
Lecture Notes:
A Dataflow Analysis Framework for

WHILE3ADDR

15-819O: Program Analysis
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

Lecture 2

1 Defining a dataflow analysis

In order to make the definition of a dataflow analysis precise, we need
to first examine how a dataflow analysis represents information about the
program. The analysis will compute some dataflow information σ at each
program point. Typically σ will tell us something about each variable in
the program. For example, σ may be a mapping from variables to abstract
values taken from some set L:

σ P Var Ñ L

Here, L represents the set of abstract values we are interested in tracking
in the analysis. This will vary from one analysis to another. Consider the
example of zero analysis, in which we want to track whether each variable
is zero or not. For this analysis L may represent the set tZ,N, ?u. Here the
abstract value Z represents the value 0, N represents all nonzero values.
We use ? for the situations when we do not know whether a variable is
zero or not.

Conceptually, each abstract value is intended to represent a set of one
or more concrete values that may occur when a program executes. In order
to understand what an abstract value represents, we define an abstraction
function α mapping each possible concrete value to an abstract value:

α : ÚÑ L

1

For zero analysis we simply define the function so that 0 maps to Z and
all other integers map to N :

αZp0q � Z
αZpnq � N where n � 0

The core of any program analysis is how individual instructions in the
program are analyzed. We define this using flow functions that map the
dataflow information at the program point immediately before an instruc-
tion to the dataflow information after that instruction. A flow function
should represent the semantics of the instruction, but do so abstractly in
terms of the abstract values tracked by the analysis. We will describe more
precisely what we mean by the semantics of the instruction when we talk
about the correctness of dataflow analysis. As an example, though, we can
define the flow functions fZ for zero analysis as follows:

fZvx :� 0wpσq � rx ÞÑ Zsσ
fZvx :� nwpσq � rx ÞÑ N sσ where n � 0

fZvx :� ywpσq � rx ÞÑ σpyqsσ

fZvx :� y op zwpσq � rx ÞÑ?sσ

fZvgoto nwpσq � σ

fZvif x � 0 goto nwpσq � σ

The first flow function above is for assignment to a constant. In the no-
tation, we represent the form of the instruction as an implicit argument to
the function, which is followed by the explicit dataflow information argu-
ment, in the form fZvIwpσq. If we assign 0 to a variable x, then we should
update the input dataflow information σ so that x now maps to the abstract
value Z. The notation rx ÞÑ Zsσ denotes dataflow information that is iden-
tical to σ except that the value in the mapping for x is updated to refer to
Z.

The next flow function is for copies from a variable y to another variable
x. In this case we just copy the dataflow information: we look up y in σ,
written σpyq, and update σ so that x maps to the same abstract value as y.

We define a generic flow function for arithmetic instructions. In general,
an arithmetic instruction can return either a zero or a nonzero value, so we
use the abstract value ? to represent our uncertainty. Of course, we could
have written a more precise flow function here, which could return a more
specific abstract value for certain instructions or operands. For example,

2

if the instruction is subtraction and the operands are the same, we know
that the result is zero. Or, if the instruction is addition, and the analysis
information tells us that one operand is zero, then we can deduce that the
addition is really a copy and we can use a flow function similar to the copy
instruction above. These examples could be written as follows (we would
still need the generic case above for instructions that do not fit these special
cases):

fZvx :� y � ywpσq � rx ÞÑ Zsσ

fZvx :� y � zwpσq � rx ÞÑ σpyqsσ where σpzq � Z

Exercise 1. Define another flow function for some arithmetic instruction
and certain conditions where you can also provide a more precise result
than ?.

The flow function for conditional and unconditinal branches is trivial:
the analysis result is unaffected by this instruction, which does not change
the state of the machine other than to change the program counter.

We can provide a better flow function for conditional branches if we
distinguish the analysis information produced when the branch is taken
or not taken. To do this, we extend our notation once more in defining
flow functions for branches, using a subscript to the instruction to indicate
whether we are specifying the dataflow information for the case where the
condition is true (T) or when it is false (F). For example, to define the flow
function for the true condition when testing a variable for equality with
zero, we use the notation fZvif x � 0 goto nwT pσq. In this case we know
that x is zero so we can update σ with the Z lattice value. Conversely, in
the false condition we know that x is nonzero:

fZvif x � 0 goto nwT pσq � rx ÞÑ Zsσ
fZvif x � 0 goto nwF pσq � rx ÞÑ N sσ

Exercise 2. Define a flow function for a conditional branch testing whether
a variable x is less than zero.

3

2 Running a dataflow analysis

The point of developing a dataflow analysis is to compute information
about possible program states at each point in the program. For exam-
ple, in the case of zero analysis, whenever we divide some expression by a
variable x, we’d like to know whether x must be zero (represented by the
abstract value Z) or may be zero (represented by ?) so that we can warn the
developer of a divide by zero error.

Straightline code can be analyzed in a straightforward way, as one would
expect. We simulate running the program in the analysis, using the flow
function to compute, for each instruction in turn, the dataflow analysis
information after the instruction from the information we had before the
instruction. We can track the analysis information using a table with a col-
umn for each variable in the program and a row for each instruction, so
that the information in a cell tells us the abstract value of the column’s
variable immediately after the row’s instruction. For example, consider the
program:

1 : x :� 0
2 : y :� 1
3 : z :� y
4 : y :� z � x
5 : x :� y � z

We would compute dataflow analysis information as follows:

x y z
1 Z
2 Z N
3 Z N N
4 Z N N
5 ? N N

Notice that the analysis is imprecise at the end with respect to the value
of x. We were able to keep track of which values are zero and nonzero
quite well through instruction 4, using (in the last case) the flow function
that knows that adding a variable which is known to be zero is equivalent
to a copy. However, at instruction 5, the analysis does not know that y and
z are equal, and so it cannot determine whether x will be zero or not. Be-
cause the analysis is not tracking the exact values of variables, but rather
approximations, it will inevitably be imprecise in certain situations. How-

4

ever, in practice well-designed approximations can often allow dataflow
analysis to compute quite useful information.

3 Alternative paths and dataflow joins

Things are more interesting in WHILE3ADDR code that represents an if
statement. In this case, there are two possible paths through the program.
Consider the following simple example:

1 : if x � 0 goto 4
2 : y :� 0
3 : goto 6
4 : y :� 1
5 : x :� 1
6 : z :� y

We could begin by analyzing one path through the program, for exam-
ple the path in which the branch is not taken:

x y z
1 ZT , NF

2 N Z
3 N Z
4
5
6 N Z Z

In the table above, the entry for x on line 1 indicates the different ab-
stract values produced for the true and false conditions of the branch. We
use the false condition (x is nonzero) in analyzing instruction 2. Execution
proceeds through instruction 3, at which point we jump to instruction 6.
The entries for lines 4 and 5 are blank because we have not analyzed a path
through the program that executes this line.

A side issue that comes up when analyzing instruction 1 is what should
we assume about the value of x? In this example we will assume that x
is an input variable, because it is used before it is defined. For input vari-
ables, we should start the beginning of the program with some reasonable
assumption. If we do not know anything about the value x can be, the best
choice is to assume it can be anything. That is, in the initial environment
σ0, x is mapped to ?.

5

We turn now to an even more interesting question: how to consider the
alternative path through this program in our analysis. The first step is to
analyze instructions 4 and 5 as if we had taken the true branch at instruction
1. Adding this, along with an assumption about the initial value of x at the
beginning of the program (which we will assume is line 0), we have:

x y z
0 ?
1 ZT , NF

2 N Z
3 N Z
4 Z N
5 N N
6 N Z Z note: incorrect!

Now we have a dilemma in analyzing instruction 6. We already ana-
lyzed it with respect to the previous path, assuming the dataflow analysis
we computed from instruction 3, where x was nonzero and y was zero.
However, we now have conflicting information from instruction 5: in this
case, x is also nonzero, but y is nonzero in this case. Therefore, the results
we previously computed for instruction 6 are invalid for the path that goes
through instruction 4.

A simple and safe resolution of this dilemma is simply to choose an
abstract value for x and y that combine the abstract values computed along
the two paths. The incoming abstract values for y are N and Z, which
tells us that y may be either nonzero or zero. We can represent this with
the abstract value ? indicating that we do know know if y is zero or not
at this instruction, because of the uncertainty about how we reached this
program location. We can apply similar logic in the case of x, but because x
is nonzero on both incoming paths we can maintain our knowledge that x
is nonzero. Thus, we should reanalyze instruction 5 assuming the dataflow
analysis information tx ÞÑ N, y ÞÑ ?u. The results of our final analysis are
shown below:

6

x y z
0 ?
1 ZT , NF

2 N Z
3 N Z
4 Z N
5 N N
6 N ? ? corrected

We can generalize the procedure of combining analysis results along
multiple paths by using a join operation, \. The idea is that when taking
two abstract values l1, l2 P L, the result of l1\ l2 is always an abstract value
lj that generalizes both l1 and l2.

In order to define what generalizes means, we can define a partial order
� over abstract values, and say that l1 and l2 are at least as precise as lj ,
written l1 � lj . Recall that a partial order is any relation that is:

• reflexive: @l : l � l

• transitive: @l1, l2, l3 : l1 � l2 ^ l2 � l3 ñ l1 � l3

• anti-symmetric: @l1, l2 : l1 � l2 ^ l2 � l1 ñ l1 � l2

A set of values L that is equipped with a partial order �, and for which
the least upper bound of any two values in that ordering l1 \ l2 is unique
and is also in L, is called a join-semilattice. Any join-semilattice has a max-
imal element J. We will require that the abstract values used in dataflow
analyses form a join-semilattice. We will use the term lattice for short; as we
will see below, this is the correct terminology for most dataflow analyses.

For zero analysis, we define the partial order with Z � ? and N � ?,
where Z \N � ? and the J lattice element is ?. In order to emphasize the
lattice concept, we will use J in place of ? for zero analysis in the following
notes.

We have now considered all the elements necessary to define a dataflow
analysis. These are:

• a lattice pL,�q

• an abstraction function α

• initial dataflow analysis assumptions σ0

• a flow function f

7

Note that based on the theory of lattices, we can now propose a generic
natural default for the initial dataflow information: a σ that maps each
variable that is in scope at the beginning of the program to J, indicating
uncertainty as to that variable’s value.

4 Dataflow analysis of loops

We now consider WHILE3ADDR programs that represent looping control
flow. While an if statement produces two alternative paths that diverge and
later join, a loop produces an potentially unbounded number of paths into
the program. Despite this, we would like to analyze looping programs in
bounded time. Let us examine how through the following simple looping
example:

1 : x :� 10
2 : y :� 0
3 : z :� 0
4 : if x � 0 goto 8
5 : y :� 1
6 : x :� x� 1
7 : goto 4
8 : x :� y

Let us first consider a straight-line analysis of the program path that
enters the loop and runs through it once:

x y z
1 N
2 N Z
3 N Z Z
4 ZT , NF Z Z
5 N N Z
6 J N Z
7 J N Z
8

So far things are straightforward. We must now analyze instruction 4
again. This situation should not be surprising however; it is analogous to
the situation when merging paths after an if instruction. To determine the
analysis information at instruction 4, we should join the dataflow analysis

8

information flowing in from instruction 3 with the dataflow analysis infor-
mation flowing in from instruction 7. For x we have N \ J � N . For y we
have Z\N � J. For z we have Z\Z � Z. The information coming out of
instruction 4 is therefore the same as before, except that for y we now have
J.

We can now choose between two paths once again: staying within the
loop or exiting out to instruction 8. We will choose (arbitrarily for now) to
stay within the loop and consider instruction 5. This is our second visit to
instruction 5 and we have new information to consider: in particular, since
we have gone through the loop, the assignment y :� 1 has been executed
and we have to assume that y may be nonzero coming into instruction 5.
This is accounted for by the latest update to instruction 4’s analysis infor-
mation, in which y is mapped to J. Thus the information for instruction
4 describes both possible paths. We must update the analysis information
for instruction 5 so it does so as well. In this case, however, the instruction
assigns 1 to y, so we still know that y is nonzero after the instruction exe-
cutes. In fact, analysing the instruction again with the updated input data
does not change the analysis results for this instruction.

A quick check shows that going through the remaining instructions in
the loop, and even coming back to instruction 4, the analysis information
will not change. That is because the flow functions are deterministic: given
the same input analysis information and the same instruction, they will
produce the same output analysis information. If we analyze instruction 6,
for example, the input analysis information from instruction 5 is the same
input analysis information we used when analyzing instruction 6 the last
time aroudn. Thus instruction 6’s output information will not change, so
therefore instruction 7’s input information will not change, and so on. No
matter which instruction we run the analysis on, anywhere in the loop (and
in fact before the loop), the analysis information will not change.

We say that the dataflow analysis has reached a fixed point.1 In mathe-
matics, a fixed point of a function is a data value v that is mapped to itself
by the function, i.e. fpvq � v. In this situation, the mathematical function
is the flow function, and the fixed point is a tuple of the dataflow analysis
values at each point in the program (up to and including the loop). If we
invoke the flow function on the fixed point, we get the same fixed point
back.

Once we have reached a fixed point of the function for this loop, it is
clear that further analysis of the loop will not be useful. Therefore, we will

1sometimes abbreviated fixpoint

9

proceed to analyze statement 8. The final analysis results are as follows:

x y z
1 N
2 N Z
3 N Z Z
4 ZT , NF J Z updated
5 N N Z already at fixed point
6 J N Z already at fixed point
7 J N Z already at fixed point
8 Z J Z

Quickly simulating a run of the program program shows that these re-
sults correctly approximate actual execution. The uncertainty in the value
of x at instructions 6 and 7 is real: x is nonzero after these instructions, ex-
cept the last time through the loop, when it is zero. The uncertainty in the
value of y at the end shows imprecision in the analysis; in this program,
the loop always executes at least once, so y will be nonzero. However, the
analysis (as currently formulated) cannot tell that the loop is executed even
once, so it reports that it cannot tell if y is zero or not. This report is safe—it
is always correct to say the analysis is uncertain—but not as precise as one
might like.

The benefit of analysis, however, is that we can gain correct informa-
tion about all possible executions of the program with only a finite amount
of work. For example, in this case we only had to analyze the loop state-
ments at most twice before recognizing that we had reached a fixed point.
Since the actual program runs the loop 10 times—and could run many more
times, if we initialized x to a higher value—this is a significant benefit. We
have sacrificed some precision in exchange for coverage of all possible ex-
ecutions, a classic tradeoff in static analysis.

How can we be confident that the results of the analysis are correct, be-
sides simulating every possible run of the program? After all, there may
be many such runs in more complicated programs, for example when the
behavior of the program depends on input data. The intuition behind cor-
rectness is the invariant that at each program point, the analysis results ap-
proximate all the possible program values that could exist at that point. If
the analysis information at the beginning of the program correctly approx-
imates the program arguments, then the invariant is true at the beginning
of program execution. One can then make an inductive argument that the
invariant is preserved as the program executes. In particular, when the pro-

10

gram executes an instruction, the instruction modifies the program’s state.
As long as the flow functions account for every possible way that instruc-
tion can modify the program’s state, then at the analysis fixed point they
will have produced a correct approximation of the actual program’s execu-
tion after that instruction. We will make this argument more precise in a
future lecture.

5 A convenience: the K abstract value and complete
lattices

As we think about defining an algorithm for dataflow analysis more pre-
cisely, a natural question comes up concerning how instruction 4 is ana-
lyzed in the example above. On the first pass we analyzed it using the
dataflow information from instruction 3, but on the second pass we had to
consider dataflow information from instruction 3 as well as from instruc-
tion 7.

It would be more consistent if we could just say that analyzing instruc-
tion 4 always uses the incoming dataflow analysis information from all in-
structions that could precede it in execution. That way we do not have to
worry about following a specific path during analysis. Doing this requires
having a dataflow value from instruction 7, however, even if instruction 7
has not yet been analyzed. We could do this if we had a dataflow value that
is always ignored when it is joined with any other dataflow value. In other
words, we need a abstract dataflow value K such that K\ l � l.

We name this abstract value K because it plays a dual role to the value
J: it sits at the bottom of the dataflow value lattice. While J \ l � J, we
have K \ l � l. For all l we have the identity l � J and correspondingly
K � l. There is an greatest lower bound operator meet, [, which is dual to
\, and the meet of all dataflow values is K.

A set of values L that is equipped with a partial order �, and for which
both least upper bounds \ and greatest lower bounds [exist in L and are
unique, is called a (complete) lattice.

The theory of K and complete lattices provides an elegant solution to
the problem mentioned above. We can initialize every dataflow value in
the program, except at program entry, to K, indicating that the instruction
there has not yet been analyzed. We can then always merge all input values
to a node, whether or not the sources of those inputs have been analysed,
because we know that any K values from unanalyzed sources will simply
be ignored by the join operator \.

11

6 Analysis execution strategy

The informal execution strategy outlined above operations by considering
all paths through the program, continuing until the dataflow analysis in-
formation reaches a fixed point. This strategy can in fact be simplified. The
argument for correctness outlined above, implies that for correct flow func-
tions, it doesn’t matter how we get to the mathematical fixed point of the
analysis. This seems sensible: it would be surprising if the correctness of
the analysis depended on which branch of an if statement we explore first.
It is in fact possible to run the analysis on program instructions in any or-
der we choose. As long as we continue doing so until the analysis reaches
a fixed point, the final result will be correct. The simplest correct algorithm
for executing dataflow analysis can therefore be stated as follows:

f o r I n s t r u c t i o n i in program
input [i] = K

input [f i r s t I n s t r u c t i o n] = i n i t i a l D a t a f l o w I n f o r m a t i o n

while not a t f i x e d point
pick an i n s t r u c t i o n i in program
output = flow (i , input [i])
f o r I n s t r u c t i o n j in sucessors (i)

input [j] = input [j] \ output

Although in the previous presentation we have been tracking the anal-
ysis information immediately after each instruction, it is more convenient
when writing down the algorithm to track the analysis information imme-
diately before each instruction. This avoids the need for a distinguished
location before the program starts.

In the code above, the termination condition is expressed abstractly. It
can easily be checked, however, by running the flow function on each in-
struction in the program. If the results of analysis do not change as a result
of analyzing any instruction, then the analysis has reached a fixed point.

How do we know the algorithm will terminate? The intuition is as fol-
lows. We rely on the choice of an instruction to be fair, so that each instruc-
tion is eventually considered. As long as the analysis is not at a fixed point,
some instruction can be analyzed to produce new analysis results. If our
flow functions are well-behaved (technically, if they are monotone, as dis-
cussed in a future lecture) then each time the flow function runs on a given
instruction, either the results do not change, or they get more approximate
(i.e. they are higher in the lattice). The intuition is that later runs of the flow

12

function consider more possible paths through the program and therefore
produce a more approximate result which considers all these possibilities.
If the lattice is of finite height—meaning there are at most a finite number
of steps from any place in the lattice going up towards the J value—then
this process must terminate eventually, because the analysis information
cannot get any higher.

Although the simple algorithm above always terminates and results in
the correct answer, it is not always the most efficient. Typically, for ex-
ample, it is beneficial to analyze the program instructions in order, so that
results from earlier instructions can be used to update the results of later
instructions. It is also useful to keep track of a list of instructions for which
there has been a change, since the instruction was last analyzed, in the re-
sult dataflow information of some predecessor instruction. Only those in-
structions need be analyzed; reanalyzing other instructions is useless since
the input has not changed and they will produce the same result as be-
fore. Kildall captured this intuition with his worklist algorithm, described
in pseudocode below:

f o r I n s t r u c t i o n i in program
input [i] = K

input [f i r s t I n s t r u c t i o n] = i n i t i a l D a t a f l o w I n f o r m a t i o n
w o r k l i s t = { f i r s t I n s t r u c t i o n }

while w o r k l i s t i s not empty
take an i n s t r u c t i o n i o f f the w o r k l i s t
output = flow (i , input [i])

f o r I n s t r u c t i o n j in s u c c e s s o r s (i)
i f output �� input [j]

input [j] = input [j] \ output
add j to w o r k l i s t

The algorithm above is very close to the generic algorithm declared be-
fore, except for the worklist that is used to choose the next instruction to
analyze and to determine when a fixed point has been reached.

We can reason about the performance of this algorithm as follows. We
only add an instruction to the worklist whenever the input data to some
node changes, and the input for a given node can only change h times,
where h is the height of the lattice. Thus we add at most n � h nodes to
the worklist, where n is the number of instructions in the program. After
running the flow function for a node, however, we must test all its succes-
sors to find out if their input has changed. This test is done once for each

13

edge, for each time that the source node of the edge is added to the work-
list: thus at most e �h times, where e is the number of control flow edges in
the successor graph between instructions. If each operation (such as a flow
function, \, or� test) has costOpcq, then the overall cost isOpc�pn�eq�hq,
or Opc � e � hq because n is bounded by e.

The algorithm above is still abstract in that we have not defined the op-
erations to add and remove instructions from the worklist. We would like
add to work list a set addition operation, so that no instruction appears in
the worklist multiple times. The justification is that if we have just anal-
ysed the program with respect to an instruction, analyzing it again will not
produce different results.

That leaves a choice of which instruction to remove from the worklist.
We could choose among several policies, including last-in-first-out (LIFO)
order or first-in-first-out (FIFO) order. In practice, the most efficient ap-
proach is to identify the strongly-connected components (i.e. loops) in the
control flow graph of components and process them in topological order,
so that loops that are nested, or appear in program order first, are solved
before later loops. This works well because we do not want to do a lot of
work bringing a loop late in the program to a fixed point, then have to redo
this work when dataflow information from an earlier loop changes.

Within each loop, the instructions should be processed in reverse pos-
torder. Reverse postorder is defined as the reverse of the order in which
each node is last visited when traversing a tree. Consider the example from
section ?? above, in which instruction 1 is an if test, instructions 2-3 are the
then branch, instructions 4-5 are the else branch, and instruction 6 comes
after the if statement. A tree traversal might go as follows: 1, 2, 3, 6, 3
(again), 2 (again), 1 (again), 4, 5, 4 (again), 1 (again). Some instructions in
the tree are visited multiple times: once going down, once between visiting
the children, and once coming up. The postorder, or order of the last visits
to each node, is 6, 3, 2, 5, 4, 1. The reverse postorder is the reverse of this: 1,
4, 5, 2, 3, 6. Now we can see why reverse postorder works well: we explore
both branches of the if statement (4-5 and 2-3) before we explore node 6.
This ensures that, in this loop-free code, we do not have to reanalyze node
6 after one of its inputs changes.

Although analyzing code using the strongly-connected component and
reverse postorder hueristics improves performance substantially in prac-
tice, it does not change the worst-case performance results described above.

14

