such infinite chains to finite length. The widen-
ing operator considers the most recent two elements in a chain. If the second is higher than the
tirst, the widening operator can choose to jump up in the lattice, potentially skipping elements
in the chain. For example, one way to cut the ascending chain above down to a finite height is to
observe that the upper limit for z is increasing, and therefore assume the maximum possible value
o for z. Thus we will have the new chain L, [0, 0], [0, o], [0, c0], ... which has already converged
after the third element in the sequence.

The widening operator gets its name because it is an upper bound operator, and in many
lattices, higher elements represent a wider range of program values.

We can define the example widening operator given above more formally as follows:

W(J—> lcurrent) = lcurrent

W(ll1,], [l2; ho]) = [minw (l1,l2), mazw (ha, ko))
where minW(ll, l2) = ll if ll < lz
and minw (I1,1l3) = —0 otherwise
where maxw(hl, h2) = h1 if hl = hg
and maxw (h1, he) = o otherwise

Applying this widening operator each time just before analysing instruction 2 gives us the
following sequence:

stmt | worklist X y
0 1 T T
1 2 [00] T
2| 35 [00] T
3 4,5 11 7T
41 25 1 T
2 3,5 [0,00] T
3] 45 |[eo] T
41 25 |Me] T
2 5 [0,0] T
5 %) [0,c0] [0,0]

Before we analyze instruction 2 the first time, we compute W (L,[0,0]) = [0,0] using the

tirst case of the definition of W. Before we analyze instruction 2 the second time, we compute
W ([0,0],[0,1]) = [0,0]. In particular, the lower bound 0 has not changed, but since the upper
bound has increased from h; = 0 to hgy = 1, the mazy helper function sets the maximum to .
After we go through the loop a second time we observe that iteration has converged at a fixed
point. We therefore analyze statement 5 and we are done.

Let us consider the properties of widening operators more generally. A widening operator

W(lprwiouS:L, leurrent:L) = L accepts two lattice elements, the previous lattice value Lprevious at a pro-
gram location and the current lattice value lent at the same program location. It returns a new
lattice value that will be used in place of the current lattice value.

We require two properties of widening operators. The first is that the widening operator must
return an upper bound of its operands. Intuitively, this is required for monotonicity: if the oper-
ator is applied to an ascending chain, an ascending chain should be a result. Formally, we have
lerevious; leurrent lprevious - W(lpreviou57 lcurrent) A lcurrent E W(lprevious,‘v lcurrent)«

The second property is that when the widening operator is applied to an ascending chain
l;, the resulting ascending chain I}V must be of finite height. Formally we define [} = I and
Vi>0:01Y = W(l}Y,,1;). This property ensures that when we apply the widening operator, it will
ensure that the analysis terminates.

Where can we apply the widening operator? Clearly it is safe to apply anywhere, since it must
be an upper bound and therefore can only raise the analysis result in the lattice, thus making
the analysis result more conservative. However, widening inherently causes a loss of precision.
Therefore it is better to apply it only when necessary. One solution is to apply the widening
operator only at the heads of loops, as in the example above. Loop heads (or their equivalent, in
unstructured control flow) can be inferred even from low-level three address code—see a compiler
text such as Appel and Palsberg’s Modern Compiler Implementation in Java.

We can use a somewhat smarter version of this widening operator with the insight that the
bounds of a lattice are often related to constants in the program. Thus if we have an ascend-
ing chain L, [0,0],[0,1],[0,2],[0,3],... and the constant 10 is in the program, we might change
the chain to L,[0,0], [0,10],.... If we are lucky, the chain will stop ascending that that point:
1,[0,0],10,10], [0,10], If we are not so fortunate, the chain will continue and eventually sta-
bilize at [0, o0] as before: L, [0, 0], [0, 10], [0, o0].

If the program has the set of constants K, we can define a widening operator as follows:

W(J—v lcurrent) = lcurrent

W{([l1, h1], [l2, ha]) = [mink (I1,12), maxk (h1, ho)]
where minK(ll, lg) =1 ifl; <1y
and ming (l1,l2) = mazx({k € K|k <l2}) otherwise
where maxK(hl, hg) =h if by = ho

and mazxg (hi, he) = min({k € K|k = he} otherwise

We can now analyze a program with a couple of constants and see how this approach works:

1: 2:=0

2: y:=1

3: ifz=10goto 7
4: z:=z+1

5: y:=y—1

6: goto3

7: goto7

Here the constants in the program are 0, 1 and 10. The analysis results are as follows:

stmt | worklist X y
0 1 T T
1 2 [0,0] T
2 3 [0,0] [1,1]
3 4,7 [0,0]F, L7 [1,1]
4 57 [1,1] [1,1]
5 6,7 [1,1] [0,0]
6 3,7 [1,1] [0,0]
3 4,7 [0,1]F, L7 [0,1]
4 57 [1,2] [0,1]
5 6,7 [1,2] [—1,0]
6 3,7 [1,2] [—1,0]
3 4,7 [0, 9]F7 [10, 10]T [—OO7 1]
4 57 [1,10] [—o0,1]
5 6,7 [1,10] [—o0, 0]
6 3,7 [1,10] [—o0, 0]
3 7 [0,9]F,[10,10]7 [—o0,1]
7 0] [10,10] [—o0,1]

Applying the widening operation the first time we get to statement 3 has no effect, as the
previous analysis value was L. The second time we get to statement 3, the range of both x and
y has been extended, but both are still bounded by constants in the program. The third time we
get to statement 3, we apply the widening operator to x, whose abstract value has gone from [0,1]
to [0,2]. The widened abstract value is [0,10], since 10 is the smallest constant in the program that
is at least as large as 2. For y we must widen to [—0, 1]. After one more iteration the analysis
stabilizes.

In this example I have assumed a flow function for the if instruction that propagates different
interval information depending on whether the branch is taken or not. In the table, we list the
branch taken information for z as L until = reaches the range in which it is feasible to take the
branch. L can be seen as a natural representation for dataflow values that propagate along a path
that is infeasible.

Acknowledgements

I thank Claire Le Goues for greatly appreciated extensions and refinements to these notes.

