
Jonathan Aldrich

Introduction 17-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

1

17-355/17-665:
Program Analysis

Introduction to Program Analysis

Introduction 217-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Find the Bug!

disable interrupts

re-enable interrupts

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 317-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Find the Bug!

disable interrupts

re-enable interrupts

ERROR: returning
with interrupts disabled

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 417-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Metal Interrupt Analysis Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 517-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Metal Interrupt Analysis

is_enabled

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 617-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Metal Interrupt Analysis

is_enabled

is_disabled

disable

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 717-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Metal Interrupt Analysis

is_enabled

is_disabled

disable

enable =>
err(double enable)

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 817-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Metal Interrupt Analysis

is_enabled

is_disabled

disableenable

enable =>
err(double enable)

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 917-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Metal Interrupt Analysis

is_enabled

is_disabled

disableenable

enable =>
err(double enable)

disable =>
err(double disable)

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 1017-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Metal Interrupt Analysis

is_enabled

is_disabled

disableenable

enable =>
err(double enable)

disable =>
err(double disable)

end path =>
err(end path

with/intr
disabled)

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 1117-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Applying the Analysis Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 1217-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Applying the Analysis

initial state is_enabled

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 1317-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Applying the Analysis

initial state is_enabled

transition to is_disabled

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 1417-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Applying the Analysis

initial state is_enabled

transition to is_disabled

final state is_disabled: ERROR!

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 1517-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Applying the Analysis

initial state is_enabled

transition to is_disabled

transition to is_enabled

final state is_disabled: ERROR!

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 1617-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Applying the Analysis

initial state is_enabled

transition to is_disabled

transition to is_enabled
final state is_enabled is OK

final state is_disabled: ERROR!

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

Introduction 1717-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Outline

• Why program analysis?
• The limits of testing and inspection

• What is program analysis?
• Course outline
• Representing programs
• AST-walking analyses

Introduction 1817-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Introduction 1917-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Static Analysis Finds “Mechanical” Errors

• Defects that result from inconsistently following simple, mechanical
design rules

• Security vulnerabilities
• Buffer overruns, unvalidated input…

• Memory errors
• Null dereference, uninitialized data…

• Resource leaks
• Memory, OS resources…

• Violations of API or framework rules
• e.g. Windows device drivers; real time libraries; GUI frameworks

• Exceptions
• Arithmetic/library/user-defined

• Encapsulation violations
• Accessing internal data, calling private functions…

• Race conditions
• Two threads access the same data without synchronization

Introduction 2017-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Difficult to Find with Testing, Inspection

• Non-local, uncommon paths
• Security vulnerabilities
• Memory errors
• Resource leaks
• Violations of API or framework rules
• Exceptions
• Encapsulation violations

• Non-deterministic
• Race conditions

Introduction 2117-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Quality Assurance at Microsoft (Part 1)

• Original process: manual code inspection
• Effective when system and team are small
• Too many paths to consider as system grew

Early 1990s: add massive system and unit testing
Tests took weeks to run

Diversity of platforms and configurations
Sheer volume of tests

Inefficient detection of common patterns, security holes
Non-local, intermittent, uncommon path bugs

Was treading water in Windows Vista development

Early 2000s: add static analysis
More on this later

Introduction 2217-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Quality Assurance at Microsoft (Part 1)

• Original process: manual code inspection
• Effective when system and team are small
• Too many paths to consider as system grew

• Early 1990s: add massive system and unit testing
• Tests took weeks to run

• Diversity of platforms and configurations
• Sheer volume of tests

• Inefficient detection of common patterns, security holes
• Non-local, intermittent, uncommon path bugs

• Was treading water in Windows Vista development

Early 2000s: add static analysis
More on this later

Introduction 2317-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Quality Assurance at Microsoft (Part 1)

• Original process: manual code inspection
• Effective when system and team are small
• Too many paths to consider as system grew

• Early 1990s: add massive system and unit testing
• Tests took weeks to run

• Diversity of platforms and configurations
• Sheer volume of tests

• Inefficient detection of common patterns, security holes
• Non-local, intermittent, uncommon path bugs

• Was treading water in Windows Vista development

• Early 2000s: add program analysis
• More on this later

Introduction 2417-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Process, Cost, and Quality

CMM: 1 2 3 4 5

Software
Quality

S&S, Agile, RUP, etc: less rigorous . . . more rigorous

Process intervention,
testing, and inspection

yield first-order
software quality

improvement

Additional technology
and tools are needed to

close the gap

Critical Systems
Acceptability

Process
Rigor, Cost

Slide: William Scherlis

Perfection
(unattainable)

Introduction 2517-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Outline
• Why static analysis?
• What is static analysis?

• Abstract state space exploration
• Course outline
• Representing programs
• AST-walking analyses

Introduction 2617-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Static Program Analysis Definition
• Static program analysis is the automated,

systematic examination of an abstraction of a
program’s state space

Introduction 2717-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Static Program Analysis Definition
• Static program analysis is the automated,

systematic examination of an abstraction of a
program’s state space

• Metal interrupt analysis
• Abstraction

• 2 states: enabled and disabled
• All program information—variable values, heap contents—is

abstracted by these two states, plus the program counter

Introduction 2817-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Static Program Analysis Definition
• Static program analysis is the automated,

systematic examination of an abstraction of a
program’s state space

• Metal interrupt analysis
• Abstraction

• 2 states: enabled and disabled
• All program information—variable values, heap contents—is

abstracted by these two states, plus the program counter
• Systematic

• Examines all paths through a function
• What about loops? More later…

• Each path explored for each reachable state
• Assume interrupts initially enabled (Linux practice)
• Since the two states abstract all program information, the

exploration is exhaustive

Introduction 2917-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Static Program Analysis Definition
• Static program analysis is the automated,

systematic examination of an abstraction of a
program’s state space

• Mathematical properties (recurring theme)
• Soundness

• All reported results are true
• Verification: analysis says OK  correctness property holds
• Bug-finding: analysis says there is a bug  some (or all) real

executions manifest that bug

• Completeness
• Everything that is true is reported

• Verification: the program is correct  the analysis will say so
• Bug-finding: some execution manifests a bug  the analysis will

report it

Introduction 3017-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Outline
• Why static analysis?
• What is static analysis?

• Abstract state space exploration
• Course outline
• Representing programs
• AST-walking analyses

A Sample of Course Topics

• Dataflow analysis
• Abstract interpretation
• Interprocedural analysis
• Pointer analysis
• Symbolic execution
• Dynamic analysis
• Verification

Introduction 3117-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Course Syllabus

• See web page

Introduction 3217-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Introduction 3317-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Outline
• Why static analysis?
• What is static analysis?

• Abstract state space exploration
• Course outline
• Representing programs
• AST-walking analyses

Representing Programs:
The WHILE Language

• A simple procedural language with:
• assignment
• statement sequencing
• conditionals
• while loops

• Used in early papers (e.g. Hoare 1969)
as a “sandbox” for thinking about
program semantics

• We will use it to illustrate several
different kinds of analysis

Introduction 3417-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

WHILE Syntax
• Categories of syntax

• S  Stmt statements
• a  AExp arithmetic expressions
• x,y  Var variables
• n  Num number literals
• P  BExp boolean expressions

• Syntax
• S ::= x := a | skip | S1; S2

| if P then S1 else S2 | while P do S
• a ::= x | n | a1 opa a2
• opa ::= + | - | * | / | …
• P ::= true | false | not P | P1 opb P2 | a1 opr a2
• opb ::= and | or | …
• opr ::= < |  | = | > |  | …

Introduction 3517-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Example WHILE Program

y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

Computes the factorial function, with the
input in x and the output in z

Introduction 3617-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Introduction 3717-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Representing Programs

• To analyze software automatically, we
must be able to represent it precisely

• Some representations
• Source code
• Abstract syntax trees
• Control flow graph
• Bytecode
• Assembly code
• Binary code

Introduction 3817-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Abstract Syntax Trees

• A tree representation of source code
• Based on the language grammar

• One type of node for each production
• S ::= x := a  :=

x a
• S ::= while b do S  while

b S

Introduction 3917-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing: Source to AST

• Parsing process (top down)
1. Determine the top-level production to use
2. Create an AST element for that production
3. Determine what text corresponds to each

child of the AST element
4. Recursively parse each child

• Algorithms have been studied in detail
• For this course you only need the intuition
• Details covered in compiler courses

Introduction 4017-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?

• What are the parts?

Introduction 4117-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?

;

Introduction 4217-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

y := x z := 1; while…

Introduction 4317-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:= z := 1; while…

y x

Introduction 4417-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:= ;

y x z := 1 while…

Introduction 4517-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:= ;

y x := while…

z 1

Introduction 4617-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:= ;

y x := while

z 1 y>1 z :=...

Introduction 4717-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:= ;

y x := while

z 1 > z :=...

y 1

Introduction 4817-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:= ;

y x := while

z 1 > ;

y 1 z:=z*y y:=y-1

Introduction 4917-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:= ;

y x := while

z 1 > ;

y 1 := y:=y-1

z z*y

Introduction 5017-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:= ;

y x := while

z 1 > ;

y 1 := y:=y-1

z *

z y

Introduction 5117-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:= ;

y x := while

z 1 > ;

y 1 := :=

z * y y-1

z y

Introduction 5217-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:= ;

y x := while

z 1 > ;

y 1 := :=

z * y -

z y y 1

Introduction 5317-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Exercise
Draw a parse tree for the function below. You can assume that the

“for” statement is at the top of the parse tree.

void copy_bytes(char dest[], char source[], int n) {
for (int i = 0; i < n; ++i)

dest[i] = source[i];
}

Introduction 5417-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

WHILE ASTs in Java

• Java data structures
mirror grammar

• S ::= x := a

class AST { … }
class Stmt extends AST { … }
class Assign extends Stmt {

Var var;
AExpr expr;

}

Introduction 5517-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

WHILE ASTs in Java

• Java data structures
mirror grammar

• S ::= x := a
| skip

class AST { … }
class Stmt extends AST { … }
class Assign extends Stmt {

Var var;
AExpr expr;

}
class Skip extends Stmt { }

Introduction 5617-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

WHILE ASTs in Java

• Java data structures
mirror grammar

• S ::= x := a
| skip
| S1; S2

class AST { … }
class Stmt extends AST { … }
class Assign extends Stmt {

Var var;
AExpr expr;

}
class Skip extends Stmt { }
class Seq extends Stmt {

Stmt left;
Stmt right;

}

Introduction 5717-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

WHILE ASTs in Java

• Java data structures
mirror grammar

• S ::= x := a
| skip
| S1; S2

| if b then S1 else S2

class AST { … }
class Stmt extends AST { … }
class Assign extends Stmt {

Var var;
AExpr expr;

}
class Skip extends Stmt { }
class Seq extends Stmt {

Stmt left;
Stmt right;

}
class If extends Stmt {

BExpr cond;
Stmt thenStmt;
Stmt elseStmt;

}

Introduction 5817-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

WHILE ASTs in Java

• Java data structures
mirror grammar

• S ::= x := a
| skip
| S1; S2

| if b then S1 else S2

| while b do S

class AST { … }
class Stmt extends AST { … }
class Assign extends Stmt {

Var var;
AExpr expr;

}
class Skip extends Stmt { }
class Seq extends Stmt {

Stmt left;
Stmt right;

}
class If extends Stmt {

BExpr cond;
Stmt thenStmt;
Stmt elseStmt;

}
class While extends Stmt {

BExpr cond;
Stmt body;

}

Introduction 5917-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Outline
• Why static analysis?
• What is static analysis?

• Abstract state space exploration
• Course Outline
• Representing programs
• AST-walking analyses

Introduction 6017-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Matching AST against Bug Patterns
• AST Walker Analysis

• Walk the AST, looking for nodes of a particular type
• Check the immediate neighborhood of the node for a bug

pattern
• Warn if the node matches the pattern

• Semantic grep
• Like grep, looking for simple patterns
• Unlike grep, consider not just names, but semantic structure of

AST
• Makes the analysis more precise

• Common architecture based on Visitors
• class Visitor has a visitX method for each type of AST node X
• Default Visitor code just descends the AST, visiting each node
• To find a bug in AST element of type X, override visitX

Introduction 6117-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Example: Shifting by more than 31 bits

class BadShiftAnalysis extends Visitor
visitShiftExpression(ShiftExpression e) {

if (type of e’s left operand is int
&& e’s right operand is a constant)
&& value of constant < 0 or > 31)

warn(“Shifting by less than 0 or more than
31 is meaningless”)

super.visitShiftExpression(e);
}

Introduction 6217-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Practice: String concatenation in a loop

• Write pseudocode for a simple AST-walker analysis
that warns when string concatenation occurs in a loop
• In Java and .NET it is more efficient to use a StringBuffer
• Assume any appropriate AST elements

To get you started:
class StringConcatLoopAnalysis extends Visitor {

void visitStringConcat(StringConcat e) {

}

}

Introduction 6317-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Practice: String concatenation in a loop
class StringConcatLoopAnalysis extends Visitor {

private int loopLevel = 0;

void visitStringConcat(StringConcat e) {
if (loopLevel > 0)

warn(“Performance issue: String concatenation in loop (use
StringBuffer instead)”)

super.visitStringConcat(e); // visits AST children
}

void visitWhile(While e) {
loopLevel++;
super.visitWhile(e); // visits AST children
loopLevel--;

}
// similar for other looping constructs

Bonus slides

• We did not get to these in class

Introduction 6417-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Introduction 6517-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

The Visitor Design Pattern
• Applicability

• Structure with many classes
• Want to perform operations

that depend on classes
• Set of classes is stable
• Want to define new

operations
• Consequences

• Easy to add new operations
• Groups related behavior in

Visitor
• Adding new elements is

hard
• Visitor can store state
• Elements must expose

interface

*often used in analysis tools
written in an OO language

Introduction 6617-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Example Tool: FindBugs
• Origin: research project at U. Maryland

• Now freely available as open source
• Standalone tool, plugins for Eclipse, etc.

• Checks over 250 “bug patterns”
• Over 100 correctness bugs
• Many style issues as well
• Includes the two examples just shown

• Focus on simple, local checks
• Similar to the patterns we’ve seen
• But checks bytecode, not AST

• Harder to write, but more efficient and doesn’t require source

• http://findbugs.sourceforge.net/

Introduction 6717-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

Example FindBugs Bug Patterns
• Correct equals()
• Use of ==
• Closing streams
• Illegal casts
• Null pointer dereference
• Infinite loops
• Encapsulation problems
• Inconsistent

synchronization
• Inefficient String use
• Dead store to variable

Introduction 6817-355/17-665: Program Analysis
© 2017 Jonathan Aldrich

FindBugs Experiences
• Useful for learning idioms of Java

• Rules about libraries and interfaces
• e.g. equals()

• Customization is important
• Many warnings may be irrelevant, others may be

important – depends on domain
• e.g. embedded system vs. web application

• Useful for pointing out things to examine
• Not all are real defects
• Turn off false positive warnings for future analyses

on codebase

