Lecture Notes:
The WHILE and WHILE3ADDR Language

17-355/17-665: Program Analysis (Spring 2017)
Jonathan Aldrich

aldrich@cs.cmu.edu

1 The WHILE Language

In this course, we will study the theory of analyses using a simple programming language called
WHILE, along with various extensions. The WHILE language is at least as old as Hoare’s 1969
paper on a logic for proving program properties (to be discussed in a later lecture). It is a simple
imperative language, with (to start!) assignment to local variables, if statements, while loops, and
simple integer and boolean expressions.

We use the following metavariables to describe different categories of syntax. The letter on the
left will be used as a variable representing a piece of a program. On the right, we describe the kind
of program piece that variable represents:

S statements

e arithmetic expressions
x,y program variables

n number literals

P boolean predicates

The syntax of WHILE is shown below. Statements S can be an assignment x := e, a skip
statement, which does nothing (similar to a lone semicolon or open/close bracket in C or Java),
and if and while statements, whose condition is a boolean predicate P. Arithmetic expressions
e include variables x, numbers n, and one of several arithmetic operators, abstractly represented
by op,. Predicates are represented by Boolean expressions that include true, false, the negation
of another Boolean expression, Boolean operators op, applied to other Boolean expressions, and
relational operators op, applied to arithmetic expressions.

S = xz:=e e =
| skip n
| S1; S2 \ €1 0Pq €2
| if P then S else Sy
| while P do S opa = +|—|*|/

P = true
| false

] not P

| Propy P
| €1 Opr €2
opy == and |or

opp = < | < | =| > >

2 WHILE3ADDR: A Representation for Analysis

For analysis, the source-like definition of WHILE can sometimes prove inconvenient. For exam-
ple, WHILE has three separate syntactic forms—statements, arithmetic expressions, and Boolean
predicates—and we would have to define the how to analyze each form separately. Furthermore,
if we want to precisely understand what programs mean—e.g. so that we can reason about the
correctness of our analysis definitions—we will also have to define the semantics of each form
separately. A simpler and more regular representation of programs will help simplify certain of
our formalisms.

As a starting point, we will eliminate recursive arithmetic and boolean expressions and re-
place them with simple atomic statement forms, which are called instructions, after the assem-
bly language instructions that they resemble. For example, an assignment statement of the form
w = x * y + z will be rewritten as a multiply instruction followed by an add instruction. The
multiply assigns to a temporary variable ¢;, which is then used in the subsequent add:

t1=xxy
w=1t +z

As the translation from expressions to instructions suggests, program analysis is typically
studied using a representation of programs that is not only simpler, but also lower-level than
the source (WHILE, in this instance) language. Many Java analyses are actually conducted on
byte code, for example. Typically, high-level languages come with features that are numerous and
complex, but can be reduced into a smaller set of simpler primitives. Working at the lower level
of abstraction thus also supports simplicity in both compilers and analysis tools.

Control flow constructs such as i f and while are similarly translated into simpler jump and
conditional branch constructs that transfer control to a particular (numbered) instruction. For
example, a statement of the form i £ P then S; else Sy would be translated into:

if P then goto 4
So

goto 5

S1

rest of program...

U W N =

Exercise 1. How would you translate a WHILE statement of the form while P do S?

This form of code is often called 3-address code, because every instruction has at most two
source operands and one result operand. We now define the syntax for 3-address code produced

from the WHILE language, which we will call WHILE3ADDR. This language consists of a set of
simple instructions that load a constant into a variable, copy from one variable to another, compute
the value of a variable from two others, or jump (possibly conditionally) to a new address n. A
program P is just a map from addresses to instructions:!

I == z:=n op == +|—1|x]|/
| x =y opr = < | =
| T:i=yopz P € N-=I
| goton
|

if z op, 0 goto n

Formally defining a translation from a source language such as WHILE to a lower-level intermedi-
ate language such as WHILE3ADDR is possible, but more appropriate for the scope of a compilers
course. For our purposes, the examples above should suffice as intuition. We will focus instead
on semantics and on formalizing program analyses.

3 Extensions

The languages described above are sufficient to introduce the fundamental concepts of program
analysis in this course. However, we will eventually examine various extensions to WHILE and
WHILE3ADDR, so that we can understand how more complicated constructs in real languages can
be analyzed. Some of these extensions to WHILE3ADDR will include:

z:=y.f field read
r.fi=y field assignment

I == ...
| x:= f(y) function call
| return x return
] x:=y.m(z) method call
| p:=&y address-of operator
] T = *p pointer dereference
| *p 1= pointer assignment
|
|

We will not give semantics to these extensions now, but it is useful to be aware of them as you
will see intermediate code like this in practical analysis frameworks.

4 Operational Semantics

To reason about the correctness of an analysis, we need a clear definition of what a program means.
There are many ways of giving such definitions; the most common technique in industry is to de-
fine a language using an English document, such as the Java Language Specification. However,
natural language specifications, while accessible to all programmers, are often imprecise. This im-
precision can lead to many problems, such as incorrect or incompatible compiler implementations,
but more importantly for our purposes, analyses that give incorrect results.

'The idea of the mapping between numbers and instructions maps conceptually to Nielsens’ use of labels in the
WHILE language specification in the text. This concept is akin to mapping line numbers to code.

A better alternative, from the point of view of reasoning precisely about programs, is a formal
definition of program semantics. In this class we will deal with operational semantics, so named be-
cause they show how programs operate. In particular, we will use a form of operational semantics
known as an abstract machine, in which the semantics mimics, at a high level, the operation of the
computer that is executing the program, including a program counter, values for program vari-
ables, and (eventually) a representation of the heap. Such a semantics also reflects the way that
techniques such as dataflow analysis or Hoare Logic reason about the program, so it is convenient
for our purposes.

We now define an abstract machine that evaluates programs in WHILE3ADDR. A configuration
c of the abstract machine includes the stored program P (which we will generally treat implicitly),
along with an environment £ that defines a mapping from variables to values (which for now are
just numbers) and the current program counter n representing the next instruction to be executed:

E € Var—7Z
c € ExN

The abstract machine executes one step at a time, executing the instruction that the program
counter points to, and updating the program counter and environment according to the semantics
of that instruction. We will represent execution of the abstract machine with a mathematical judg-
ment of the form P+ E,n ~ E’,n’ The judgment reads as follows: “When executing the program
P, executing instruction n in the environment E steps to a new environment E’ and program
counter n'.”

We can now define how the abstract machine executes with a series of inference rules. As
shown below, an inference rule is made up of a set of judgments above the line, known as premises,
and a judgment below the line, known as the conclusion. The meaning of an inference rule is that

the conclusion holds if all of the premises hold.

premise; premisez ... premise,

conclusion

We now consider a simple rule defining the semantics of the abstract machine for WHILE3 ADDR
in the case of the constant assignment instruction:

Pn]j=z:=m
P+ E,n~ Elx—m],n+1

step-const

This rule states that in the case where the nth instruction of the program P (which we look up
using P[n]) is a constant assignment x := m, the abstract machine takes a step to a state in which
the environment £ is updated to map x to the constant m, written as E[z — m], and the program
counter now points to the instruction at the following address n + 1.

We similarly define the remaining rules:

Pln|=z:=y
P+ E,n~ Elz— Ely]l,n+1

step-copy

Pn]=xz:=yopz FEly]opE[z] =

" step-arith
PFE,n~ Elz—m],nt1 P

P[n] = gotom
PHE,n~ E,m

step-goto

Pin] =if z op, 0 gotom Ex] opy 0 = true
PFEn~Em

step-iftrue

Pln] =if z op, 0 gotom Efx] opy 0 = false _
PrBEnwEntl step-iffalse

Now that we have specified how each statement affects the WHILE3ADDR abstract machine, we
can formalize program execution as a trace:

Definition (Program Trace). A trace 7" of a program P is a potentially infinite sequence {co, c1, ...}
of program configurations, where ¢y = Ey, 1 is called the initial configuration, and for every ¢ > 0
we have PF ¢; ~ ¢jy1 .

Acknowledgements

I thank Claire Le Goues for greatly appreciated refinements to these notes.

