Gradual Program Verification
(with Implicit Dynamic Frames)

Johannes Bader, Karlsruhe Institute of Technology / Microsoft
Jonathan Aldrich, Carnegie Mellon University
Eric Tanter, University of Chile

int getFour(int 1)
requires ?; // not sure what this should be yet
ensures result = 4;

i=1+ 1;
return i;

Motivation

e Program verification (against some specification)

e Two flavors: dynamic & static

// spec: callable only if (this.balance >= amount)
void withdrawCoins(int amount)

{

// business logic
this.balance -= amount;

}

Johannes Bader Gradual Verification

Dynamic Verification

* runtime checks
e testing techniques
e guarantee compliance at run time

void withdrawCoins(int amount)

{
assert this.balance >= amount;
// business logic
this.balance -= amount;

}

Johannes Bader Gradual Verification

Dynamic Verification — Drawbacks

e runtime checks runtime overhead
e testing techniques additional effort
e guarantee compliance at run time late detection

void withdrawCoins(int amount)

{
assert this.balance >= amount;
// business logic
this.balance -= amount;

}

Johannes Bader Gradual Verification 5

Static Verification

e declarative
* formal logic
e guarantee compliance in advance

void withdrawCoins(int amount)
requires this.balance >= amount;

{
// business logic
this.balance -= amount;

}

Johannes Bader Gradual Verification

Static Verification — Drawbacks

* declarative limited expressiveness

e formal logic and/or decidability
e guarantee compliance in advance annotation overhead
(viral)
void withdrawCoins(int amount)
requires this.balance >= amount;
ensures this.balance == old(this.balance) - amount;

// business logic
this.balance -= amount;

}

Johannes Bader Gradual Verification

Viral Specifications

void withdrawCoins(int amount)
requires this.balance >= amount;

ensures this.balance == old(this.balance) - amount;
{

// business logic

this.balance -= amount;
}

acc.balance = 100;
acc.withdrawCoins(50); // statically checks OK!
acc.withdrawCoins(30); // oops, don’t know balance!

Can only remove Specification becomes almost all-or-nothing; keep
false warnings by getting warnings until spec is highly complete.

adding specifications Want gradual return on investment—reasonable
behavior at every level of specification.!

Johannes Bader Gradual Verification 8

Solution: Combining Static + Dynamic

Hybrid approach
» Static checking, but failure is only a warning
* Run-time assertions catch anything missed statically

Benefits
+ Catch some errors early
+ Still catch remaining errors dynamically
+ Can eliminate run-time overhead if an assertion is statically discharged

Drawbacks
- Still false positive warnings / viral specification problem
- Run-time checking may still impose too much overhead, and/or is an open problem
(e.g. for implicit dynamic frames)

Challenges / opportunities
e Can we warn statically only if there is a definite error, and avoid viral specifications?
e Can we reduce run-time overhead when we have partial information?
* How to support dynamic checks for more powerful specification approaches (e.g. implicit
dynamic frames)

Engineering Verification

e |deal: an engineering approach to verification
 Choose what to specify based on costs, benefits
e May focus on critical components
e Leave others unspecified

* May focus on certain properties
* Those most critical to users
* Those easiest to verify

 May add more specifications over time
* Want incremental costs/rewards

e Viral nature of static checkers makes this difficult

e Warnings when unspecified code calls specified code

 May have to write many extra specifications to verify the
ones you care about

Gradual Verification

A verification approach that supports gradually adding
specifications to a program

* Novel feature: support unknown and imprecise specs

void withdrawCoins(int amount)
requires amount > @ && this.balance >= amount;
ensures this.balance = old(this.balance) - amount;

* Analogous to Gradual Typing [Siek & Taha, 2006]

Gradual Verification

A verification approach that supports gradually adding
specifications to a program

* Novel feature: support unknown and imprecise specs

void withdrawCoins(int amount)
requires this.balance >= amount;
ensures ? && this.balance < old(this.balance);

 Warning if we statically detect an inconsistency

 The spec above would be statically OK with a ? added to
the precondition, or an assertion that amount > ©

e But the given precondition alone can’t assure the part of
the postcondition that we know

Gradual Verification

A verification approach that supports gradually adding
specifications to a program

* Novel feature: support unknown and imprecise specs

void withdrawCoins(int amount)
requires ? && this.balance >= amount;
ensures ? && this.balance < old(this.balance);

 Warning if we statically detect an inconsistency

 Warning if spec is violated at run time

acc.balance = 100;

acc.withdrawCoins(50); // statically guaranteed safe
acc.withdrawCoins(30); // dynamic check OK
acc.withdrawCoins(30); // dynamic check: error!

Johannes Bader Gradual Verification 13

Gradual Verification

A verification approach that supports gradually adding
specifications to a program

* Novel feature: support unknown and imprecise specs

* Engineering properties
e Same as dynamic verification when specs fully imprecise

e Same as static verification when specs fully precise

e Applies to any part of the program whose code and libraries used
are specified precisely

 Smooth path from dynamic to static checking (non-viral)

e Gradual Guarantee [Siek et al. 2015]: Given a verified program and
correct input, no static or dynamic errors will be raised for the
same program and input with a less-precise specification

True # 7

e Prior verifiers are not “gradual”
e No support for imprecise/unknown specifications

e Treating missing specs as “true” is insufficient
class Account {
void withdrawCoins(int amount)
requires this.balance >= amount;
ensures true;

.}

Account a

new Account(100)

a.withdrawCoins(40);
a.withdrawCoins(30); // error: only know “true” here

Johannes Bader

Gradual Verification

15

True # 7

e Prior verifiers are not “gradual”
e No support for imprecise/unknown specifications

e Treating missing specs as “true” is insufficient
class Account {
void withdrawCoins(int amount)
requires this.balance >= amount;
ensures ?;

.}

Account a = new Account(100)
a.withdrawCoins(40);
a.withdrawCoins(30); // OK: ? consistent with precondition

Johannes Bader

Gradual Verification 16

Gradual Verification Roadmap

 Motivation and Intuition
* Engineering: need good support for partial specs
e Key new idea: a (partly) unknown spec: “?”

e Overview: Abstracting Gradual Verification
A static verification system

e Deriving a gradual verification system

e Demonstration!

e Extension to Implicit Dynamic Frames

Gradual Verification Roadmap

 Motivation and Intuition
* Engineering: need good support for partial specs
e Key new idea: a (partly) unknown spec: “?”

* Overview: Abstracting Gradual Verification
A static verification system

e Deriving a gradual verification system
 Demonstration!

e Extension to Implicit Dynamic Frames

Johannes Bader Gradual Verification 18

Inspiration: Gradual Typing [Siek & Taha, 2006]

e Allows programmers to selectively omit types
e Mixing dynamically-typed code (e.g. as in Python) with statically-typed
code
* Missing types denoted with a “?” or “dynamic” keyword

e Can have “partly dynamic” types like “? -> int”

Abstracting Gradual Typing [Garcia et al., 2016]

e Semantic foundation for Gradual Typing
e Gradual types represent sets of possible static types
» Use abstract interpretation to derive gradual type system from static type

system
T1 };, T2
V() ={7}
v(?) = TYPES Y & i
gradual
lifting
- e — —/
To C T2

T1 ?

How does this relate to Verification?

int getFour(int 1)
requires ?; // not sure what this should be yet

ensures /result = 4;
{

i=1+ 1;
return i;

Types restrict which values are valid for a certain variable

Formulas restrict which program states are valid at a certain point during execution

Johannes Bader Gradual Verification 21

Abstracting Gradual Typing

Ronald Garcia, Alison M. Clark, and Eric Tanter

e — —) ~

71 f T2

: A
7= 7|7

% o Y

i B

e —_ S —

) 7 T C T

Johannes Bader Gradual Verification 22

Abstracting Gradual Fyping
Ronald Garcia, Alison M. Clark, and Eric Tanter Ve rifi Catio n

el

¢1 f P2

-
i

¢ |7

Abstracting Gradual Fyping
Ronald Garcia, Alison M. Clark, and Eric Tanter Ve rifi Catio n

sound abstraction, we automatically get:
 The gradual guarantee: a smooth path
from dynamic to static verification
A principled approach to optimizing run-
time assertion checking
\

(Benefits: if we choose f, a, and y to create a\

Jiﬁcation

24

Gradualization — Overview

Syntax
S € STMT

¢ € FORMULA

Program State

7 € PROGRAMSTATE

Semantics

Static - {¢} s {0}

Dynamic m — 7

Formula 7 F ¢

Soundness

Gradualization

Syntax
§ € STMT
$ € FORMULA

Program State

7™ € PROGRAMSTATE

Semantics
Static F {¢} 5 {¢}
Dynamic m — 7

Formula 7 F 5

Soundness

Gradualization — Starting Point

Syntax
S € STMT

®» € FORMULA

Program State

m € PROGRAMSTATE

Semantics

Static - {¢} s {&}

Dynamic m — 7

Formula 7 F ¢

Soundness

Johannes Bader

s == skip | = := e | assert ¢ | s1; S2

= true | (e = e3) | &1 A ¢

= (VAR — Np) x STMT
“X%Gyw:‘ﬂx .= Yy, assert (x = 3):}

Gradual Verification 26

Gradualization — Starting Point

Syntax
S € STMT

¢ € FORMULA

Program State

7 € PROGRAMSTATE

Semantics

Static - {¢} s {0}

Dynamic m — 7

Formula 7 F ¢

Soundness

= {¢} skip {9}

- {¢le/z]} x := e {¢}

HSKiIpP

HAssIiGN

Gradualization — Starting Point

Syntax
S € STMT

¢ € FORMULA

Program State

7 € PROGRAMSTATE

Semantics

Static - {¢} s {0}

Dynamic m — 7

Formula 7 F ¢

Soundness

([x = 6,y — 3],x := y; assert (x

*

—
([x — 3,y — 3], skip)

3))

Gradualization — Starting Point

Syntax

s € STMT

- ([x = 3],s) F (x = 3)
@ € HOTMIVLA ([x = 4,y—4],s) F (y = x)

Program State

7 € PROGRAMSTATE

Semantics

Static - {¢} s {0}

Dynamic m — 7

Formula 7 F ¢

Soundness

Gradualization — Starting Point

Syntax
S € STMT

¢ € FORMULA

Program State

7 € PROGRAMSTATE

Semantics

Static - {¢} s {0}

Dynamic m — 7

Formula 7 F ¢

Soundness

HSKiIpP

= {¢} skip {¢}

HASssIGN

= {¢le/x]} © := e {0}

¢ = Qa
- {¢p} assert ¢, {¢}

HASSERT

qul = ¢q2

= {dp} 1 {Pg1} = {dg2} 52 {9}

— {0,) 513 52 (o) HOEG

Gradualization — Starting Point

Syntax
S € STMT

¢ € FORMULA

Program State

7 € PROGRAMSTATE

Semantics

Static - {¢} s {0}

Dynamic m — 7

Formula 7 F ¢

Soundness

={¢} s

def
<

Vo, o' = ATE ¢ = 7 E ¢

- {o)s{d}

= {¢} s {¢'}

{¢'}

SOUNDNESS

/

Gradualization — Overview

Syntax
S € STMT

¢ € FORMULA

Program State

7 € PROGRAMSTATE

Semantics

Static - {¢} s {0}

Dynamic m — 7

Formula 7 F ¢

Soundness

Gradualization

Syntax
§ € STMT
$ € FORMULA

Program State

7™ € PROGRAMSTATE

Semantics
Static F {¢} 5 {¢}
Dynamic m — 7

Formula 7 F 5

Soundness

Gradualization — Approach

Syntax
S € STMT

¢ € FORMULA

Program State

7 € PROGRAMSTATE

syntax extension

Syntax
§ € STMT

$ € FORMULA

Program State

7™ € PROGRAMSTATE

—~

FORMULA C FORMULA ¢ = |7
S ﬁORMULA () Cb }
? ¢ FORMULA 9?('?:)_ ¢.§5ATP4\ORMULA

Where:.{@ Fr_:me AE & }

Gradualization — Approach

Syntax Syntax

S € STMT S € STMT
syntax extension

¢ € FORMULA » ¢ € FORMULA

Program State Program State
7 € PROGRAMSTATE 7 € PROGRAMSTATE
FORMULA C FORMULA pr=¢|72%¢

V(@) =10}
Y(?* p) ={ ¢ € SATFORMULA | ¢' = ¢ } if ¢ € SATFORMULA
¥(? * ¢) undefined otherwise

Johannes Bader Gradual Verification 34

Sidebar: Why Must ? Be Satisfiable?

Y(p) =19}
v(?*x¢) ={ ¢ € SATFORMULA | ¢" = ¢ } if ¢ € SATFORMULA

v(? * ¢) undefined otherwise

e Should “? A (x=3)” imply “x=2"7?
* Intuitively, no

e But if we choose ? to be 0=1, the implication would
(vacuously) hold

e (x =2) would be similarly problematic
 Thus the completed formula must be satisfiable

Gradualization — Approach

Syntax Syntax

syntax extension =
S € STMT S € STMT
syntax extension

¢ € FORMULA ¢ € FORMULA

Program State Program State
T € PROGRAMSTATE 7 € PROGRAMSTATE
STMT C STMT s u= x :=¢e | assert ¢ | s1; So

v : STMT — PSTMT

~ ~

v(assert ¢) ={ assert ¢ | ¢ € v(¢) }

Gradual Lifting

"""""""

s®

Johannes Bader Gradual Verification

37

Gradualization — Approach

Syntax Syntax

syntax extension o o
» § € STMT

s € STMT

syntax extension + & € FORMULA

®» € FORMULA

Program State Program State

extension > T € PROGRAMSTATE

m € PROGRAMSTATE

PROGRAMSTATE PROGRAMSTATE = (VAR — Np) x STMT
C

PROGRAMSTATE = (VAR — Np) X STMT

1((0,8)) =10} X (3)

PROGRAMSTATE

Johannes Bader Gradual Verification 38

Gradual Lifting

Johannes Bader Gradual Verification 39

Gradual Lifting

(0,assert ¢,) F ¢,

—~

p— - gSASSERTl — : SSASSERT2
(0,assert ¢,) — (0, skip) (0,assert ?) — (o, skip)
(0,assert ¢q) F ¢q
(0,assert ¢,) — * (0, skip)

| |
. .
. S
. .

.
. .
- .
- .
- .
- .
- .
| |
| |

* (0,assert ¢g,) E ¢, 4
(o, amsort gy] me T b { (0 skip) }
t a |: a
(7, 8s8ext Ja) F ¢ SSASSERT

(0,assert ¢,) — (0, skip)

Johannes Bader Gradual Verification 40

Gradual Lifting

(0,assert ¢4) F ¢q -
— — SSASSERT1 — —— SSASSERT?2
(0,assert ¢,) — (0, skip) (0,assert ?) — (o, skip)

—————

(0,assert ?) ~ \ > (o, skip)

| |
- .
. S
: .

)
= .
= .
= .
. .
n [
o .
| |
| |

H ¥
{ {o,assert ..),.. oo — b { {0, skip) }
t a |: a
(J,asser qb} ¢ SSASSERT

(0,assert ¢,) — (0, skip)

Johannes Bader Gradual Verification 41

Gradual Verification - Approach

Syntax
S € STMT

¢ € FORMULA

Program State

7 € PROGRAMSTATE

Semantics

Static - {¢} s {0}

Dynamic m — 7

Formula 7 F ¢

Soundness

syntax extension

syntax extension

extension

predicate lifting

function lifting

predicate lifting

Syntax
§ € STMT
$ € FORMULA

Program State

7™ € PROGRAMSTATE

Semantics
Static F {¢} 5 {¢}
Dynamic m — 7

Formula 7 F 5

Soundness

Predicate Lifting in a Nutshell

~

P C FORMULA X STMT X FORMULA

AN

lifting

P C FORMULA X STMT X FORMULA

Predicate Lifting in a Nutshell

oo

- F - C PROGRAMSTATE X FORMULA

- E . C PROGRAMSTATE X FORMULA
([x—=3],s) F (x = 3)
(lx — 3], s) E (x = 3)

([— 3],s) E 7

Predicate Lifting in a Nutshell

b1EN(d) daer(d) dse(ds) Pldr,do,d3)

P(gblv@% ¢3)

¢ = Pq
- {¢} assert ¢, {o}

F{(x=3) AN (y =4)}assert (x=3) {(x=3) A(y

HASSERT P(1, ¢a; $2) = (91 = ¢2) A (01 = a)

I

4)}

4)}
- {?} assert (x = 3) {(x=23) A (y = 4)}

F{x=3) A (y=4)}assert 2 {(x=3) A (y = 4)}

F{(x =3) A (y = 4)} assert (x = 3) {7}

F{x=3) A (y =4}assert (x =3) {(x=23) A (y

Johannes Bader Gradual Verification 45

Lifting Dynamic Semantics

* We borrow the idea of evidence from AGT

 |ntuitively, a witness for why a judgment holds, e.g.

* The contents of variables witnesses a well-formed
configuration

e A pair of representative concrete formulas witnesses that one
gradual formula can imply another

Want evidence for 7 *x (x = 4) = 7 * (y = 3)

Example evidence: £1 = ((x = 4) x (y = 3),(y = 3))

Want most general evidence — a valid piece of evidence that generalizes all
others (e.g. pre- and post-states are implied by those of other valid evidence).
The evidence above is the most general evidence for the example implication.

Lifting Dynamic Semantics

* We borrow the idea of evidence from AGT

 |ntuitively, a witness for why a judgment holds, e.g.

* The contents of variables witnesses a well-formed
configuration

e A pair of representative concrete formulas witnesses that one
gradual formula can imply another

 When program executes, we combine evidence

e E.g. combine the evidence for the current program
configuration with the evidence for the next statement,
to yield the next program configuration

e Or an error if the next program configuration is not well-
formed — could happen if gradual spec was too approximate

e Conveniently, combining evidence is equivalent to
checking assertions in program text!

Optimization: Checking Residuals

e |f we know some information statically, we may not
need to verify all of an assertion

 We compute the residual of a run-time check

e Assume we are checking ¢, and we know ¢,. Assume ¢, is in
conjuctive normal form. Example:

e 9,=(x>5)
* Pg=(y>xAy>4)
* We remove any conjunct of ¢, thatis implied by ¢, and the
remaining conjuncts of ¢;.

 Example: residual is (y > x)

* Best case: static verification (@, implies @)
e All run-time checking is removed!

Some Theorems

(stated formally in our draft paper, but have not laid the groundwork here)

e Soundness: standard progress and preservation

* Note: run-time errors may occur due to assertion
failures

 Static gradual guarantee: if a program checks
statically, it will still do so if the precision of its
specifications is reduced

 Dynamic gradual guarantee: if a program executes
without error, it will still do so if the precision of its
specifications is reduced

* We get the last two “for free” based on the
properties of abstract interpretation

Demonstration

http://olydis.github.io/GradVer/impl/HTML5wp/

Johannes Bader Gradual Verification

50

The Challenge of Aliasing

{(pl.age = 19) A (p2.age = 19)}
pl.age++ Not valid if p1 = p2!
{(pl.age = 20) A (p2.age = 19)}

Traditional Hoare Logic solution

{(pl.age = 19) A (p2.age = 19) A pl # p2}
pl.age++

{(pl.age = 20) A (p2.age = 19) A pl # p2}

Issue: scalability. What if we have 4 pointers?

{... Apl #p2 Apl #p3 Apl #pd Ap2+p3 Ap2+pdAAnp3#pd}

Alias information scales quadratically (n * n-1) with the number of pointer variables!

Implicit Dynamic Frames [Smans et al. 2009]

{(pl.age = 19) A (p2.age = 19)}
pl.aget+ Not valid if p1 = p2!
{(pl.age = 20) A (p2.age = 19)}

{acc(pl.age) x acc(p2.age) * (pl.age = 19) * (p2.age = 19)}
pl.age++ OK! p1and p2 may not overlap
{acc(pl.age) x acc(p2.age) * (pl.age = 20) * (p2.age = 19)}

Implicit Dynamic Frames rules:

e acc(pl.age) denotes permission to access pl.age
e if pl.ageisusedin aformula, acc(pl.age) must appear earlier (‘self-framing’)
* acc(x.f) may only appear once for each object/field combination

Johannes Bader Gradual Verification 52

The Frame Rule

{P}s{Q} Risself-framed
{P*R}S{Q*R}

 Example application

{ acc(pl.age) * pl.age = 19 * acc(p2.age) * p2.age = 19 }
pl.age++

{ /* what goes here? */ }

Johannes Bader Gradual Verification

The Frame Rule

{P*R}S{Q*R} R is self-framed
{P*R}S{Q*R}

note: R is self-framed!]

e Example application

{ acc(pl.age) * pl.age = 19 * |acc(p2.age) * p2.age = 19|}
pl.age++
{ /* what goes here? */ }

Johannes Bader Gradual Verification 54

The Frame Rule

{P*R}S{Q*R} R is self-framed
{P*R}S{Q*R}

e Example application

{ acc(pl.age) * pl.age = 19 * R
pl.age++
{ acc(pl.age) * pl.age = 20 * R

Apply the normal assignment rule

Johannes Bader Gradual Verification

55

The Frame Rule

{P*R}S{Q*R} R is self-framed
{P*R}S{Q*R}

e Example application

{ acc(pl.age) * pl.age

~
N

19 * lacc(p2.age) * p2.age = 19

pl.age++

{ acc(pl.age) * pl.age

20 * |acc(p2.age) * p2.age = 19

Frame back on the rest of the formula

Johannes Bader Gradual Verification

56

The Frame Rule

{P*R}S{Q*R} R is self-framed

{P*R}S{Q*R}
R is not self-framed.

Cannot apply the frame rule!

e Anti-example

{ acc(pl.age) * pl.age = 19 *[p2.age = 19|}

pl.age++
{ /* what goes here? */ }

Johannes Bader Gradual Verification

The Frame Rule

{P*R}S{Q*R} R is self-framed
{P*R}S{Q*R}

R is not self-framed.
Cannot apply the frame rule!

e Anti-example

{ acc(pl.age) * pl.age = 19 *|p2.age = 19|}
pl.age++

{ acc(pl.age) * pl.age

20 }

The best we can do is drop the
unframed information from the
formula

Gradual Implicit Dynamic Frames

{(pl.age = 19) A (p2.age = 19)}
pl.aget++ Not valid if p1 = p2!
{(pl.age = 20) A (p2.age = 19)}

{acc(pl.age) * acc(p2.age) * (pl.age = 19) * (p2.age = 19)}
pl.age++ OK! p1 and p2 may not overlap
{acc(pl.age) * acc(p2.age) * (pl.age = 20) * (p2.age = 19)}

{7 (pl.age = 19) * (p2.age = 19)}

pl.aget++ OK statically; requires run-time check
19) } Useful if you don’t want to specify
whether p1 and p2 alias:
? could be “acc(pl.age) && pl = p2”

{7 * (pl.age = 20) * (p2.age =

Johannes Bader Gradual Verification 59

Consequences of Implicit Dynamic
Frames

e Gradual types can help with self-framing

e We can ignore frames just by writing “? A P” where P does
not include acc(...)

e Any invalid assumptions due to framing will be caught at run time
e We can always add framing later

e Evidence: must track ownership of heap in the runtime
e Allows for testing acc(x.f) in assertions
e Of course, in statically verified code we can optimize this
away!
e Residual testing gets more interesting. Example:
e 9= (? Ax.f=2)
e gp=(acc(x.f)Axf=2Ay=05)
e Residualisy=5

e Don’t need to check acc(x.f) because ? must include acc(x.f) for the
x.f = 2 statement to be well-formed

Demonstration: Implicit Dynamic
Frames

Gradual Verification

* Engineering approach to verification
e Choose what properties & components to specify

e Support for unknown formulas ?
 Model partly specified properties, components

e Semantically: replace with anything that leaves the formula
satisfiable

e Gradual Verification
e Derived as an abstraction of static verification
e Gradual guarantee: making formulas less precise will not
cause compile-time or run-time failures
* Future work

e Efficient implementation
e Richer verification system

