
Lecture Notes:
Program Analysis Correctness

15-819O: Program Analysis
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

Lecture 5

1 Termination

As we think about the correctness of program analysis, let us first think
more carefully about the situations under which program analysis will ter-
minate. We will come back later in the lecture to ensuring that the final
result of analysis is correct.

In a previous lecture we analyzed the performance of Kildall’s worklist
algorithm. A critical part of that performance analysis was the the observa-
tion that running a flow function always either leaves the dataflow analysis
information unchanged, or makes it more approximate—that is, it moves
the current dataflow analysis results up in the lattice. The dataflow values
at each program point describe an ascending chain:

Definition (Ascending Chain). A sequence σk is an ascending chain iff n ¤
m implies σn � σm

We can can define the height of an ascending chain, and of a lattice, in
order to bound the number of new analysis values we can compute at each
program point:

Definition (Height of an Ascending Chain). An ascending chain σk has
finite height h if it contains h� 1 distinct elements.

Definition (Height of a Lattice). An lattice pL,�q has finite height h if there
is an ascending chain in the lattice of height h, and no ascending chain in
the lattice has height greater than h

1

We can now show that for a lattice of finite height, the worklist algo-
rithm is guaranteed to terminate. We do so by showing that the dataflow
anysis information at each program point follows an ascending chain. Con-
sider the following version of the worklist algorithm:

f o r a l l (I n s t r u c t i o n i P program)
σris � K

σ [b e f o r e S t a r t] = i n i t i a l D a t a f l o w I n f o r m a t i o n
w o r k l i s t = { f i r s t I n s t r u c t i o n }

while w o r k l i s t i s not empty
take an i n s t r u c t i o n i o f f the w o r k l i s t

var t h i s I n p u t = K
f o r a l l (I n s t r u c t i o n j P s u c c e s s o r s (i))

t h i s I n p u t = t h i s I n p u t \ σrjs
l e t newOutput = flow (i , t h i s I n p u t)

i f (newOutput � σris)
σris = newOutput
w o r k l i s t = w o r k l i s t Y s u c c e s s o r s (i)

We can make the argument for termination inductively. At the begin-
ning of the analysis, the analysis information at every program point (other
than the start) is K. Thus the first time we run each flow function, the result
will be at least as high in the lattice as what was there before (K). We will
run the flow function for a given instruction again at a program point only
if the dataflow analysis information just before that instruction changes.
Assume that the previous time we ran the flow function, we had input
information σi and output information σo. Now we are running it again
because the input dataflow analysis information has changed to some new
σ1i—and by the induction hypothesis we assume it is higher in the lattice
than before, i.e. σi � σ1i. What we need to show is that the output informa-
tion σ1o is at least as high in the lattice as the old output information σo—that
is, we must show that σo � σ1o. This will be true if our flow functions are
monotonic:

Definition (Monotonicity). A function f is monotonic iff σ1 � σ2 implies
fpσ1q � fpσ2)

Now we can state the termination theorem:

Theorem 1 (Dataflow Analysis Termination). If a dataflow lattice pL,�q has
finite height, and the corresponding flow functions are monotonic, the worklist

2

algorithm above will terminate.

Proof. Follows the logic given above when motivating monotonicity.
Monotonicity implies that the dataflow value at each program point i will
increase each time σris is assigned. This can happen a maximum of h times
for each program point, where h is the height of the lattice. This bounds the
number of elements added to the worklist to h � e where e is the number of
edges in the program’s control flow graph. Since we remove one element
of the worklist for each time through the loop, we will execute the loop
at most h � e times before the worklist is empty. Thus the algorithm will
terminate.

2 An Abstract Machine for WHILE3ADDR

In order to reason about the correctness of a program analysis, we need a
clear definition of what a program means. There are many ways of giv-
ing such definitions; the most common technique in industry is to define
a language using an English document, such as the Java Language Speci-
fication. However, natural language specifications, while accessible to all
programmers, are often imprecise. This imprecision can lead to many prob-
lems, such as incorrect or incompatible compiler implementions, but more
importantly for our purposes, analyses that give incorrect results.

A better alternative, from the point of view of reasoning precisely about
programs, is a formal definition of program semantics. In this class we will
deal with operational semantics, so named because they show how programs
operate. In particular, we will use a form of operational semantics known
as an abstract machine, in which the semantics mimics, at a high level, the
operation of the computer that is executing the program, including a pro-
gram counter, values for program variables, and (eventually) a represen-
tation of the heap. Such a semantics also reflects the way that techniques
such as dataflow analysis or Hoare Logic reason about the program, so it is
convenient for our purposes.

We now define an abstract machine that evaluates programs in
WHILE3ADDR. A configuration c of the abstract machine includes the
stored program P (which we will generally treat implicitly), along with
an environment E that defines a mapping from variables to values (which
for now are just numbers) and the current program counter n representing
the next instruction to be executed:

3

E P Var Ñ Ú

c P E � Î

The abstract machine executes one step at a time, executing the instruc-
tion that the program counter points to, and updating the program counter
and environment according to the semantics of that instruction. We will
represent execution of the abstract machine with a mathematical judgment
of the form P $ E,n ; E1, n1 The judgment reads as follows: “When exe-
cuting the program P , executing instruction n in the environment E steps
to a new environment E1 and program counter n1.”

We can now define how the abstract machine executes with a series of
inference rules. As shown below, an inference rule is made up of a set of
judgments above the line, known as premises, and a judgment below the
line, known as the conclusion. The meaning of an inference rule is that the
conclusion holds if all of the premises hold.

premise1 premise2 . . . premisen
conclusion

We now consider a simple rule defining the semantics of the abstract
machine for WHILE3ADDR in the case of the constant assignment instruc-
tion:

P rns � x :� m

P $ E,n; Erx ÞÑ ms, n� 1
step-const

This rule states that in the case where the nth instruction of the pro-
gram P (which we look up using P rns) is a constant assignment x :� m,
the abstract machine takes a step to a state in which the environment E is
updated to map x to the constantm, written asErx ÞÑ ms, and the program
counter now points to the instruction at the following address n� 1.

We similarly define the remaining rules:

4

P rns � x :� y

P $ E,n; Erx ÞÑ Eryss, n� 1
step-copy

P rns � x :� y op z Erys op Erzs � m

P $ E,n; Erx ÞÑ ms, n� 1
step-arith

P rns � goto m
P $ E,n; E,m

step-goto

P rns � if x opr 0 goto m Erxs opr 0 � true

P $ E,n; E,m
step-iftrue

P rns � if x opr 0 goto m Erxs opr 0 � false

P $ E,n; E,n� 1
step-iffalse

3 Correctness

Now that we have a model of program execution for WHILE3ADDR we can
think more precisely about what it means for an analysis of a WHILE3ADDR

program to be correct. Intuitively, we would like the program analysis re-
sults to correctly describe every actual execution of the program.

We formalize a program execution as a trace:

Definition (Program Trace). A trace T of a program P is a potentially in-
finite sequence tc0, c1, ...u of program configurations, where c0 � E0, 1 is
called the initial configuration, and for every i ¥ 0 we have P $ ci ; ci�1.

Given this definition, we can formally define soundness:

Definition (Dataflow Analysis Soundness). The result tσi | i P P u of a
program analysis running on program P is sound iff, for all traces T of P ,
for all i such that 0 ¤ i lengthpT q, αpciq � σni

In this definition, just as ci is the program configuration immediately
before executing instruction ni as the ith program step, σi is the dataflow
analysis information immediately before instruction ni.

5

Exercise 1. Consider the following (incorrect) flow function for zero analy-
sis:

fZvx :� y � zwpσq � rx ÞÑ Zsσ

Give an example of a program and a concrete trace that illustrates that
this flow function is unsound.

The key to designing a sound analysis is making sure that the flow func-
tions map abstract information before each instruction to abstract informa-
tion after that instruction in a way that matches the instruction’s concrete
semantics. Another way of saying this is that the manipulation of the ab-
stract state done by the analysis should reflect the manipulation of the con-
crete machine state done by the executing instruction. We can formalize
this as a local soundness property.

Definition (Local Soundness). A flow function f is locally sound iff P $
ci ; ci�1 and αpciq � σi and fvP rniswpσiq � σi�1 implies αpci�1q � σi�1

Intuitively, if we take any concrete execution of a program instruction,
map the input machine state to the abstract domain using the abstraction
function, find that the abstracted input state is described by the analysis
input information, and apply the flow function, we should get a result that
correctly accounts for what happens if we map the actual output machine
state to the abstract domain.

Exercise 2. Consider again the incorrect zero analysis flow function de-
scribed above. Specify an input state ci and show use that input state that
the flow function is not locally sound.

We can now show prove that the flow functions for zero analysis are
locally sound. Although technically the abstraction function α accepts
a complete program configuration pE,nq, for zero analysis we ignore
the n component and so in the proof below we will simply focus on the
environment E. We show the cases for a couple of interesting syntax
forms; the rest are either trivial or analogous:

Case fZvx :� 0wpσiq � rx ÞÑ Zsσi:
Assume ci � E,n and αpEq � σi
Thus σi�1 � fZvx :� 0wpσiq � rx ÞÑ ZsαpEq
ci�1 � rx ÞÑ 0sE,n� 1 by rule step-const

6

Now αprx ÞÑ 0sEq � rx ÞÑ ZsαpEq by the definition of α.
Therefore αpci�1q � σi�1 which finishes the case.

Case fZvx :� mwpσiq � rx ÞÑ N sσi where m � 0:
Assume ci � E,n and αpEq � σi
Thus σi�1 � fZvx :� mwpσiq � rx ÞÑ N sαpEq
ci�1 � rx ÞÑ msE,n� 1 by rule step-const
Now αprx ÞÑ msEq � rx ÞÑ N sαpEq by the definition of α and the

assumption that m � 0.
Therefore αpci�1q � σi�1 which finishes the case.

Case fZvx :� y op zwpσiq � rx ÞÑ?sσi:
Assume ci � E,n and αpEq � σi
Thus σi�1 � fZvx :� y op zwpσiq � rx ÞÑ?sαpEq
ci�1 � rx ÞÑ ksE,n� 1 for some k by rule step-const

Now αprx ÞÑ ksEq � rx ÞÑ?sαpEq because the map is equal
for all keys except x, and for x we have αsimplepkq �simple? for all k, where
αsimple and �simple are the unlifted versions of α and �, i.e. they operate on
individual values rather than maps.

Therefore αpci�1q � σi�1 which finishes the case.

Exercise 3. Prove the case for fZvx :� ywpσq � rx ÞÑ σpyqsσ.

We can also show that zero analysis is monotone. Again, we give some
of the more interesting cases:

Case fZvx :� 0wpσq � rx ÞÑ Zsσ:
Assume we have σ1 � σ2

Since� is defined pointwise, we know that rx ÞÑ Zsσ1 � rx ÞÑ Zsσ2

Case fZvx :� ywpσq � rx ÞÑ σpyqsσ:
Assume we have σ1 � σ2
Since � is defined pointwise, we know that σ1pyq �simple σ2pyq

Therefore, using the pointwise definition of � again, we also
obtain rx ÞÑ σ1pyqsσ1 � rx ÞÑ σ2pyqsσ2

7

Now we can show that local soundness can be used to prove the global
soundness of a dataflow analysis. To do so, let us formally define the state
of the dataflow analysis at a fixed point:

Definition (Fixed Point). A dataflow analysis result tσi | i P P u is a fixed
point iff σ0 � σ1 where σ0 is the initial analysis information and σ1 is the
dataflow result before the first instruction, and for each instruction i we
have σi �

�
jPpredecessorspiq fvP rjswpσjq.

And now the main result we will use to prove program analyses correct:

Theorem 2 (Local Soundness implies Global Soundness). If a dataflow anal-
ysis’s flow function f is monotonic and locally sound, and for all traces T we
have αpc0q � σ0 where σ0 is the initial analysis information, then any fixed point
tσi | i P P u of the analysis is sound.

Proof. Consider an arbitrary program trace T . The proof is by induction on
the program configurations tciu in the trace.

Case c0:
αpc0q � σ0 by assumption.
σ0 � σn0 by the definition of a fixed point.
αpc0q � σn0 by the transitivity of �.

Case ci�1:
αpciq � σni by the induction hypothesis.
P $ ci ; ci�1 by the definition of a trace.
αpci�1q � fvP rniswpαpciqq by local soundness.
fvP rniswpαpciqq � fvP rniswpσniq by monotonicity of f .
σni�1 � fvP rniswpσniq \ ... by the definition of fixed point.
fvP rniswpσniq � σni�1 by the properties of \.
αpci�1q � σni�1 by the transitivity of �.

Since we previously proved that Zero Analysis is locally sound and that
its flow functions are monotonic, we can use this theorem to conclude that
the analysis is sound. This means, for example, that Zero Analysis will
never neglect to warn us if we are dividing by a variable that could be zero.

8

