
Lecture Notes:
Program Analysis Termination, Correctness, and Optimality

17-355/17-665: Program Analysis (Spring 2017)
Jonathan Aldrich

aldrich@cs.cmu.edu

1 Program Analysis Properties

We would like the program analyses we define to have a number of desireable properties. First
of all, even though we might be analyzing programs that may have an unbounded set of possible
executions, we’d like program analysis to terminate in a finite amount of time. Second, we’d like
to be able to trust the results of static analysis–i.e. to ensure they are correct, so that we can use
them for purposes such as program optimization, or so that we can rely on safety guarantees that
program analysis can provide. Third, we’d like the results of program analysis to be as precise
as possible. While program analysis typically cannot be fully precise without solving the halting
problem, we will see that the procedure used in the worklist algorithm guarantees optimal results
for a given abstraction and set of flow functions.

2 Termination

As we think about the correctness of program analysis, let us first think more carefully about the
situations under which program analysis will terminate. In a previous lecture, we analyzed the
performance of Kildall’s worklist algorithm. A critical part of that performance analysis was the
the observation that running a flow function always either leaves the dataflow analysis informa-
tion unchanged, or makes it more approximate—that is, it moves the current dataflow analysis
results up in the lattice. The dataflow values at each program point describe an ascending chain:

Definition (Ascending Chain). A sequence σk is an ascending chain iff n ¤ m implies σn � σm

We can define the height of an ascending chain, and of a lattice, in order to bound the number of
new analysis values we can compute at each program point:

Definition (Height of an Ascending Chain). An ascending chain σk has finite height h if it con-
tains h� 1 distinct elements.

Definition (Height of a Lattice). A lattice pL,�q has finite height h if there is an ascending chain
in the lattice of height h, and no ascending chain in the lattice has height greater than h

All of the analyses we have examined so far have lattices of finite height. However, it is easy to
define a lattice that is of infinite height. For example, consider a value set analysis that computes

1

the possible set of integer values that each variable could hold. An element of the lattice is σV S P
PZ. The ordering between lattice elements is subset. Now we can construct an infinite ascending
chain where each element of the chain has an additional integer element that the previous set in
the chain did not include. A value analysis defined in a straightforward way will run forever on
examples such as the following:

1 : x :� 0
2 : x :� x� 1
3 : if x � y goto 2

Fortunately, we can show that for a lattice of finite height, the worklist algorithm is guaranteed
to terminate. We can do so using the following termination metric:

|worklist| �
°

iPP ph� heightpinputrisqq
where h is the height of the lattice and the height function returns the height in the lattice of a

particular dataflow value. Consider again the worklist algorithm:
for Instruction i P program do

inputris � K
end for
inputrinitials � initialDataflowV alue
worklist � initial

while worklist not empty do
remove Instruction i from worklist
output � flowpi, inputrisq
for Instruction j P succpiq do

if output �� inputrjs then
inputrjs � inputrjs \ output
add j to worklist

end if
end for

end while
In the main loop of the algorithm, we can see that the metric above decreases on each iter-

ation through the loop. First, each iteration removes one element from the worklist, decreasing
the metric by one. Of course, at the end of a loop iteration a new node may be added to the
worklist—which increases the metric by one—but this is always balanced because the addition
only happens if the height of the new dataflow input to the node being added has increased—
which correspondingly decreases the metric by one. Since the metric is finite for any lattice that
is of finite height, and since it decreases on each iteration through the loop, and since the loop
terminates when the metric is zero (because the worklist must be empty in that case), we know
the analysis will eventually terminate.

3 Correctness

What does it mean for an analysis of a WHILE3ADDR program to be correct? Intuitively, we would
like the program analysis results to correctly describe every actual execution of the program. To
establish correctness, we will make use of the precise definitions of WHILE3ADDR we gave in the
form of operational semantics in the first couple of lectures. We start by formalizing a program
execution as a trace:

2

Definition (Program Trace). A trace T of a program P is a potentially infinite sequence tc0, c1, ...u
of program configurations, where c0 � E0, 1 is called the initial configuration, and for every i ¥ 0
we have P $ ci ; ci�1.

Given this definition, we can formally define soundness:

Definition (Dataflow Analysis Soundness). The result tσi | i P P u of a program analysis running
on program P is sound iff, for all traces T of P , for all i such that 0 ¤ i lengthpT q, αpciq � σni

In this definition, just as ci is the program configuration immediately before executing in-
struction ni as the ith program step, σi is the dataflow analysis information immediately before
instruction ni.

Exercise 1. Consider the following (incorrect) flow function for zero analysis:

fZvx :� y � zwpσq � rx ÞÑ Zsσ

Give an example of a program and a concrete trace that illustrates that this flow function is unsound.

The key to designing a sound analysis is to make sure that the flow functions map abstract
information before each instruction to abstract information after that instruction in a way that
matches the instruction’s concrete semantics. Another way of saying this is that the manipulation
of the abstract state done by the analysis should reflect the manipulation of the concrete machine
state done by the executing instruction. We can formalize this as a local soundness property:

Definition (Local Soundness). A flow function f is locally sound iff P $ ci ; ci�1 implies
αpci�1q � fvP rniswpαpciqq

In English: if we take any concrete execution of a program instruction, map the input machine
state to the abstract domain using the abstraction function, and apply the flow function, we should
get a result that correctly accounts for what happens if we map the actual concrete output machine
state to the abstract domain.

Exercise 2. Consider again the incorrect zero analysis flow function described above. Specify an
input state ci and show, using that input state, that the flow function is not locally sound.

We can now show prove that the flow functions for zero analysis are locally sound. Although
technically the overall abstraction function α accepts a complete program configuration pE,nq, for
zero analysis we can ignore the n component and so in the proof below we will simply focus on
the environment E. We show the cases for a couple of interesting syntax forms; the rest are either
trivial or analogous:

3

Case fZvx :� 0wpσiq = rx ÞÑ Zsσi:
Assume ci � E,n and αpEq � σi
Thus σi�1 � fZvx :� 0wpσiq � rx ÞÑ ZsαpEq
ci�1 � rx ÞÑ 0sE,n� 1 by rule step-const
Now αprx ÞÑ 0sEq � rx ÞÑ ZsαpEq by the definition of α.
Therefore αpci�1q � σi�1, which finishes the case.

Case fZvx :� mwpσiq � rx ÞÑ N sσi where m � 0:
Assume ci � E,n and αpEq � σi
Thus σi�1 � fZvx :� mwpσiq � rx ÞÑ N sαpEq
ci�1 � rx ÞÑ msE,n� 1 by rule step-const
Now αprx ÞÑ msEq � rx ÞÑ N sαpEq by the definition of α and the assumption that
m � 0.
Therefore αpci�1q � σi�1 which finishes the case.

Case fZvx :� y op zwpσiq � rx ÞÑ?sσi:
Assume ci � E,n and αpEq � σi
Thus σi�1 � fZvx :� y op zwpσiq � rx ÞÑ?sαpEq
ci�1 � rx ÞÑ ksE,n� 1 for some k by rule step-const
Now αprx ÞÑ ksEq � rx ÞÑ?sαpEq because the map is equal for all keys except x, and for
x we have αsimplepkq �simple? for all k, where αsimple and �simple are the unlifted versions of
α and �, i.e. they operate on individual values rather than maps.
Therefore αpci�1q � σi�1 which finishes the case.

Exercise 3. Prove the case for fZvx :� ywpσq � rx ÞÑ σpyqsσ.

3.1 A Critical Property: Monotonicity

Local Soundness captures the intuition that for all possible values that can arise at run time, the
flow function for an instruction will produce the correct output. However, one of the key features
of static analysis is that it approximates: the analysis results at a given program point may be a
conservative approximation (i.e. higher in the lattice) than what we get if we directly abstract any
given run time value. We must ensure that this approximation does not lead to problems with
local soundness: that even if the analysis computes an approximate result before an instruction,
the analysis results afterwards will still be a safe approximation.

To verify this, we need a second property: Monotonicity. Monotonicity checks that a flow
function is well-behaved with respect to approximation: if lattice element σ2 approximates some
other element σ1, then the approximation relationship is preserved by the flow function. More
formally:

Definition (Monotonicity). A function f is monotonic iff σ1 � σ2 implies fpσ1q � fpσ2)

3.2 Montonicity of Zero Analysis

We can formally show that zero analysis is monotone; this is relevant both to the proof of termi-
nation, above, and to correctness, next. We will only give a couple of the more interesting cases,
and leave the rest as an exercise to the reader:

4

Case fZvx :� 0wpσq � rx ÞÑ Zsσ:
Assume we have σ1 � σ2
Since � is defined pointwise, we know that rx ÞÑ Zsσ1 � rx ÞÑ Zsσ2

Case fZvx :� ywpσq � rx ÞÑ σpyqsσ:
Assume we have σ1 � σ2
Since � is defined pointwise, we know that σ1pyq �simple σ2pyq

Therefore, using the pointwise definition of � again, we also obtain rx ÞÑ σ1pyqsσ1 �
rx ÞÑ σ2pyqsσ2

(αsimple and �simple are simply the unlifted versions of α and �, i.e. they operate on individual
values rather than maps.)

Exercise 4. Consider the following (incorrect) flow function for zero analysis:

fZvx :� y � 1wpσq � rx ÞÑ Zsσ iff σpyq � J
rx ÞÑ Jsσ iff σpyq � J

(a) Show that the flow function above is not monotonic by providing σ1 and σ2 and that the required
relationship does not hold after application of the flow function. (b) Give an example of a program for which
zero analysis would loop forever if we use a modified version of the worklist algorithm that always merges
analysis information from different incoming edges rather than merging new information with the previous
information.

Part (b) shows that for a slightly different form of the worklist algorithm, we need monotonic-
ity not just for correctness, but for termination too!

3.3 From Local Soundness to Global Soundness

Now we can show how local soundness and monotonicity can be used together to prove the global
soundness of a dataflow analysis. To do so, let us formally define the state of the dataflow analysis
at a fixed point:

Definition (Fixed Point). A dataflow analysis result tσi | i P P u is a fixed point iff σ0 � σ1 where
σ0 is the initial analysis information and σ1 is the dataflow result before the first instruction, and
for each instruction i we have σi �

�
jPpredspiq fvP rjswpσjq.

And now the main result we will use to prove program analyses correct:

Theorem 1 (Local Soundness implies Global Soundness). If a dataflow analysis’s flow function f is
monotonic and locally sound, and for all traces T we have αpc0q � σ0 where σ0 is the initial analysis
information, then any fixed point tσi | i P P u of the analysis is sound.

Proof. Consider an arbitrary program trace T . The proof is by induction on the program configu-
rations tciu in the trace.

5

Case c0:
αpc0q � σ0 by assumption.
σ0 � σn0 by the definition of a fixed point.
αpc0q � σn0 by the transitivity of �.

Case ci�1:
αpciq � σni by the induction hypothesis.
P $ ci ; ci�1 by the definition of a trace.
αpci�1q � fvP rniswpαpciqq by local soundness.
fvP rniswpαpciqq � fvP rniswpσniq by monotonicity of f .
σni�1 � fvP rniswpσniq \ ... by the definition of fixed point.
fvP rniswpσniq � σni�1 because \ is a least upper bound.
αpci�1q � σni�1 by the transitivity of �.

Since we previously proved that Zero Analysis is locally sound and that its flow functions
are monotonic, we can use this theorem to conclude that the analysis is sound. This means, for
example, that Zero Analysis will never neglect to warn us if we are dividing by a variable that
could be zero.

4 Optimality

We would like to prove that the worklist algorithm yields optimal analysis results, relative to the
lattice and flow functions we are using. Results from the mathematical theory of lattices allow us
to do so.

We can build a ”program lattice” as a tuple with one lattice element per program point. Con-
sider an abstraction of the worklist algorithm’s inner loop that nondeterministically chooses one
statement, applies the flow function to it, and updates the program lattice with the result. This
abstraction can be viewed as a function mapping one element of the program lattice to another.
It’s easy to show that this ”analysis function” is monotonic if the original flow functions were
monotonic, and that the program lattice is a complete lattice if the original lattice was complete.

We can now apply interesting theory. The Kleene fixed-point theorem states:

Theorem (Kleene Fixed-Point Theorem). Let pL,�q be a CPO (complete partial order), and let
f : L Ñ L be a Scott-continuous (and therefore monotone) function. Then f has a least fixed
point, which is the supremum of the ascending Kleene chain of f .

A complete lattice is a CPO. Furthermore, Scott-continuity is a slightly stronger version of
monotonicity: it states that for all subsets S of the lattice, \fpSq � fp\Sq – that is, if you take the
supremum of the set S and apply the function, you get the same thing as applying the function
to each element and then taking the supremum of the results. Most reasonable monotonic flow
functions you will write are also Scott-continuous.

How does this theory help us? Well, an ascending Kleene chain is just the chain that starts
with K and is formed by repeated applications of the flow function f . That is, we have the chain:

K � fpKq � fpfpKqq � . . . � fnpKq � . . .
The Kleene fixed-point theorem tells us that we can get the least fixed point—i.e. the most

precise analysis result, since places lower in the lattice are more precise—by starting with K and

6

repeatedly applying the flow functions. That is exactly what the worklist algorithm does. Thus,
the worklist algorithm produces an optimal analysis result for the abstractions represented by a
given lattice and set of flow functions.

Notably, a dual theorem can be used the show the existance of a greatest fixed point, which we
can get by starting with J everywhere in the program (e.g. on loop back edges, not just at the
entry to a procedure) and iterating in the same way. Of course, the greatest fixed point is the most
approximate fixed point, so we always prefer the least fixed point because it is more precise.

This discussion leads naturally into a fuller treatment of abstract interpretation, which we will
turn to in subsequent lectures/readings.

Acknowledgements

I thank Claire Le Goues for greatly appreciated extensions and refinements to these notes.

7

