
Lecture Notes:
Interprocedural Analysis

17-355/17-665: Program Analysis (Spring 2017)
Jonathan Aldrich

aldrich@cs.cmu.edu

1 Interprocedural Analysis

Consider an extension of WHILE3ADDR that includes functions. We thus add a new syntactic
category F (for functions), and two new instruction forms (function call and return), as follows:

F ::� fun fpxq t n : I u

S ::� . . . | return x | y � fpxq

In the notation above, n : I , the line is shorthand for a list, so that the body of a function is a
list of instructions I with line numbers n. We assume in our formalism that all functions take a
single integer argument and return an integer result, but this is easy to generalize if we need to.

We’ve made our programming language much easier to use, but dataflow analysis has become
rather more difficult. Interprocedural analysis concerns analyzing a program with multiple pro-
cedures, ideally taking into account the way that information flows among those procedures. We
use zero analysis as our running example throughout, unless otherwise indicated.

1.1 Default Assumptions

Our first approach assumes a default lattice value for all arguments to a function La and a de-
fault value for procedure results Lr. In some respects, La is equivalent to the initial dataflow
information we set at the entry to the program when we were only looking intraprocedurally;
now we assume it on entry to every procedure. We check the assumptions hold when analyzing
a call or return instruction (trivial if La � Lr � J). We then use the assumption when analyz-
ing the result of a call instruction or starting the analysis of a method. For example, we have
σ0 � tx ÞÑ La | x P Varu.

Here is a sample flow function for call and return instructions:

fvx :� gpyqwpσq � rx ÞÑ Lrsσ where σpyq � La

fvreturn xwpσq � σ where σpxq � Lr

We can apply zero analysis to the following function, using La � Lr � J:

1

1 : fun divByXpxq : int
2 : y :� 10{x
3 : return y

4 : fun mainpq : void
5 : z :� 5
6 : w :� divByXpzq

The results are sound, but imprecise. We can avoid the false positive by using a more optimistic
assumption La � Lr � NZ. But then we get a problem with the following program:

1 : fun doublepx : intq : int
2 : y :� 2 � x
3 : return y

4 : fun mainpq : void
5 : z :� 0
6 : w :� doublepzq

Now what?

1.2 Annotations

An alternative approach uses annotations. This allows us to choose different argument and result
assumptions for different procedures. Flow functions might look like:

fvx :� gpyqwpσq � rx ÞÑ annotvgw.rsσ where σpyq � annotvgw.a

fvreturn xwpσq � σ where σpxq � annotvgw.r

Now we can verify that both of the above programs are safe. But some programs remain
difficult:

1 : fun doublepx : int @Jq : int @J
2 : y :� 2 � x
3 : return y

4 : fun mainpq
5 : z :� 5
6 : w :� doublepzq
7 : z :� 10{w

We will see other example analysis approaches that use annotations later in the semester, though
historically, programmer buy-in remains a challenge in practice.

1.3 Local vs. global variables

The above analyses assume we have only local variables. If we have global variables, we must
make conservative assumptions about them too. Assume globals should always be described by
some lattice value Lg at procedure boundaries. We can extend the flow functions as follows:

2

fvx :� gpyqwpσq � rx ÞÑ Lrsrz ÞÑ Lg | z P Globalssσ
where σpyq � La ^ @z P Globals : σpzq � Lg

fvreturn xwpσq � σ
where σpxq � Lr ^ @z P Globals : σpzq � Lg

Annotations can be extended in a natural way to handle global variables.

1.4 Interprocedural Control Flow Graph

An approach that avoids the burden of annotations, and can capture what a procedure actually
does as used in a particular program, is to build a control flow graph for the entire program, rather
than just a single procedure. To make this work, we handle call and return instructions specially
as follows:

• We add additional edges to the control flow graph. For every call to function g, we add an
edge from the call site to the first instruction of g, and from every return statement of g to
the instruction following that call.

• When analyzing the first statement of a procedure, we generally gather analysis information
from each predecessor as usual. However, we take out all dataflow information related to
local variables in the callers. Furthermore, we add dataflow information for parameters in
the callee, initializing their dataflow values according to the actual arguments passed in at
each call site.

• When analyzing an instruction immediately after a call, we get dataflow information about
local variables from the previous statement. Information about global variables is taken from
the return sites of the function that was called. Information about the variable that the result
of the function call was assigned to comes from the dataflow information about the returned
value.

Now the example described above can be successfully analyzed. However, other programs
still cause problems:

1 : fun doublepx : int @Jq : int @J
2 : y :� 2 � x
3 : return y

4 : fun mainpq
5 : z :� 5
6 : w :� doublepzq
7 : z :� 10{w
8 : z :� 0
9 : w :� doublepzq

What’s the issue here?

3

1.5 Context Sensitive Analysis

Context-sensitive analysis analyzes a function either multiple times, or parametrically, so that the
analysis results returned to different call sites reflect the different analysis results passed in at
those call sites.

We could get context sensitivity just by duplicating all callees. But this works only for non-
recursive programs.

A simple solution is to build a summary of each function, mapping dataflow input information
to dataflow output information. We will analyze each function once for each context, where a
context is an abstraction for a set of calls to that function. At a minimum, each context must track
the input dataflow information to the function.

Let’s look at how this approach allows the program given above to be proven safe by zero
analysis.

[Example will be given in class]
Things become more challenging in the presence of recursive functions, or more generally mu-

tual recursion. Let us consider context-sensitive interprocedural constant propagation analysis of
a factorial function called by main. We are not focused on the intraprocedural part of the analysis,
so we will just show the function in the form of Java or C source code:

i n t f a c t (i n t x) {
i f (x == 1)

re turn 1 ;
e l s e

re turn x ∗ f a c t (x�1) ;
}
void main () {

i n t y = f a c t (2) ;
i n t z = f a c t (3) ;
i n t w = f a c t (getInputFromUser ()) ;

}

We can analyze the first two calls to fact within main in a straightforward way, and in fact if
we cache the results of analyzing fact(2) we can reuse this when analyzing the recursive call inside
fact(3).

For the third call to fact, the argument is determined at runtime and so constant propagation
uses J for the calling context. In this case the recursive call to fact() also has J as the calling
context. But we cannot look up the result in the cache yet as analysis of fact() with J has not
completed. A naı̈ve approach would attempt to analyze fact() with J again, and would therefore
not terminate.

We can solve the problem by applying the same idea as in intraprocedural analysis. The recur-
sive call is a kind of a loop. We can make the initial assumption that the result of the recursive call
is K, which is conceptually equivalent to information coming from the back edge of a loop. When
we discover the result is a higher point in the lattice then K, we reanalyze the calling context (and
recursively, all calling contexts that depend on it). The algorithm to do so can be expressed as
follows:

4

type Context
val fn : Function
val input : L

type Summary
val input : L
val output : L

val worklist : SetrContexts
val analyzing : StackrContexts
val results :MaprContext, Summarys
val callers :MaprContext, SetrContextss

function ANALYZEPROGRAM

worklist � tContextpmain,Jqu
while NOTEMPTY(worklist) do

ctx = REMOVE(worklist)
ANALYZE(ctx)

end while
end function

function ANALYZE(ctx, σi)
σo � resultsrctxs.output
PUSH(analyzing, ctx)
σ1

o = INTRAPROCEDURAL(ctx)
POP(analyzing)
if σo � σ1

o then
resultsrctxs � Summarypσi, σ

1

oq
for c P callersrctxs do

ADD(worklist, c)
end for

end if
return σ1

o

end function

function FLOW(vn : x � fpyqw, ctx, σiq)
calleeCtx � GETCTX(f, ctx, n, σi)
σo � RESULTSFOR(calleeCtx, σi)
ADD(callersrcalleeCtxs, ctx)
return σo

end function

5

function RESULTSFOR(ctx, σi)
σ � resultsrctxs.output
if σ � K&&σi � resultsrctxs.input then

return σ � existing results are good
end if
resultsrctxs.input � resultsrctxs.input\ σi � keep track of possibly more general input
if ctx P analyzing then

return K
else

return ANALYZE(ctx)
end if

end function

function GETCTX(f, callingCtx, n, σi)
return Contextpf, σiq

end function

The following example shows that the algorithm generalizes naturally to the case of mutually
recursive functions:

bar () { i f (∗) re turn 2 e l s e re turn foo () }
foo () { i f (∗) re turn 1 e l s e re turn bar () }

main () { foo () ; }

1.6 Precision

A notable part of the algorithm above is that if we are currently analyzing a context and are asked
to analyze it again, we return K as the result of the analysis. This has similar benefits to using K for
initial dataflow values on the back edges of loops: starting with the most optimistic assumptions
about code we haven’t finished analyzing allows us to reach the best possible fixed point. The
following example program illustrates a function where the result of analysis will be better if we
assume K for recursive calls to the same context, vs. for example if we assumed J:

func t ion i t e r a t i v e I d e n t i t y (x : in t , y : i n t)
i f x <= 0

return y
e l s e

i t e r a t i v e I d e n t i t y (x�1,y)

funct ion main (z)
w= i t e r a t i v e I d e n t i t y (z , 5)

1.7 Termination

Under what conditions will context-sensitive interprocedural analysis terminate?
Consider the algorithm above. Analyze is called only when (1) a context has not been analyzed

yet, or when (2) it has just been taken off the worklist. So it is called once per reachable context,
plus once for every time a reachable context is added to the worklist.

6

We can bound the total number of worklist additions by (C) the number of reachable contexts,
times (H) the height of the lattice (we don’t add to the worklist unless results for some context
changed, i.e. went up in the lattice relative to an initial assumption of K or relative to the last
analysis result), times (N) the number of callers of that reachable context. C*N is just the number
of edges (E) in the inter-context call graph, so we can see that we will do intraprocedural analysis
O(E*H) times.

Thus the algorithm will terminate as long as the lattice is of finite height and there are a finite
number of reachable contexts. Note, however, that for some lattices, notably including constant
propagation, there are an unbounded number of lattice elements and thus an unbounded number
of contexts. If more than a finite number are not reachable, the algorithm will not terminate.
So for lattices with an unbounded number of elements, we need to adjust the context-sensitivity
approach above to limit the number of contexts that are analyzed.

1.8 Approaches to Limiting Context-Sensitivity

No context-sensitivity. One approach to limiting the number of contexts is to allow only one for
each function. This is equivalent to the interprocedural control flow graph approach described
above. We can recast this approach as a variant of the generic interprocedural analysis algorithm
by replacing theContext type to track only the function being called, and then having the GETCTX

method always return the same context:
type Context

val fn : Function

function GETCTX(f, callingCtx, n, σi)
return Contextpfq

end function
Note that in this approach the same calling context might be used for several different input

dataflow information σi, one for each call to GETCTX. This is handled correctly by RESULTSFOR,
which updates the input information in the Summary for that context so that it generalizes all the
input to the function seen so far.

Limited contexts. Another approach is to create contexts as in the original algorithm, but once a
certain number of contexts have been created for a given function, merge all subsequent calls into a
single context. Of course this means the algorithm cannot be sensitive to additional contexts once
the bound is reached, but if most functions have fewer contexts that are actually used, this can
be a good strategy for analyzing most of the program in a context-sensitive way while avoiding
performance problems for the minority of functions that are called from many different contexts.

Can you implement a GETCTX function that represents this strategy?

Call strings. Another context sensitivity strategy is to differentiate contexts by a call string: the
call site, its call site, and so forth. In the limit, when considering call strings of arbitrary length,
this provides full context sensitivity. Dataflow analysis results for contexts based on arbitrary-
length call strings are as precise as the results for contexts based on separate analysis for each
different input dataflow information. The latter strategy can be more efficient, however, because
it reuses analysis results when a function is called twice with different call strings but the same
input dataflow information.

In practice, both strategies (arbitrary-length call strings vs. input dataflow information) can
result in reanalyzing each function so many times that performance becomes unacceptable. Thus
multiple contexts must be combined somehow to reduce the number of times each function is

7

analyzed. The call-string approach provides an easy, but naive, way to do this: call strings can be
cut off at a certain length. For example, if we have call strings “a b c” and “d e b c” (where c is the
most recent call site) with a cutoff of 2, the input dataflow information for these two call strings
will be merged and the analysis will be run only once, for the context identified by the common
length-two suffix of the strings, “b c”. We can illustrate this by redoing the analysis of the fibonacci
example. The algorithm is the same as above; however, we use a different implementation of
GETCTX that computes the call string suffix:

type Context
val fn : Function
val string : ListrZs

function GETCTX(f, callingCtx, n, σi)
newStr � SUFFIX(callingCtx.string ++ n, CALL STRING CUTOFF)
return Contextpf, newStrq

end function
Although this strategy reduces the overall number of analyses, it does so in a relatively blind

way. If a function is called many times but we only want to analyze it a few times, we want to
group the calls into analysis contexts so that their input information is similar. Call string context
is a heuristic way of doing this that sometimes works well. But it can be wasteful: if two different
call strings of a given length happen to have exactly the same input analysis information, we will
do an unnecessary extra analysis, whereas it would have been better to spend that extra analysis
to differentiate calls with longer call strings that have different analysis information.

Given a limited analysis budget, it is usually best to use heuristics that are directly based on
input information. Unfortunately these heuristics are harder to design, but they have the potential
to do much better than a call-string based approach. We will look at some examples from the
literature to illustrate this later in the course.

Acknowledgements

I thank Claire Le Goues for greatly appreciated extensions and refinements to these notes.

8

