Counterexample Guided
Abstraction Refinement in Blast

Optional reading: Checking Memory
Safety with Blast

17-355/17-665: Program Analysis
Jonathan Aldrich

Program Analysis - Spring 2017

How would you analyze this?

Example() { .
1: if (*){
7: do {
got_lock = 0; °
8: if (x){
9: lock();

10:
11:

12:

}

got_lock++;

}

if (got-lock){
unlock();
|

} while (%)

* means something we

can’t analyze (user input,
random value)

Line 10: the lock is held if
and only if got_lock =1

Program Analysis - Spring 2017

= W

oy O

How would you analyze this?

do {
lock();

old = new;

if (*){

unlock();
new++;

} while (new '= old);

unlock();
return;

b

* means something we
can’t analyze (user input,
random value)

Line 5: the lock is held if
and only if old = new

Program Analysis - Spring 2017

Motivation

« Dataflow analysis uses fixed abstraction
 e.g. zero/nonzero, locked/unlocked
 Model checking version of DFA similar

« Symbolic execution shows need to eliminate

Infeasible paths
 E.g. lock/unlock on correlated branches
* Requires extending abstraction with branch predicates

* It's hard to make symbolic execution sound
* Infeasible to cover all paths
« Although we can merge paths with similar analysis info, the
infogmation IS too detailed to assure finitely many explored
paths

« (Can we get both soundness and the precision to

eliminate infeasible paths?

 In general: of course not! That's undecidable.

e Butin many situations we can solve it with abstraction
refinement; it’s just that this technique may not always
terminate

Program Analysis - Spring 2017 5

CEGAR:

Counterexample Guided Abstraction Refinement

Program Abstract Abstract Model \
(0]
Using | Program " Checker [z Property
Predicates Holds
A
New Error
Predicates Found
A
Generate Infeasible Path Feasible
New < Feasibility ————» Report
Predicates Checker Bug

Program Analysis - Spring 2017 6

CEGAR:

Counterexample Guided Abstraction Refinement

b

Begin with control flow graph abstraction

Check reachabillity of error nodes

 Typically take cross product of dataflow abstraction and CFG

« However, can encode dataflow abstraction in CFG through
error nodes—assert(false)

If error node Is reachable, check if path is feasible

« (Can use weakest preconditions; if you get false, the path is
Impossible

For feasible paths, report an error

For infeasible paths, figure out why

e e.g. correlation between lock and got_lock

Add reason for infeasible paths to abstraction and try

again!

e This time the analysis won’t consider that path

e But it might consider other infeasible paths, so you may have
to repeat the process multiple times

Program Analysis - Spring 2017 7

Control Flow Automaton

b

 One node for each (
location (before/after /)\\

a statement) [L‘i;*f‘ml g ;¢
« Edges lr";[ffl’\ié] -~ ' E‘E’i]
* Blocks of mﬂﬁgk;\,[e =g @ij\(\
statements [[j;;} J [lk%ig’%{”]
« Assume clauses o . Y@ém}

model if and loops A

« some predicate must f““'“\f
be true to take the
edge

(=
"

Program Analysis - Spring 2017 8

> W

o O

Control Flow Automaton Example %

do {
lock();
old = new;
if (%){
unlock();
new++;

} while (nmew '= o0ld);
unlock();
return;

unlock();

Program Analysis - Spring 2017 9

b

Checking for Reachability

* Generate Abstract Reachabillity Tree
« Contains all reachable nodes

* Annotates each node with state
e Initially LOCK =00r LOCK =1
« Cross product of CFA and data flow abstraction

. Algorlthm depth-first search
Generate nodes one by one
e |f you come to a node that’s already In the tree,

stop
e This state has already been explored through a different
control flow path

« |f you come to an error node, stop
e The error is reachable

Program Analysis - Spring 2017 10

Depth First Search Example

b

/I\l @LOCK:O
[T] - [T]
7 N
7)
| [(got_lock=0)
[T]) 8 /'=
N m
N
[new !=old] lock())

got_lock+—~ 0\
[get lock= O]

Program Analysis - Spring 2017 11

Is the Error Real?

b

 Use weakest preconditions to find out the

weakest precondition that leads to the error

« |If the weakest precondition is false, there is no
Initial program condition that can lead to the error

 Therefore the error is spurious

« Blast uses a variant of weakest preconditions
e creates a new variable for each assignment before
using weakest preconditions
* Instead of substituting on assignment, adds new
constraint
* Helps isolate the reason for the spurious error
more effectively

Program Analysis - Spring 2017 12

Is the Error Real?

assume True;
lock();

LOCK=0

lock()
old=new
old = new;
assume True;)
LOCK=1
u n IOC k() ’ unlock()
new++: T
assume ne ::OId [new = old]
LOCK=0
error (lock==0) (’5

@ LOCK=0
»

Program Analysis - Spring 2017 13

Model Locking as Assignment

b

assume True;
lock = 1;

old = new;
assume True;
lock = O;

new = new + 1;
assume new==old
error (lock==0)

Program Analysis - Spring 2017 14

Index the Variables

assume True;

lockl =1

old1l = newl;
assume True;

lock2 =0

new2 = newl + 1
assume new2==old1
error (lock2==0)

Program Analysis - Spring 2017 15

Generate Weakest Preconditions %

assume True;

lockl =1

old1l = newl;
assume True;

lock2 =0

new2 = newl + 1
assume new2==old1
error (lock2==0)

A True

A lockl==1

A oldl==newl

A True N

Contradictory!
A lock2==0 ///
A hew2==newl+1

A hew2==0ld1
lock2==0

Program Analysis - Spring 2017 16

Why Is the Error Spurious?

More precisely, what predicate
could we track that would * nTrue

eliminate the spurious error e Alockl==1
message?
Consider, for each node, the * Aoldl==newl |nterpolant:
constraints generated before . T — old == new
thag n?de) (c1) and after that A TTUE
node (c2 o —
Find a condition | such that A lock2==0
¢ cl=>| e A newZ2==newl+l
 listrue at the node
« | only contains variables e A new2==o0ld1l
mentioned in both c1 and
c2 e Jock2==0
| mentions only variables in
scope (not old or future
copies)
e | Ac2=false
 |lis enough to show that the

rest of the path is infeasible

| is guaranteed to exist
See Craig Interpolation

Program Analysis - Spring 2017 17

Reanalyzing the Program

b

 EXplore a subtree again

Start where new predicates were
discovered

This time, track the new predicates

If the conjunction of the predicates on a
node Is false, stop exploring—this node is
unreachable

Program Analysis - Spring 2017 18

Reanalysis Example

4 I\l
[T] _/

LOCE=0

: ‘\t

L 2
Tock)) N A
old=new I

LOCK=1 & new=old

[new != old]

LOCK=0 & Inew=cld LOCK=1 & new=cld

[new != old [new = old]

unlock()
| new~— _ 5)

[new = old]

()
A

[unlock())

T LOCK=0 & new=old

N Already Covered Unreachable

Program Analysis - Spring 2017 19

b

Analyzing the Right Hand Side

Program Analysis - Spring 2017 20

Generate Weakest Preconditions %

assume True;
got_lock = 0;

assume True;
assume got_lock !'= 0;
error (lock==0)

Program Analysis - Spring 2017 21

Why Is the Error Spurious?

More precisely, what predicate
could we track that would ° ~True
eliminate the spurious error e Agot lock==0
message? —

« Consider, for each node, the * A True
constraints generated before _
that node (c1) and after that * Agot_lock!=0
node (c2) e lock==0

Find a condition | such that
e cl=>|

 listrue at the node
* | only contains variables
mentioned in both c1 and

c2
| mentions only variables in
scope (not old or future
copies)
e | Aac2=false
 |lis enough to show that the
~ rest of the path is infeasible
« | is guaranteed to exist
See Craig Interpolation

Program Analysis - Spring 2017 22

Reanalysis

T]/\-l- 1]

Program Analysis - Spring 2017 Key: L = locked=1 23
Z = got_lock=0

Blast Techniques, Graphically

 EXplores reachable state, not
all paths
e Stops when state already
seen on another path

LOCE=0

oRoXe¢

lock=0 & ...
COVERED !

b

 Only applies predicate to
relevant part of tree

Lazy Abstraction
e Uses predicates on
demand

new pred new pred
new=eold got lock=0

Termination

 Not guaranteed

The system could go on generating predicates forever

« (Can guarantee termination

Restrict the set of possible predicates to a finite subset

* Finite height lattices in data flow analysis!

Those predicates are enough to predict observable behavior
of program

 E.g. the ordering of lock and unlock statements

* Predicates are restricted in practice
 E.g. likely can’t handle arbitrary quantification as in Dafny
* Model checking is hard if properties depend on heap data, for
example

Can’t prove arbitrary properties in this case

* In practice

Terminate abstraction refinement after a time bound

Program Analysis - Spring 2017 25

Key Points of CEGAR

 To prove a property, may need to strengthen it
« Just like strengthening induction hypothesis

« CEGAR figures out strengthening

automatically
* From analyzing why errors are spurious

e Blast uses lazy abstraction
e Only uses an abstraction in the parts of the
program where it is needed
e Only builds the part of the abstract state that is
reached
 Explored state space is much smaller than
potential state space

b

Program Analysis - Spring 2017 26

Experimental Results

Program [Postprocessed| Predicates |BLAST Time|Ctrex analysis|Proof Size
LOC Total|Active (sec) (sec) (bytes)
gpmouse.c 23539 2 2 0.50 0.00 175
ide.c 18131 5! 5 4.59 0.01 253
ahalb2x.c 17736 2 2 20.93 0.00
tlan.c 16506 5! 4 428.63 403.33 405
cdaudio.c 17798 85 45 1398.62 540.96 156787
floppy.c 17386 62 37 2086.35 1565.34
fixed] 93 44 395.97 17.46 60129
kbfiltr.c 12131 54 40 64.16 5.89
48 35 256.92 165.25
[fixed] 37 34 10.00 0.38 7619
mouclass.c 17372 b7 46 54.46 3.34
parport.c 61781 193 | 50 1980.09 519.69 102967
Program Analysis - Spring 2017 27

Blast in Practice

b

 Has scaled past 100,000 lines of code
* Realistically starts producing worse results after a
few 10K lines

e Sound up to certain limitations

 Assumes safe use of C
* No aliases of different types; how realistic?

* No recursion, no function pointers
 Need models for library functions

 Has also been used to find memory safety
errors, race conditions, generate test cases

Program Analysis - Spring 2017 28

