
1

Introduction to Static Analysis

17-654: Analysis of Software Artifacts

Jonathan Aldrich

117-654: Analysis of Software Artifacts
Static Analysis

2/21/2011

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

2

Find the Bug!

disable interrupts

re-enable interrupts

ERROR: returning

with interrupts disabled

Source: Engler et al., Checking System Rules

Using System-Specific, Programmer-Written

Compiler Extensions, OSDI ’00.

2

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

3

Metal Interrupt Analysis

is_enabled

is_disabled

disableenable

enable =>

err(double enable)

disable =>

err(double disable)

end path =>

err(end path

with/intr

disabled)

Source: Engler et al., Checking System Rules

Using System-Specific, Programmer-Written

Compiler Extensions, OSDI ’00.

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

4

Applying the Analysis

initial state is_enabled

transition to is_disabled

transition to is_enabled

final state is_enabled is OK

final state is_disabled: ERROR!

Source: Engler et al., Checking System Rules

Using System-Specific, Programmer-Written

Compiler Extensions, OSDI ’00.

3

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

5

Outline

• Why static analysis?
• The limits of testing and inspection

• What is static analysis?

• How does static analysis work?

• AST Analysis

• Dataflow Analysis

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

6

4

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

7

Process, Cost, and Quality

CMM: 1 2 3 4 5

Software
Quality

S&S, Agile, RUP, etc: less rigorous . . . more rigorous

Process intervention,
testing, and inspection

yield first-order
software quality

improvement

Additional technology
and tools are needed to

close the gap

Critical Systems
Acceptability

Process
Rigor, Cost

Slide: William Scherlis

Perfection
(unattainable)

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

8

Root Causes of Errors

• Requirements problems
• Don’t fit user needs

• Design flaws
• Lacks required qualities

• Implementation errors
• Assign
• Checking
• Algorithm
• Timing
• Interface
• Relationship

Taxonomy: [Chillarege et al., Orthogonal Defect Classification]

Static Analysis Contributions

Does design achieve goals?

Is design implemented right?

Is data initialized?

Is dereference/indexing valid?

Are threads synchronized?

Are interface semantics followed?

Are invariants maintained?

H
a

rd
H

a
rd

�Security

5

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

9

Existing Approaches

• Testing: is the answer

right?
• Verifies features work

• Finds algorithmic

problems

• Inspection: is the quality

there?
• Missing requirements

• Design problems

• Style issues

• Application logic

• Limitations
• Non-local interactions

• Uncommon paths

• Non-determinism

• Static analysis: will I get

an answer?
• Verifies non-local

consistency

• Checks all paths

• Considers all non-

deterministic choices

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

10

Static Analysis Finds “Mechanical” Errors

• Defects that result from inconsistently following simple,
mechanical design rules

• Security vulnerabilities
• Buffer overruns, unvalidated inputK

• Memory errors
• Null dereference, uninitialized dataK

• Resource leaks
• Memory, OS resourcesK

• Violations of API or framework rules
• e.g. Windows device drivers; real time libraries; GUI frameworks

• Exceptions
• Arithmetic/library/user-defined

• Encapsulation violations
• Accessing internal data, calling private functionsK

• Race conditions
• Two threads access the same data without synchronization

6

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

11

Empirical Results on Static Analysis

• Nortel study [Zheng et al. 2006]
• 3 C/C++ projects

• 3 million LOC total

• Early generation static analysis tools

• Conclusions
• Cost per fault of static analysis 61-72% compared

to inspections

• Effectively finds assignment, checking faults

• Can be used to find potential security

vulnerabilities

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

12

Empirical Results on Static Analysis

• InfoSys study [Chaturvedi 2005]
• 5 projects
• Average 700 function points

each
• Compare inspection with and

without static analysis

• Conclusions
• Fewer defects
• Higher productivity

Adapted from [Chaturvedi 2005]

7

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

13

Quality Assurance at Microsoft (Part 1)

• Original process: manual code inspection
• Effective when system and team are small

• Too many paths to consider as system grew

• Early 1990s: add massive system and unit testing
• Tests took weeks to run

• Diversity of platforms and configurations

• Sheer volume of tests

• Inefficient detection of common patterns, security holes
• Non-local, intermittent, uncommon path bugs

• Was treading water in Windows Vista development

• Early 2000s: add static analysis
• More on this later

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

14

Outline

• Why static analysis?

• What is static analysis?
• Abstract state space exploration

• How does static analysis work?

• What do practical tools look like?

• How does it fit into an organization?

8

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

15

Static Analysis Definition

• Static program analysis is the systematic
examination of an abstraction of a program’s
state space

• Metal interrupt analysis
• Abstraction

• 2 states: enabled and disabled
• All program information—variable values, heap contents—is

abstracted by these two states, plus the program counter

• Systematic
• Examines all paths through a function

• What about loops? More laterK
• Each path explored for each reachable state

• Assume interrupts initially enabled (Linux practice)
• Since the two states abstract all program information, the

exploration is exhaustive

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

16

Outline

• Why static analysis?

• What is static analysis?

• How does static analysis work?
• Termination

• AST Analysis

• Dataflow Analysis

9

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

17

How can Analysis Search All Paths?

• How many paths are in a program?
• Exponential # paths with if statements
• Infinite # paths with loops
• How could we possibly cover them all?

• Secret weapon: Abstraction
• Finite number of (abstract) states
• If you come to a statement and you’ve already

explored a state for that statement, stop.
• The analysis depends only on the code and the current

state
• Continuing the analysis from this program point and state

would yield the same results you got before
• If the number of states isn’t finite, too bad

• Your analysis may not terminate

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

18

Example

1. void foo(int x) {

2. if (x == 0)

3. bar(); cli();

4. else

5. baz(); cli();

6. while (x > 0) {

7. sti();

8. do_work();

9. cli();

10. }

11. sti();

12.}

Path 1 (before stmt): true/no loop

2: is_enabled

3: is_enabled

6: is_disabled

11: is_disabled

12: is_enabled

no errors

10

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

19

Example

1. void foo(int x) {

2. if (x == 0)

3. bar(); cli();

4. else

5. baz(); cli();

6. while (x > 0) {

7. sti();

8. do_work();

9. cli();

10. }

11. sti();

12.}

Path 2 (before stmt): true/1 loop

2: is_enabled

3: is_enabled

6: is_disabled

7: is_disabled

8: is_enabled

9: is_enabled

11: is_disabled

already been here

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

20

Example

1. void foo(int x) {

2. if (x == 0)

3. bar(); cli();

4. else

5. baz(); cli();

6. while (x > 0) {

7. sti();

8. do_work();

9. cli();

10. }

11. sti();

12.}

Path 3 (before stmt): true/2+
loops

2: is_enabled

3: is_enabled

6: is_disabled

7: is_disabled

8: is_enabled

9: is_enabled

6: is_disabled

already been here

11

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

21

Example

1. void foo(int x) {

2. if (x == 0)

3. bar(); cli();

4. else

5. baz(); cli();

6. while (x > 0) {

7. sti();

8. do_work();

9. cli();

10. }

11. sti();

12.}

Path 4 (before stmt): false

2: is_enabled

5: is_enabled

6: is_disabled

already been here

all of state space has been
explored

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

22

Outline

• Why static analysis?

• What is static analysis?

• How does static analysis work?

• AST Analysis
• Abstract Syntax Tree Representation

• Simple Bug Finders: FindBugs

• Dataflow Analysis

12

Representing Programs

• To analyze software automatically, we

must be able to represent it precisely

• Some representations
• Source code

• Abstract syntax trees

• Control flow graph

• Bytecode

• Assembly code

• Binary code

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

23

Abstract Syntax Trees

• A tree representation of source code

• Based on the language grammar
• One type of node for each production

• S ::= x := a � :=

x a

• S ::= while b do S � while

b S

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

24

13

Parsing: Source to AST

• Parsing process (top down)
1. Determine the top-level production to use

2. Create an AST element for that production

3. Determine what text corresponds to each

child of the AST element

4. Recursively parse each child

• Algorithms have been studied in detail
• For this course you only need the intuition

• Details covered in compiler courses

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

25

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?

• What are the parts?

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

26

14

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?

;

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

27

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

y := x z := 1; whileK

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

28

15

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:= z := 1; whileK

y x

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

29

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:= ;

y x z := 1 whileK

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

30

16

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:= ;

y x := whileK

z 1

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

31

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:= ;

y x := while

z 1 y>1 z :=...

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

32

17

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:= ;

y x := while

z 1 > z :=...

y 1

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

33

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:= ;

y x := while

z 1 > ;

y 1 z:=z*y y:=y-1

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

34

18

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:= ;

y x := while

z 1 > ;

y 1 := y:=y-1

z z*y

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

35

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:= ;

y x := while

z 1 > ;

y 1 := y:=y-1

z *

z y
2/21/2011 17-654: Analysis of Software Artifacts

Static Analysis
36

19

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:= ;

y x := while

z 1 > ;

y 1 := :=

z * y y-1

z y
2/21/2011 17-654: Analysis of Software Artifacts

Static Analysis
37

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:= ;

y x := while

z 1 > ;

y 1 := :=

z * y -

z y y 1
2/21/2011 17-654: Analysis of Software Artifacts

Static Analysis
38

20

Quick Quiz

Draw a parse tree for the function below. You can assume that the
“for” statement is at the top of the parse tree.

void copy_bytes(char dest[], char source[], int n) {

for (int i = 0; i < n; ++i)

dest[i] = source[i];

}

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

39

Matching AST against Bug Patterns

• AST Walker Analysis
• Walk the AST, looking for nodes of a particular type
• Check the immediate neighborhood of the node for a bug pattern
• Warn if the node matches the pattern

• Semantic grep
• Like grep, looking for simple patterns
• Unlike grep, consider not just names, but semantic structure of

AST
• Makes the analysis more precise

• Common architecture based on Visitors
• class Visitor has a visitX method for each type of AST node X
• Default Visitor code just descends the AST, visiting each node
• To find a bug in AST element of type X, override visitX

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

40

21

Behavioral Patterns: Visitor

• Applicability
• Structure with many classes
• Want to perform operations

that depend on classes
• Set of classes is stable
• Want to define new

operations

• Consequences
• Easy to add new operations
• Groups related behavior in

Visitor
• Adding new elements is

hard
• Visitor can store state
• Elements must expose

interface

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

41

Example: Shifting by more than 31 bits

class BadShiftAnalysis extends Visitor

visitShiftExpression(ShiftExpression e) {

if (type of e’s left operand is int)

if (e’s right operand is a constant)

if (value of constant < 0 or > 31)

warn(“Shifting by less than 0 or more

than 31 is meaningless”)

super.visitShiftExpression(e);

}

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

42

22

Example: String concatenation in a loop

class StringConcatLoopAnalysis extends Visitor

private int loopLevel = 0;

visitStringConcat(StringConcat e) {

if (loopLevel > 0)

warn(“Performance issue: String concatenation in loop (use
StringBuffer instead)”)

super.visitStringConcat(e); // visits AST children

}

visitWhile(While e) {

loopLevel++;

super.visitWhile(e); // visits AST children

loopLevel--;

}

// similar for other looping constructs

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

43

Example Tool: FindBugs

• Origin: research project at U. Maryland
• Now freely available as open source
• Standalone tool, plugins for Eclipse, etc.

• Checks over 250 “bug patterns”
• Over 100 correctness bugs
• Many style issues as well
• Includes the two examples just shown

• Focus on simple, local checks
• Similar to the patterns we’ve seen
• But checks bytecode, not AST

• Harder to write, but more efficient and doesn’t require source

• http://findbugs.sourceforge.net/

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

44

23

Example FindBugs Bug Patterns

• Correct equals()

• Use of ==

• Closing streams

• Illegal casts

• Null pointer dereference

• Infinite loops

• Encapsulation problems

• Inconsistent synchronization

• Inefficient String use

• Dead store to variable

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

45

FindBugs Experiences

• Useful for learning idioms of Java
• Rules about libraries and interfaces

• e.g. equals()

• Customization is important
• Many warnings may be irrelevant, others may be

important – depends on domain
• e.g. embedded system vs. web application

• Useful for pointing out things to examine
• Not all are real defects
• Turn off false positive warnings for future analyses

on codebase

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

46

24

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

47

Outline

• Why static analysis?

• What is static analysis?

• How does static analysis work?

• AST Analysis

• Dataflow Analysis
• Control Flow Graph Representation

• Simple Flow Analysis: Zero/Null Values

Motivation: Dataflow Analysis

• Catch interesting errors
• Non-local: x is null, x is written to y, y is

dereferenced

• Optimize code
• Reduce run time, memory usageK

• Soundness required
• Safety-critical domain

• Assure lack of certain errors
• Cannot optimize unless it is proven safe

• Correctness comes before performance

• Automation required
• Dramatically decreases cost
• Makes cost/benefit worthwhile for far more

purposes

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

48

25

Dataflow analysis

• Tracks value flow through program
• Can distinguish order of operations

• Did you read the file after you closed it?
• Does this null value flow to that dereference?

• Differs from AST walker
• Walker simply collects information or checks patterns
• Tracking flow allows more interesting properties

• Abstracts values
• Chooses abstraction particular to property

• Is a variable null?
• Is a file open or closed?
• Could a variable be 0?
• Where did this value come from?

• More specialized than Hoare logic
• Hoare logic allows any property to be expressed
• Specialization allows automation and soundness

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

49

Zero Analysis

• Could variable x be 0?
• Useful to know if you have an expression y/x
• In C, useful for null pointer analysis

• Program semantics
• η maps every variable to an integer

• Semantic abstraction
• σ maps every variable to non zero (NZ), zero(Z),

or maybe zero (MZ)
• Abstraction function for integers αZI :

• αZI(0) = Z
• αZI(n) = NZ for all n ≠ 0

• We may not know if a value is zero or not
• Analysis is always an approximation
• Need MZ option, too

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

50

26

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

51

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦αZI(10)]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

52

27

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

53

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦σ(x)]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

54

28

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

55

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦αZI(0)]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

56

29

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

57

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

58

30

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

59

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦Z]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

60

31

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦NZ]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

61

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦NZ]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

62

32

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦NZ]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

63

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦NZ]

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

64

33

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦NZ]

Nothing more happens!

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

65

Zero Analysis Termination

• The analysis values will not change, no matter how
many times we execute the loop
• Proof: our analysis is deterministic
• We run through the loop with the current analysis values,

none of them change
• Therefore, no matter how many times we run the loop, the

results will remain the same
• Therefore, we have computed the dataflow analysis results

for any number of loop iterations

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

66

34

Zero Analysis Termination

• The analysis values will not change, no matter how
many times we execute the loop
• Proof: our analysis is deterministic
• We run through the loop with the current analysis values,

none of them change
• Therefore, no matter how many times we run the loop, the

results will remain the same
• Therefore, we have computed the dataflow analysis results

for any number of loop iterations

• Why does this work
• If we simulate the loop, the data values could (in principle)

keep changing indefinitely
• There are an infinite number of data values possible
• Not true for 32-bit integers, but might as well be true

• Counting to 232 is slow, even on today’s processors
• Dataflow analysis only tracks 2 possibilities!

• So once we’ve explored them all, nothing more will change
• This is the secret of abstraction

• We will make this argument more precise later
2/21/2011 17-654: Analysis of Software Artifacts

Static Analysis
67

Using Zero Analysis

• Visit each division in the program

• Get the results of zero analysis for the divisor

• If the results are definitely zero, report an error

• If the results are possibly zero, report a warning

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

68

35

Quick Quiz

Program Statement Analysis Info after that statement

0: <beginning of program>

1: x := 0

2: y := 1

3: if (z == 0)

4: x := x + y

5: else y := y – 1

6: w := y

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

69

• Fill in the table to show how what information zero

analysis will compute for the function given.

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

70

Outline

• Why static analysis?

• What is static analysis?

• How does static analysis work?

• AST Analysis

• Dataflow Analysis

• Further Examples and Discussion

36

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

71

Static Analysis Definition

• Static program analysis is the systematic examination
of an abstraction of a program’s state space

• Simple model checking for data races
• Data Race defined:

[From Savage et al., Eraser: A Dynamic Data Race Detector for
Multithreaded Programs]
• Two threads access the same variable
• At least one access is a write
• No explicit mechanism prevents the accesses from being

simultaneous
• Abstraction

• Program counter of each thread, state of each lock
• Abstract away heap and program variables

• Systematic
• Examine all possible interleavings of all threads

• Flag error if no synchronization between accesses
• Exploration is exhaustive, since abstract state abstracts all concrete

program state

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

72

Model Checking for Data Races

thread1() {

read x;

}

thread2() {

lock();

write x;

unlock();

}

Interleaving 1: OK

Thread 1 Thread 2

read x

lock

write x

unlock

37

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

73

Model Checking for Data Races

thread1() {

read x;

}

thread2() {

lock();

write x;

unlock();

}

Interleaving 1: OK

Interleaving 2: OK

Thread 1 Thread 2

read x

lock

write x

unlock

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

74

Model Checking for Data Races

thread1() {

read x;

}

thread2() {

lock();

write x;

unlock();

}

Interleaving 1: OK

Interleaving 2: OK

Interleaving 3: Race

Thread 1 Thread 2

read x

lock

write x

unlock

38

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

75

Model Checking for Data Races

thread1() {

read x;

}

thread2() {

lock();

write x;

unlock();

}

Interleaving 1: OK

Interleaving 2: OK

Interleaving 3: Race

Interleaving 4: Race

Thread 1 Thread 2

read x

lock

write x

unlock

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

76

Compare Analysis to Testing, Inspection

• Why might it be hard to test/inspect for:
• Null pointer errors?

• Forgetting to re-enable interrupts?

• Race conditions?

39

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

77

Compare Analysis to Testing, Inspection

• Null Pointers, Interrupts
• Testing

• Errors typically on uncommon paths or uncommon input
• Difficult to exercise these paths

• Inspection
• Non-local and thus easy to miss

• Object allocation vs. dereference
• Disable interrupts vs. return statement

• Finding Data Races
• Testing

• Cannot force all interleavings

• Inspection
• Too many interleavings to consider
• Check rules like “lock protects x” instead

• But checking is non-local and thus easy to miss a case

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

78

Sound Analyses

• A sound analysis never misses an error
[of the relevant error category]

• No false negatives (missed errors)
• Requires exhaustive exploration of state space

• Inductive argument for soundness
• Start program with abstract state for all possible initial

concrete states
• At each step, ensure new abstract state covers all concrete

states that could result from executing statement on any
concrete state from previous abstract state

• Once no new abstract states are reachable, by induction all
concrete program executions have been considered

40

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

79

Soundness and Precision

Program state covered in actual execution

Program state covered by abstract

execution with analysis

unsound

(false negative)

imprecise

(false positive)

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

80

Soundness and Precision

Program state covered in actual execution

Program state covered by abstract

execution with analysis

unsound

(false negative)

imprecise

(false positive)

41

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

81

Abstraction and Soundness

• Consider “Sound Testing”
[testing that finds every bug]

• Requires executing program on every input
• (and on all interleavings of threads)

• Infinite number of inputs for realistic programs
• Therefore impossible in practice

• Abstraction
• Infinite state space � finite set of states

• Can achieve soundness by exhaustive exploration

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

82

Zero Analysis Precision

1. void foo(unsigned n) {

2. int x = -1;

3. x = x+2;

4. int y = 10/x;

5. }

What will be the result of static
analysis?

Path 1 (after stmt):

1: ∅

2: x↦NZ
3: x↦MZ

warning: possible divide by zero at
line 4

False positive! (not a real error)

What went wrong?

• Before statement 3 we only know
x is nonzero

• We need to know that x is -1

42

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

83

Regaining Zero Analysis Precision

• Keep track of exact value of variables
• Infinite states

• or 232, close enough

• Add a -1 state
• Not general enough

• Track formula for every variable
• Undecidable for arbitrary formulas

• Track restricted formulas
• Decent solution in practice

• Presburger arithmetic

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

84

Analysis as an Approximation

• Analysis must approximate in practice
• May report errors where there are really none

• False positives
• May not report errors that really exist

• False negatives
• All analysis tools have either false negatives or false

positives

• Approximation strategy
• Find a pattern P for correct code

• which is feasible to check (analysis terminates quickly),
• covers most correct code in practice (low false positives),
• which implies no errors (no false negatives)

• Analysis can be pretty good in practice
• Many tools have low false positive/negative rates
• A sound tool has no false negatives

• Never misses an error in a category that it checks

43

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

85

Attribute-Specific Analysis

• Analysis is specific to
• A quality attribute

• Race condition
• Buffer overflow, divide by zero
• Use after free

• A strategy for verifying that attribute
• Protect each shared piece of data with a lock
• Presburger arithmetic decision procedure for array

indexes, zero analysis
• Only one variable points to each memory location

• Analysis is inappropriate for some attributes
• Approach to assurance is ad-hoc and follows no

clear pattern
• No known decision procedure for checking an

assurance pattern that is followed
• Examples?

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

86

Soundness Tradeoffs

• Sound Analysis
• Assurance that no

bugs are left
• Of the target error

class

• Can focus other

QA resources on

other errors

• May have more

false positives

• Unsound Analysis
• No assurance that

bugs are gone

• Must still apply

other QA

techniques

• May have fewer

false positives

44

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

87

Which to Choose?

• Cost/Benefit tradeoff
• Benefit: How valuable is the bug?

• How much does it cost if not found?

• How expensive to find using testing/inspection?

• Cost: How much did the analysis cost?
• Effort spent running analysis, interpreting results –

includes false positives

• Effort spent finding remaining bugs (for unsound analysis)

• Rule of thumb
• For critical bugs that testing/inspection can’t find, a

sound analysis is worth it
• As long as false positive rate is acceptable

• For other bugs, maximize engineer productivity

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

88

Questions?

45

Additional Slides/Examples

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

89

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

90

Static Analysis Definition

• Static program analysis is the systematic
examination of an abstraction of a program’s
state space

• Simple array bounds analysis
• Abstraction

• Given array a, track whether each integer variable and
expression is <,=, or > than length(a)
• Abstract away precise values of variables and expressions
• Abstract away the heap

• Systematic
• Examines all paths through a function
• Each path explored for each reachable state

• Exploration is exhaustive, since abstract state abstracts all
concrete program state

46

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

91

Array Bounds Example

1. void foo(unsigned n) {

2. char str = new char[n+1];

3. int idx = 0;

4. if (n > 5)

5. idx = n

6. else

7. idx = n+1

8. str[idx] = ‘c’;

9. }

Path 1 (before stmt): then branch

2: ∅

3: n↦<
4: n↦<, idx↦<
5: n↦<, idx↦<
8: n↦<, idx↦<
9: n↦<, idx↦<

no errors

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

92

Array Bounds Example

1. void foo(unsigned n) {

2. char str = new char[n+1];

3. int idx = 0;

4. if (n > 5)

5. idx = n

6. else

7. idx = n+1

8. str[idx] = ‘c’;

9. }

Path 1 (before stmt): else branch

2: ∅

3: n↦<
4: n↦<, idx↦<
7: n↦<, idx↦<,=
8: n↦<, idx↦<,=
9: n↦<, idx↦<,=

error: array out of bounds at line 8

