
2

Static Analysis for Safe Concurrency

Optional Reading: Assuring and Evolving
Concurrent Programs: Annotations and Policy

17-355/17-655: Program Analysis

Jonathan Aldrich

25 April 2017 Analysis of Software Artifacts:
Concurrency

3

public class Logger { ...
private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter) ... {
if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& !filter.isLoggable(record)) return;

} ...
} ...

}

Example: java.util.logging.Logger

Consider setFilter() in isolation

[Source: Aaron
Greenhouse]

25 April 2017 Analysis of Software Artifacts:
Concurrency

4

public class Logger { ...
private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter) ... {
if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& !filter.isLoggable(record)) return;

} ...
} ...

}

Example: java.util.logging.Logger

Consider log() in isolation

[Source: Aaron
Greenhouse]

25 April 2017 Analysis of Software Artifacts:
Concurrency

5

/** ... All methods on Logger are multi-thread safe. */
public class Logger { ...

private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter) ... {
if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& !filter.isLoggable(record)) return;

} ...
} ...

}

Example: java.util.logging.Logger

Consider class Logger in it’s entirety!

[Source: Aaron
Greenhouse]

25 April 2017 Analysis of Software Artifacts:
Concurrency

6

/** ... All methods on Logger are multi-thread safe. */
public class Logger { ...

private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter)…{
if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& !filter.isLoggable(record)) return;

} ...
} ...

}

Example: java.util.logging.Logger

Class Logger has a race condition.

2

1

3

[Source: Aaron
Greenhouse]

25 April 2017 Analysis of Software Artifacts:
Concurrency

7

/** ... All methods on Logger are multi-thread safe. */
public class Logger { ...

private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public synchronized void setFilter(Filter newFilter)…{
if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& !filter.isLoggable(record)) return;

} ...
} ...

}

Example: java.util.logging.Logger

Correction: synchronize setFilter()

[Source: Aaron
Greenhouse]

25 April 2017 Analysis of Software Artifacts:
Concurrency

8

Example: Summary 1

Problem: Race condition in class Logger

• Race condition defined:
(From Savage et al., Eraser: A Dynamic Data Race Detector
for Multithreaded Programs)

• Two threads access the same variable
• At least one access is a write
• No explicit mechanism prevents the

accesses from being simultaneous

25 April 2017 Analysis of Software Artifacts:
Concurrency

9

Example: Summary 2

Problem: Race condition in class Logger

• Non-local error
• Had to inspect whole class

• Bad code invalidates good code
• Could have to inspect all clients of class

• Hard to test
• Problem occurs non-deterministically

• Depends on how threads interleave

25 April 2017 Analysis of Software Artifacts:
Concurrency

10

Example: Summary 3

Problem: Race condition in class Logger

• Not all race conditions result in errors
• Error results when invariant is violated

• Logger invariant
• filter is not null at call following null test

• Race-related error
• race between write and dereference of filter
• if the write wins the race, filter is null at the call

25 April 2017 Analysis of Software Artifacts:
Concurrency

11

Example: Summary 4

Problem: Race condition in class Logger

• Need to know design intent
• Should instances be used across threads?
• If so, how should access be coordinated?

• Assumed log was correct: synchronize on this
• Could be caller’s responsibility to acquire lock

 log is incorrect
 Need to check call sites of log and setFilter

25 April 2017 Analysis of Software Artifacts:
Concurrency

12

Software Disasters: Therac-25
• Delivered radiation treatment
• 2 modes

• Electron: low power electrons
• X-Ray: high power electrons

converted to x-rays with
sheild

• Race condition
• Operator specifies x-ray,

then quickly corrects to
electron mode

• Dosage process doesn’t see
the update, delivers x-ray
dose

• Mode process sees update,
removes shield

• Consequences
• 3 deaths, 3 serious injuries

from radiation overdose

from http://www.netcomp.monash.edu.au/cpe9001/assets/readings/HumanErrorTalk6.gif

source: Leveson and Turner, An Investigation of the Therac-25 Accidents, IEEE Computer, Vol. 26, No. 7, July 1993.

25 April 2017 Analysis of Software Artifacts:
Concurrency

13

Thought Experiment
How would you make sure your code avoids race

conditions?

• Keep some data local to a single thread
• Inaccessible to other threads
• e.g. local variables, Java AWT & Swing, thread state

• Protect shared data with locks
• Acquire lock before accessing data, release afterwards
• e.g. Java synchronized, OS kernel locks

• Forbid context switches/interrupts in critical sections of code
• Ensures atomic update to shared state
• e.g. many embedded systems, simple single processor OSs

• Analyze all possible thread interleavings
• Ensure invariants cannot be violated in any execution
• Does not scale beyond smallest examples

• Future: transactional memory

25 April 2017 Analysis of Software Artifacts:
Concurrency

14

Thread Locality in the Java AWT
• Event thread

• Started by the AWT library
• Invokes user callbacks

• e.g. to draw a window
• Rules

• Can create a component from any thread
• Once component is initialized, can only access from Event thread
• To access from another thread, register a callback function to be

invoked in the Event thread
• Many other GUI libraries have similar rules

• Microsoft Windows Presentation Foundation: one thread per window
• Why (e.g. vs. locks)?

• Simple: no need to track relationship between lock and state
• Predictable: less concurrency in GUI
• Efficient: acquiring locks is expensive

• Why not?
• Less concurrency available

25 April 2017 Analysis of Software Artifacts:
Concurrency

15

Thread Locality: Variations

• Read-only data structures
• May be freely shared between threads
• No changes to data allowed

• Ownership transfer
• Initialize a data structure in thread 1
• Transfer ownership of data to thread 2

• Now thread 2 may access the data, but thread 1
may not

• Transfer may be repeated
• Note that transfer usually requires

synchronization on some other variable

25 April 2017 Analysis of Software Artifacts:
Concurrency

16

Lock-based Concurrency

• Associate a lock with each shared variable
• Acquire the lock before all accesses
• Group all updates necessary to maintain data

invariant
• Hold all locks until update is complete

• Granularity
• Fine-grained locks allow more concurrency

• Can be tricky if different parts of a data structure are
protected by different—perhaps dynamically created—
locks

• Coarse-grained locks have lower overhead

25 April 2017 Analysis of Software Artifacts:
Concurrency

17

Deadlock
• Bank transfer

• Debit one account and credit
another

• (broken) protocol: lock debit
account, then credit account

• Deadlock scenario
• Thread 1 acquires lock A
• Thread 2 acquires lock B
• Thread 2 attempts to acquire

lock A and waits
• Thread 1 attempts to acquire

lock B and waits
• Neither thread 1 nor thread 2

may proceed

• Deadlock definition
• A set of threads that forms a

cycle, such that each thread
is waiting to acquire a lock
held by the next thread

thread1() {
lock(A); // protects X
lock(B); // protects Y
debit(X);
credit(Y);
unlock(B);
unlock(A);

}

thread2() {
lock(B);
lock(A);
debit(Y);
credit(X);
unlock(A);
unlock(B);

}

25 April 2017 Analysis of Software Artifacts:
Concurrency

18

Dealing with Deadlock

• Lock ordering
• Always acquire locks in a fixed order

• Cycles impossible—both thread 1 and thread 2 will
attempt to acquire A before B

• Release locks in the opposite order

• Detect cycles as they form
• Runtime system checks for cycles when waiting to

acquire
• Expensive in practice, but simplifies development

• Force one thread in cycle to give up its lock
• Typically the last thread, or the lowest priority

25 April 2017 Analysis of Software Artifacts:
Concurrency

19

Disabling interrupts/context switches
• Disable interrupts for critical sections of code

• Should be short, so that interrupts aren’t delayed too long
• Must be long enough to update shared data consistently
• Common in single-processor embedded systems

• Why?
• Cheap, simple, predictable

• Why not?
• Does not support true multiprocessor concurrency
• Suspending interrupts can mean missing real time I/O

deadlines
• Like having a global lock: forbids concurrent access even to

different data structures

25 April 2017 Analysis of Software Artifacts:
Concurrency

20

Analyzing All Possible Interleavings

• Data race defined:
(From Savage et al., Eraser: A Dynamic Data Race Detector
for Multithreaded Programs)

• Two threads access the same variable
• At least one access is a write
• No explicit mechanism prevents the

accesses from being simultaneous

25 April 2017 Analysis of Software Artifacts:
Concurrency

21

Analyzing All Possible Interleavings
thread1() {

read x;
}
thread2() {

lock();
write x;
unlock();

}

Interleaving 1: OK

Thread 1 Thread 2

read x

lock

write x

unlock

25 April 2017 Analysis of Software Artifacts:
Concurrency

22

Analyzing All Possible Interleavings
thread1() {

read x;
}
thread2() {

lock();
write x;
unlock();

}

Interleaving 1: OK
Interleaving 2: OK

Thread 1 Thread 2

read x

lock

write x

unlock

25 April 2017 Analysis of Software Artifacts:
Concurrency

23

Analyzing All Possible Interleavings
thread1() {

read x;
}
thread2() {

lock();
write x;
unlock();

}

Interleaving 1: OK
Interleaving 2: OK
Interleaving 3: Race

Thread 1 Thread 2

read x

lock

write x

unlock

25 April 2017 Analysis of Software Artifacts:
Concurrency

24

Analyzing All Possible Interleavings
thread1() {

read x;
}
thread2() {

lock();
write x;
unlock();

}

Interleaving 1: OK
Interleaving 2: OK
Interleaving 3: Race
Interleaving 4: Race

Thread 1 Thread 2

read x

lock

write x

unlock

25 April 2017 Analysis of Software Artifacts:
Concurrency

25

Analyzing All Possible Interleavings
• What

• No race conditions
• More important: data invariants always hold at appropriate

program points

• Why?
• You are implementing a new synchronization primitive
• Building on top of other synchronization mechanisms is too

expensive

• Why not?
• Does not scale to large bodies of code
• Complex and error prone
• May not be portable, depending on memory model
• No guarantee the result will be faster!

25 April 2017 Analysis of Software Artifacts:
Concurrency

26

Transactional Memory

• Group update operations into a transaction
• Goal: invariant holds after operations are complete

• Run-time system ensures update is atomic
• i.e. updates are consistent with running complete

transactions in a linear order
• Implementation

• Track reads and writes to memory
• At end, ensure no other process has overwritten

cells that were read or written
• Commit writes if no interference
• Abort writes (with no effect) if interference

observed

25 April 2017 Analysis of Software Artifacts:
Concurrency

27

Transactional Memory
• Why?

• Simpler model than others, therefore much easier
to get right

• No problem with deadlock
• Allows more concurrency
• Supports reuse of concurrent code

• Why not?
• Overhead is high without hardware support

• And hardware support is limited (e.g. transaction size)
• Still experimental

25 April 2017 Analysis of Software Artifacts:
Concurrency

28

Fluid: Tool Support for Safe Concurrency

25 April 2017 Analysis of Software Artifacts:
Concurrency

29

Example: Summary 4
Problem: Race condition in class Logger

• Need to know design intent
• Should instances be used across threads?
• If so, how should access be coordinated?

• Assumed log was correct: synchronize on this
• Could be caller’s responsibility to acquire lock

 log is incorrect
 Need to check call sites of log and setFilter

[Source: Aaron
Greenhouse]

public class Logger { ...
public void setFilter(Filter newFilter)…{

if (!anonymous) manager.checkAccess();
filter = newFilter;

}
public void log(LogRecord record) { ...

synchronized (this) {
if (filter != null

&& !filter.isLoggable(record)) return;
} ...

} ...
}

25 April 2017 Analysis of Software Artifacts:
Concurrency

30

Models are Missing
• Programmer design intent is missing

• Not explicit in Java, C, C++, etc
• What lock protects this object?

• “This lock protects that state”
• What is the actual extent of shared state of this object?

• “This object is ‘part of’ that object”

• Adoptability
• Programmers: “Too difficult to express this stuff.”
• Annotations in tools like Fluid: Minimal effort — concise expression

• Capture what programmers are already thinking about
• No full specification

• Incrementality
• Programmers: “I’m too busy; maybe after the deadline.”
• Tool design (e.g. Fluid): Payoffs early and often

• Direct programmer utility — negative marginal cost
• Increments of payoff for increments of effort

[Source: Aaron
Greenhouse]

25 April 2017 Analysis of Software Artifacts:
Concurrency

31

Capturing Design Intent
• What data is shared by multiple threads?
• What locks are used to protect it?
• Annotate class to answer these questions

Whose responsibility is it to acquire the lock?
Annotate method: @requiresLock FL

Is this delegate object owned by its referring object?
Annotate field: @aggregate … into Instance

[Source: Aaron
Greenhouse]

// @lock FL is this protects filter
public class Logger { ...
public void setFilter(Filter newFilter)…{

if (!anonymous) manager.checkAccess();
filter = newFilter;

}
public void log(LogRecord record) { ...

synchronized (this) {
if (filter != null

&& !filter.isLoggable(record)) return;
} ...

} ...
}

25 April 2017 Analysis of Software Artifacts:
Concurrency

32

Reporting Code–Model Consistency

• Tool analyzes consistency
• No annotations  no assurance
• Identify likely model sites

• Three classes of results
Code–model consistency

Code–model inconsistency

Informative — Request for annotation

[Source: Aaron
Greenhouse]

Example: BoundedFIFO
Context:
• Actual class taken from Apache Log4J

• Implements a first-in, first-out buffer
• Client: BlockingFIFO

• Uses BoundedFIFO
• Includes synchronization code, allowing it to

be used in a concurrent setting

25 April 2017 Analysis of Software Artifacts:
Concurrency

33

BoundedFIFO

BlockingFIFO

Thread A

Thread B

Thread C

Initial Interaction
• Lock identified – what state is being protected?

25 April 2017 Analysis of Software Artifacts:
Concurrency

34

public class BoundedFIFO {
LoggingEvent[] buf;

int numElts = 0;
public int length() { return numElts; }
...

}

public class BlockingFIFO {
public int length() {

synchronized (fifo) {
return fifo.length();

}
}
...

}

Initial Interaction
• Lock identified – what state is being protected?

25 April 2017 Analysis of Software Artifacts:
Concurrency

35

@RegionLock("BufLock is this protects Instance")
public class BoundedFIFO {

LoggingEvent[] buf;

int numElts = 0;
public int length() { return numElts; }
...

}

public class BlockingFIFO {
public int length() {

synchronized (fifo) {
return fifo.length();

}
}
...

}

Warning – Possibly Unprotected State
• Lock "<this>.BufLock" not held when accessing this.numElts

25 April 2017 Analysis of Software Artifacts:
Concurrency

36

@RegionLock("BufLock is this protects Instance")
public class BoundedFIFO {

LoggingEvent[] buf;

int numElts = 0;

public int length() { return numElts; }
...

}

public class BlockingFIFO {
public int length() {

synchronized (fifo) {
return fifo.length();

}
}
...

}

Warning – Possibly Unprotected State
• Lock "<this>.BufLock" not held when accessing this.numElts

25 April 2017 Analysis of Software Artifacts:
Concurrency

37

@RegionLock("BufLock is this protects Instance")
public class BoundedFIFO {

LoggingEvent[] buf;

int numElts = 0;

@RequiresLock("BufLock")
public int length() { return numElts; }
...

}

public class BlockingFIFO {
public int length() {

synchronized (fifo) {
return fifo.length();

}
}
...

}

Warning – Possibly Unprotected State
• Lock "<this>.BufLock" not held when accessing this.numElts

• Repeat for all other methods of BoundedFIFO

25 April 2017 Analysis of Software Artifacts:
Concurrency

38

@RegionLock("BufLock is this protects Instance")
public class BoundedFIFO {

LoggingEvent[] buf;

int numElts = 0;

@RequiresLock("BufLock")
public int length() { return numElts; }
...

}

public class BlockingFIFO {
public int length() {

synchronized (fifo) {
return fifo.length();

}
}
...

}

Warning – Lock Precondition
• @RequiresLock(“BufLock”) precondition is not satisfied

25 April 2017 Analysis of Software Artifacts:
Concurrency

39

public class BlockingFIFO {
public void put(LoggingEvent e) {

synchronized (this) {
while (fifo.isFull()) {

try {
fifo.wait();

} catch (InterruptedException ie) {
// ignore

}
}
fifo.put(e);
if (fifo.wasEmpty()) {

fifo.notify();
}
fifo.put(e);
fifo.put(e);

}
}

}

Warning – Lock Precondition
• @RequiresLock(“BufLock”) precondition is not satisfied

25 April 2017 Analysis of Software Artifacts:
Concurrency

40

public class BlockingFIFO {
public void put(LoggingEvent e) {

synchronized (fifo) {
while (fifo.isFull()) {

try {
fifo.wait();

} catch (InterruptedException ie) {
// ignore

}
}
fifo.put(e);
if (fifo.wasEmpty()) {

fifo.notify();
}
fifo.put(e);
fifo.put(e);

}
}

}

Warning – Possibly Unprotected State
• Lock "<this>.BufLock" not held when accessing this.size and

this.buf

25 April 2017 Analysis of Software Artifacts:
Concurrency

41

@RegionLock("BufLock is this protects Instance")
public class BoundedFIFO {

public BoundedFIFO(int size) {
if (size < 1)

throw new IllegalArgumentException();
this.size = size;
buf = new LoggingEvent[size];

}
...

}

Warning – Possibly Unprotected State
• Lock "<this>.BufLock" not held when accessing this.size and

this.buf

25 April 2017 Analysis of Software Artifacts:
Concurrency

42

@RegionLock("BufLock is this protects Instance")
public class BoundedFIFO {

@Unique("return")
public BoundedFIFO(int size) {

if (size < 1)
throw new IllegalArgumentException();

this.size = size;
buf = new LoggingEvent[size];

}
...

}

Warning – Reference to Shared State
• Field reference this.buf[this.next] may be to a shared unprotected

object

25 April 2017 Analysis of Software Artifacts:
Concurrency

43

@RegionLock("BufLock is this protects Instance")
public class BoundedFIFO {

LoggingEvent[] buf;

@RequiresLock("BufLock")
public LoggingEvent get() {

if (numElts == 0)
return null;

LoggingEvent r = buf[next];
if (++first == size)

first = 0;
numElts‐‐;
return r;

}
...

}

Warning – Reference to Shared State
• Field reference this.buf[this.next] may be to a shared unprotected

object

25 April 2017 Analysis of Software Artifacts:
Concurrency

44

@RegionLock("BufLock is this protects Instance")
public class BoundedFIFO {

@Unique
LoggingEvent[] buf;

@RequiresLock("BufLock")
public LoggingEvent get() {

if (numElts == 0)
return null;

LoggingEvent r = buf[next];
if (++first == size)

first = 0;
numElts‐‐;
return r;

}
...

}

25 April 2017 Analysis of Software Artifacts:
Concurrency

45

Incremental Assurance

Payoffs early and often to reward use
• Reassure after every save

• Maintain model–code consistency
• Find errors as soon as they are introduced

• Focus on interesting code
• Heavily annotate critical code
• Revisit other code when it becomes critical

• Doesn’t require full annotation to be useful

[Source: Aaron
Greenhouse]

25 April 2017 Analysis of Software Artifacts:
Concurrency

46

Analysis Issues: Aliasing
• Other pointers can invalidate reasoning

• @singlethreaded – can other threads access through an
alias?

• @aggregate … into Instance – can the field be accessed
though an alias that is not protected by the lock?

• Similar issues in other analyses, e.g. Typestate

FileInputStream a = …
FileInputStream b = …
a.close() // what if a and b alias?
b.read(…) // may read a closed file

• Solution from Fugue (Microsoft Research)
• @NotAliased annotation indicates that b has no aliases
• Therefore closing a does not affect b
• Requires alias analysis to verify
• Can sometimes be inferred by analysis

• e.g. see Fink et al., ISSTA ’06

25 April 2017 Analysis of Software Artifacts:
Concurrency

47

Capturing Design Intent
• What data is shared by multiple threads?
• What locks are used to protect it?

• Annotate class: @lock FL is this protects filter

• Is this delegate object owned by its referring object?
• Annotate field: @aggregate … into Instance

• Can this object be accessed by multiple threads?
• Annotate method: @singleThreaded

• Can this argument escape to the heap?
• Annotate method: @borrowed this

[Source: Aaron
Greenhouse]

25 April 2017 Analysis of Software Artifacts:
Concurrency

48

Analysis Issues: Constructors,
Inheritance
• Constructors

• Often special cases for assurance
• Fluid: can’t protect with “this” lock

• But OK since usually not multithreaded yet
• Others

• Invariants may not hold until end of constructor

• Subtyping
• Subclass must inherit specification of superclass
• Example: @singlethreaded for Formatter
• Sometimes subclass extends specification

• e.g. to be multi-threaded safe
• requires care in inheriting or overriding superclass methods

• Inheritance
• Representation of superclass may have different invariants

than subclass
• super calls must obey superclass specs

• e.g. call to Formatter constructor

25 April 2017 Analysis of Software Artifacts:
Concurrency

49

How Incrementality Works 1
• How can one provide

incremental benefit with
mutual dependencies?

Call Graph of Program

[Source: Aaron
Greenhouse]

25 April 2017 Analysis of Software Artifacts:
Concurrency

50

assured region

How Incrementality Works 2
• How can one provide

incremental benefit with
mutual dependencies?

• Cut points
• Method annotations

partition call graph
• Can assure property

of a subgraph
• Assurance is

contingent on
accuracy of trusted cut
point method
annotations

Call Graph of Program

cut point

[Source: Aaron
Greenhouse]

25 April 2017 Analysis of Software Artifacts:
Concurrency

51

Cutpoint Example: @requiresLock

• Analysis normally assumes a method acquires
and releases all the locks it needs.
• Prevents caller’s correctness from depending on

internals of called method.

• Method can require the caller to already hold
a certain lock: @requiresLock FilterLock
• Analysis of method gets to assume the lock is

held.
• Doesn’t need to know about caller(s).

• Analysis of caller checks for lock acquisition.
• Still ignores internals of called method.

[Source: Aaron
Greenhouse]

25 April 2017 Analysis of Software Artifacts:
Concurrency

52

Capturing Design Intent

• What data is shared by multiple threads?
• What locks are used to protect it?

• Annotate class: @lock FL is this protects
filter

• Is this delegate object owned by its referring
object?
• Annotate field: @aggregate … into Instance

• Whose responsibility is it to acquire the lock?
• Annotate method: @requiresLock FL

[Source: Aaron
Greenhouse]

53

Principal case study results, 1

• Major software vendor

• Multiple systems evaluated – all in production
• Highly multi-threaded code
• E.g., 300KLOC framework system
• 3 days modeling time

• Results
• 45 lock models

• Models: requiresLock, aggregate, unshared, mapinto, etc.
• 1500 “+”, 200 “X”, 1500 “i”

• Several major architectural issues detected
• Deadlocks and races

• Many faults detected and corrected in code base
• The tool identified additional areas for code review

• Vendor staff developed many models themselves
• UI “natural” for developers
• Highly interactive use

54

Principal case study results, 1

• Comments from developers and their managers:

“So this tool will let me put in the design intent and then tells me if it is consistent
with the code?”

“It would have been very difficult if not impossible to find these issues without the
Fluid analysis”

“The tool can be used to increase concurrency which should lead to performance
and scalability benefits. “

“Sweeping changes (impacting thousands of locks in this case) would be risky
and are not likely to be attempted without the assurance that the Fluid tool
provides.”

“I'm actually considering implementing a policy that you can't add a synchronize
to the code without documenting [in Fluid notation] what region it applies to.”

55

Principal case study results, 2

• Major software vendor

• Multiple systems evaluated
• E.g., 200KLOC Java, production design tool

• Geographically distributed development team
• Based on earlier C and C++ versions
• Multi-threaded, abundant use of non-lock concurrency
• 1 day modeling/analysis time

• Results
• Major thread use (color) bug identified

• Developers later reported “several full-time weeks” to locate
– caused “frequent exceptions and crashes”

• Positive assurance of thread use for most methods
• 50% of methods: thread-use modeled

• Locking and synchronization faults identified
• Race condition with nested locks

• Performance improvements: remove unnecessary locks

56

Principal case study results, 3

• Major aerospace organization

• Four production systems evaluated, already passed QA
• 250KLOC
• Including key critical systems already deployed

• Found races in all systems
• Code changes were checked in for three of the systems

25 April 2017 Analysis of Software Artifacts:
Concurrency

57

Concurrency: Summary

• Many ways to make concurrency safe
• Single-threaded data
• Locks
• Disabled interrupts
• Analysis of interleavings (simple settings)
• Transactions (future)

• Design intent useful
• Document assumptions for team
• Aids in manual analysis
• Enables (eventual) automated analysis

