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Find the Bug!

disable interrupts

re-enable interrupts

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Find the Bug!

disable interrupts

re-enable interrupts

ERROR: returning
with interrupts disabled

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Metal Interrupt Analysis Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Metal Interrupt Analysis

is_enabled

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Metal Interrupt Analysis

is_enabled

is_disabled

disable

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Metal Interrupt Analysis

is_enabled

is_disabled

disable

enable =>
err(double enable)

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Metal Interrupt Analysis

is_enabled

is_disabled

disableenable

enable =>
err(double enable)

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Metal Interrupt Analysis

is_enabled

is_disabled

disableenable

enable =>
err(double enable)

disable =>
err(double disable)

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Metal Interrupt Analysis

is_enabled

is_disabled

disableenable

enable =>
err(double enable)

disable =>
err(double disable)

end path =>
err(end path

with/intr
disabled)

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Applying the Analysis Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Applying the Analysis

initial state is_enabled

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Applying the Analysis

initial state is_enabled

transition to is_disabled

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Applying the Analysis

initial state is_enabled

transition to is_disabled

final state is_disabled: ERROR!

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Applying the Analysis

initial state is_enabled

transition to is_disabled

transition to is_enabled

final state is_disabled: ERROR!

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Applying the Analysis

initial state is_enabled

transition to is_disabled

transition to is_enabled
final state is_enabled is OK

final state is_disabled: ERROR!

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Outline

• Why program analysis?
• The limits of testing and inspection

• What is program analysis?
• Course outline
• Representing programs
• AST-walking analyses
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Static Analysis Finds “Mechanical” Errors

• Defects that result from inconsistently following simple, mechanical 
design rules

• Security vulnerabilities
• Buffer overruns, unvalidated input…

• Memory errors
• Null dereference, uninitialized data…

• Resource leaks
• Memory, OS resources…

• Violations of API or framework rules
• e.g. Windows device drivers; real time libraries; GUI frameworks

• Exceptions
• Arithmetic/library/user-defined

• Encapsulation violations
• Accessing internal data, calling private functions…

• Race conditions
• Two threads access the same data without synchronization
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Difficult to Find with Testing, Inspection

• Non-local, uncommon paths
• Security vulnerabilities
• Memory errors
• Resource leaks
• Violations of API or framework rules
• Exceptions
• Encapsulation violations

• Non-deterministic
• Race conditions
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Quality Assurance at Microsoft (Part 1)

• Original process: manual code inspection
• Effective when system and team are small
• Too many paths to consider as system grew 

Early 1990s: add massive system and unit testing
Tests took weeks to run

Diversity of platforms and configurations
Sheer volume of tests

Inefficient detection of common patterns, security holes
Non-local, intermittent, uncommon path bugs

Was treading water in Windows Vista development

Early 2000s: add static analysis
More on this later
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Quality Assurance at Microsoft (Part 1)

• Original process: manual code inspection
• Effective when system and team are small
• Too many paths to consider as system grew 

• Early 1990s: add massive system and unit testing
• Tests took weeks to run

• Diversity of platforms and configurations
• Sheer volume of tests

• Inefficient detection of common patterns, security holes
• Non-local, intermittent, uncommon path bugs

• Was treading water in Windows Vista development

Early 2000s: add static analysis
More on this later
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Quality Assurance at Microsoft (Part 1)

• Original process: manual code inspection
• Effective when system and team are small
• Too many paths to consider as system grew 

• Early 1990s: add massive system and unit testing
• Tests took weeks to run

• Diversity of platforms and configurations
• Sheer volume of tests

• Inefficient detection of common patterns, security holes
• Non-local, intermittent, uncommon path bugs

• Was treading water in Windows Vista development

• Early 2000s: add program analysis
• More on this later
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Process, Cost, and Quality

CMM: 1           2           3           4          5

Software
Quality

S&S, Agile, RUP, etc: less rigorous      . . .    more rigorous

Process intervention, 
testing, and inspection 

yield first-order 
software quality

improvement

Additional technology 
and tools are needed to 

close the gap 

Critical Systems 
Acceptability

Process
Rigor, Cost

Slide: William Scherlis

Perfection
(unattainable)



Introduction 2517-355/17-665: Program Analysis                  
© 2017 Jonathan Aldrich

Outline
• Why static analysis?
• What is static analysis?

• Abstract state space exploration
• Course outline
• Representing programs
• AST-walking analyses
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Static Program Analysis Definition
• Static program analysis is the automated, 

systematic examination of an abstraction of a 
program’s state space
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Static Program Analysis Definition
• Static program analysis is the automated, 

systematic examination of an abstraction of a 
program’s state space

• Metal interrupt analysis
• Abstraction

• 2 states: enabled and disabled
• All program information—variable values, heap contents—is 

abstracted by these two states, plus the program counter
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Static Program Analysis Definition
• Static program analysis is the automated, 

systematic examination of an abstraction of a 
program’s state space

• Metal interrupt analysis
• Abstraction

• 2 states: enabled and disabled
• All program information—variable values, heap contents—is 

abstracted by these two states, plus the program counter
• Systematic

• Examines all paths through a function
• What about loops?  More later…

• Each path explored for each reachable state
• Assume interrupts initially enabled (Linux practice)
• Since the two states abstract all program information, the 

exploration is exhaustive
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Static Program Analysis Definition
• Static program analysis is the automated, 

systematic examination of an abstraction of a 
program’s state space

• Mathematical properties (recurring theme)
• Soundness

• All reported results are true
• Verification: analysis says OK  correctness property holds
• Bug-finding: analysis says there is a bug  some (or all) real 

executions manifest that bug

• Completeness
• Everything that is true is reported

• Verification: the program is correct  the analysis will say so
• Bug-finding: some execution manifests a bug  the analysis will 

report it
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Outline
• Why static analysis?
• What is static analysis?

• Abstract state space exploration
• Course outline
• Representing programs
• AST-walking analyses



A Sample of Course Topics

• Dataflow analysis
• Abstract interpretation
• Interprocedural analysis
• Pointer analysis
• Symbolic execution
• Dynamic analysis
• Verification
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Course Syllabus

• See web page
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Outline
• Why static analysis?
• What is static analysis?

• Abstract state space exploration
• Course outline
• Representing programs
• AST-walking analyses



Representing Programs:
The WHILE Language

• A simple procedural language with:
• assignment
• statement sequencing
• conditionals
• while loops

• Used in early papers (e.g. Hoare 1969) 
as a “sandbox” for thinking about 
program semantics

• We will use it to illustrate several 
different kinds of analysis
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WHILE Syntax
• Categories of syntax

• S  Stmt statements
• a  AExp arithmetic expressions
• x,y  Var variables
• n  Num number literals
• P  BExp boolean expressions

• Syntax
• S ::= x := a | skip | S1; S2

|    if P then S1 else S2 | while P do S
• a ::= x | n | a1 opa a2
• opa ::= + | - | * | / | …
• P ::= true | false | not P | P1 opb P2 | a1 opr a2
• opb ::= and | or | …
• opr ::= < |  | = | > |  | …
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Example WHILE Program

y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

Computes the factorial function, with the 
input in x and the output in z
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Representing Programs

• To analyze software automatically, we 
must be able to represent it precisely

• Some representations
• Source code
• Abstract syntax trees
• Control flow graph
• Bytecode
• Assembly code
• Binary code
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Abstract Syntax Trees

• A tree representation of source code
• Based on the language grammar

• One type of node for each production
• S ::= x := a  :=

x         a
• S ::= while b do S  while

b             S
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Parsing: Source to AST

• Parsing process (top down)
1. Determine the top-level production to use
2. Create an AST element for that production
3. Determine what text corresponds to each 

child of the AST element
4. Recursively parse each child

• Algorithms have been studied in detail
• For this course you only need the intuition
• Details covered in compiler courses
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Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?

• What are the parts?
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Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?

;
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Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

y := x        z := 1; while…
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Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:=           z := 1; while…

y      x
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Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:=                 ;

y      x   z := 1    while…
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Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:=                 ;

y      x      :=       while…

z    1
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Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:=                 ;

y      x      :=       while

z    1   y>1    z :=...
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Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:=                 ;

y      x      :=       while

z    1     >      z :=...

y   1
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Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:=                 ;

y      x      :=       while

z    1     >        ;

y   1  z:=z*y y:=y-1
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Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:=                 ;

y      x      :=       while

z    1     >        ;

y   1    :=      y:=y-1

z     z*y
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Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:=                 ;

y      x      :=       while

z    1     >        ;

y   1    :=      y:=y-1

z       *

z     y
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Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:=                 ;

y      x      :=       while

z    1     >        ;

y   1    :=        :=

z       *       y     y-1

z     y
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Parsing Example
y := x;
z := 1;
while y>1 do

z := z * y;
y := y – 1

• Top-level production?
• S1; S2

• What are the parts?
• y := x
• z := 1; while …

;

:=                 ;

y      x      :=       while

z    1     >        ;

y   1    :=        :=

z       *       y       -

z     y       y     1
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Exercise
Draw a parse tree for the function below. You can assume that the 

“for” statement is at the top of the parse tree.

void copy_bytes(char dest[], char source[], int n) {
for (int i = 0; i < n; ++i)

dest[i] = source[i];
}
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WHILE ASTs in Java

• Java data structures 
mirror grammar

• S ::= x := a

class AST { … }
class Stmt extends AST { … }
class Assign extends Stmt {

Var var;
AExpr expr;

}
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WHILE ASTs in Java

• Java data structures 
mirror grammar

• S ::= x := a
| skip

class AST { … }
class Stmt extends AST { … }
class Assign extends Stmt {

Var var;
AExpr expr;

}
class Skip extends Stmt { }
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WHILE ASTs in Java

• Java data structures 
mirror grammar

• S ::= x := a
| skip
| S1; S2

class AST { … }
class Stmt extends AST { … }
class Assign extends Stmt {

Var var;
AExpr expr;

}
class Skip extends Stmt { }
class Seq extends Stmt {

Stmt left;
Stmt right;

}
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WHILE ASTs in Java

• Java data structures 
mirror grammar

• S ::= x := a
| skip
| S1; S2

| if b then S1 else S2

class AST { … }
class Stmt extends AST { … }
class Assign extends Stmt {

Var var;
AExpr expr;

}
class Skip extends Stmt { }
class Seq extends Stmt {

Stmt left;
Stmt right;

}
class If extends Stmt {

BExpr cond;
Stmt thenStmt;
Stmt elseStmt;

}
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WHILE ASTs in Java

• Java data structures 
mirror grammar

• S ::= x := a
| skip
| S1; S2

| if b then S1 else S2

| while b do S

class AST { … }
class Stmt extends AST { … }
class Assign extends Stmt {

Var var;
AExpr expr;

}
class Skip extends Stmt { }
class Seq extends Stmt {

Stmt left;
Stmt right;

}
class If extends Stmt {

BExpr cond;
Stmt thenStmt;
Stmt elseStmt;

}
class While extends Stmt {

BExpr cond;
Stmt body;

}
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Outline
• Why static analysis?
• What is static analysis?

• Abstract state space exploration
• Course Outline
• Representing programs
• AST-walking analyses
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Matching AST against Bug Patterns
• AST Walker Analysis

• Walk the AST, looking for nodes of a particular type
• Check the immediate neighborhood of the node for a bug 

pattern
• Warn if the node matches the pattern

• Semantic grep
• Like grep, looking for simple patterns
• Unlike grep, consider not just names, but semantic structure of 

AST
• Makes the analysis more precise

• Common architecture based on Visitors
• class Visitor has a visitX method for each type of AST node X
• Default Visitor code just descends the AST, visiting each node
• To find a bug in AST element of type X, override visitX
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Example: Shifting by more than 31 bits

class BadShiftAnalysis extends Visitor
visitShiftExpression(ShiftExpression e) {

if (type of e’s left operand is int
&& e’s right operand is a constant)
&& value of constant < 0 or > 31)

warn(“Shifting by less than 0 or more than 
31 is meaningless”)

super.visitShiftExpression(e);
}
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Practice: String concatenation in a loop

• Write pseudocode for a simple AST-walker analysis 
that warns when string concatenation occurs in a loop
• In Java and .NET it is more efficient to use a StringBuffer
• Assume any appropriate AST elements

To get you started:
class StringConcatLoopAnalysis extends Visitor {

void visitStringConcat(StringConcat e) {

}

}
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Practice: String concatenation in a loop
class StringConcatLoopAnalysis extends Visitor {

private int loopLevel = 0;

void visitStringConcat(StringConcat e) {
if (loopLevel > 0)

warn(“Performance issue: String concatenation in loop (use 
StringBuffer instead)”)

super.visitStringConcat(e); // visits AST children
}

void visitWhile(While e) {
loopLevel++;
super.visitWhile(e); // visits AST children
loopLevel--;

}
// similar for other looping constructs



Bonus slides

• We did not get to these in class
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The Visitor Design Pattern
• Applicability

• Structure with many classes
• Want to perform operations 

that depend on classes
• Set of classes is stable
• Want to define new 

operations
• Consequences

• Easy to add new operations
• Groups related behavior in 

Visitor
• Adding new elements is 

hard
• Visitor can store state
• Elements must expose 

interface

*often used in analysis tools
written in an OO language
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Example Tool: FindBugs
• Origin: research project at U. Maryland

• Now freely available as open source
• Standalone tool, plugins for Eclipse, etc.

• Checks over 250 “bug patterns”
• Over 100 correctness bugs
• Many style issues as well
• Includes the two examples just shown

• Focus on simple, local checks
• Similar to the patterns we’ve seen
• But checks bytecode, not AST

• Harder to write, but more efficient and doesn’t require source

• http://findbugs.sourceforge.net/



Introduction 6717-355/17-665: Program Analysis                  
© 2017 Jonathan Aldrich

Example FindBugs Bug Patterns
• Correct equals()
• Use of ==
• Closing streams
• Illegal casts
• Null pointer dereference
• Infinite loops
• Encapsulation problems
• Inconsistent 

synchronization
• Inefficient String use
• Dead store to variable
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FindBugs Experiences
• Useful for learning idioms of Java

• Rules about libraries and interfaces
• e.g. equals()

• Customization is important
• Many warnings may be irrelevant, others may be 

important – depends on domain
• e.g. embedded system vs. web application

• Useful for pointing out things to examine
• Not all are real defects
• Turn off false positive warnings for future analyses 

on codebase


