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Find the Bug!

disable interrupts

re-enable interrupts

ERROR: returning

with interrupts disabled

Source: Engler et al., Checking System Rules 

Using System-Specific, Programmer-Written 

Compiler Extensions, OSDI ’00.
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Metal Interrupt Analysis

is_enabled

is_disabled

disableenable

enable =>

err(double enable)

disable =>

err(double disable)

end path =>

err(end path

with/intr

disabled)

Source: Engler et al., Checking System Rules 

Using System-Specific, Programmer-Written 

Compiler Extensions, OSDI ’00.
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Applying the Analysis

initial state is_enabled

transition to is_disabled

transition to is_enabled

final state is_enabled is OK

final state is_disabled: ERROR!

Source: Engler et al., Checking System Rules 

Using System-Specific, Programmer-Written 

Compiler Extensions, OSDI ’00.
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Outline

• Why static analysis?
• The limits of testing and inspection

• What is static analysis?

• How does static analysis work?

• AST Analysis

• Dataflow Analysis
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Process, Cost, and Quality

CMM: 1           2           3           4          5

Software
Quality

S&S, Agile, RUP, etc: less rigorous      . . .    more rigorous

Process intervention, 
testing, and inspection 

yield first-order 
software quality

improvement

Additional technology 
and tools are needed to 

close the gap 

Critical Systems 
Acceptability

Process
Rigor, Cost

Slide: William Scherlis

Perfection
(unattainable)
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Root Causes of Errors

• Requirements problems
• Don’t fit user needs

• Design flaws
• Lacks required qualities

• Implementation errors
• Assign
• Checking
• Algorithm
• Timing
• Interface
• Relationship

Taxonomy: [Chillarege et al., Orthogonal Defect Classification]

Static Analysis Contributions

Does design achieve goals?

Is design implemented right?

Is data initialized?

Is dereference/indexing valid?

Are threads synchronized?

Are interface semantics followed?

Are invariants maintained?

H
a

rd
H

a
rd

�Security
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Existing Approaches

• Testing: is the answer 

right?
• Verifies features work

• Finds algorithmic 

problems

• Inspection: is the quality 

there?
• Missing requirements

• Design problems

• Style issues

• Application logic

• Limitations
• Non-local interactions

• Uncommon paths

• Non-determinism

• Static analysis: will I get 

an answer?
• Verifies non-local 

consistency

• Checks all paths

• Considers all non-

deterministic choices
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Static Analysis Finds “Mechanical” Errors

• Defects that result from inconsistently following simple, 
mechanical design rules

• Security vulnerabilities
• Buffer overruns, unvalidated inputK

• Memory errors
• Null dereference, uninitialized dataK

• Resource leaks
• Memory, OS resourcesK

• Violations of API or framework rules
• e.g. Windows device drivers; real time libraries; GUI frameworks

• Exceptions
• Arithmetic/library/user-defined

• Encapsulation violations
• Accessing internal data, calling private functionsK

• Race conditions
• Two threads access the same data without synchronization
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Empirical Results on Static Analysis

• Nortel study [Zheng et al. 2006]
• 3 C/C++ projects

• 3 million LOC total

• Early generation static analysis tools

• Conclusions
• Cost per fault of static analysis 61-72% compared 

to inspections

• Effectively finds assignment, checking faults

• Can be used to find potential security 

vulnerabilities
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Empirical Results on Static Analysis

• InfoSys study [Chaturvedi 2005]
• 5 projects
• Average 700 function points 

each
• Compare inspection with and 

without static analysis

• Conclusions
• Fewer defects
• Higher productivity

Adapted from [Chaturvedi 2005]
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Quality Assurance at Microsoft (Part 1)

• Original process: manual code inspection
• Effective when system and team are small

• Too many paths to consider as system grew 

• Early 1990s: add massive system and unit testing
• Tests took weeks to run

• Diversity of platforms and configurations

• Sheer volume of tests

• Inefficient detection of common patterns, security holes
• Non-local, intermittent, uncommon path bugs

• Was treading water in Windows Vista development

• Early 2000s: add static analysis
• More on this later
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Outline

• Why static analysis?

• What is static analysis?
• Abstract state space exploration

• How does static analysis work?

• What do practical tools look like?

• How does it fit into an organization?



8

2/21/2011 17-654: Analysis of Software Artifacts                  
Static Analysis 

15

Static Analysis Definition

• Static program analysis is the systematic 
examination of an abstraction of a program’s 
state space

• Metal interrupt analysis
• Abstraction

• 2 states: enabled and disabled
• All program information—variable values, heap contents—is 

abstracted by these two states, plus the program counter

• Systematic
• Examines all paths through a function

• What about loops?  More laterK
• Each path explored for each reachable state

• Assume interrupts initially enabled (Linux practice)
• Since the two states abstract all program information, the 

exploration is exhaustive
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Outline

• Why static analysis?

• What is static analysis?

• How does static analysis work?
• Termination

• AST Analysis

• Dataflow Analysis
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How can Analysis Search All Paths?

• How many paths are in a program?
• Exponential # paths with if statements
• Infinite # paths with loops
• How could we possibly cover them all?

• Secret weapon: Abstraction
• Finite number of (abstract) states
• If you come to a statement and you’ve already 

explored a state for that statement, stop.
• The analysis depends only on the code and the current 

state
• Continuing the analysis from this program point and state 

would yield the same results you got before
• If the number of states isn’t finite, too bad

• Your analysis may not terminate
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Example

1. void foo(int x) {

2. if (x == 0)

3. bar(); cli();

4. else

5. baz(); cli();

6. while (x > 0) {

7. sti();

8. do_work();

9. cli();

10. }

11. sti();

12.}

Path 1 (before stmt): true/no loop

2: is_enabled

3: is_enabled

6: is_disabled

11: is_disabled

12: is_enabled

no errors
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Example

1. void foo(int x) {

2. if (x == 0)

3. bar(); cli();

4. else

5. baz(); cli();

6. while (x > 0) {

7. sti();

8. do_work();

9. cli();

10. }

11. sti();

12.}

Path 2 (before stmt): true/1 loop

2: is_enabled

3: is_enabled

6: is_disabled

7: is_disabled

8: is_enabled

9: is_enabled

11: is_disabled

already been here
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Example

1. void foo(int x) {

2. if (x == 0)

3. bar(); cli();

4. else

5. baz(); cli();

6. while (x > 0) {

7. sti();

8. do_work();

9. cli();

10. }

11. sti();

12.}

Path 3 (before stmt): true/2+ 
loops

2: is_enabled

3: is_enabled

6: is_disabled

7: is_disabled

8: is_enabled

9: is_enabled

6: is_disabled

already been here
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Example

1. void foo(int x) {

2. if (x == 0)

3. bar(); cli();

4. else

5. baz(); cli();

6. while (x > 0) {

7. sti();

8. do_work();

9. cli();

10. }

11. sti();

12.}

Path 4 (before stmt): false

2: is_enabled

5: is_enabled

6: is_disabled

already been here

all of state space has been 
explored

2/21/2011 17-654: Analysis of Software Artifacts                  
Static Analysis 

22

Outline

• Why static analysis?

• What is static analysis?

• How does static analysis work?

• AST Analysis
• Abstract Syntax Tree Representation

• Simple Bug Finders: FindBugs

• Dataflow Analysis
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Representing Programs

• To analyze software automatically, we 

must be able to represent it precisely

• Some representations
• Source code

• Abstract syntax trees

• Control flow graph

• Bytecode

• Assembly code

• Binary code
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Abstract Syntax Trees

• A tree representation of source code

• Based on the language grammar
• One type of node for each production

• S ::= x := a � :=

x         a

• S ::= while b do S � while

b             S

2/21/2011 17-654: Analysis of Software Artifacts                  
Static Analysis 

24



13

Parsing: Source to AST

• Parsing process (top down)
1. Determine the top-level production to use

2. Create an AST element for that production

3. Determine what text corresponds to each 

child of the AST element

4. Recursively parse each child

• Algorithms have been studied in detail
• For this course you only need the intuition

• Details covered in compiler courses
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Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?

• What are the parts?
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Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?

;
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Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

y := x        z := 1; whileK
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Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:=           z := 1; whileK

y      x
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Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:=                 ;

y      x   z := 1    whileK
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Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:=                 ;

y      x      :=       whileK

z    1
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Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:=                 ;

y      x      :=       while

z    1   y>1    z :=...
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Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:=                 ;

y      x      :=       while

z    1     >      z :=...

y   1
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Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:=                 ;

y      x      :=       while

z    1     >        ;

y   1  z:=z*y y:=y-1
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Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:=                 ;

y      x      :=       while

z    1     >        ;

y   1    :=      y:=y-1

z     z*y
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Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:=                 ;

y      x      :=       while

z    1     >        ;

y   1    :=      y:=y-1

z       *

z     y
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Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:=                 ;

y      x      :=       while

z    1     >        ;

y   1    :=        :=

z       *       y     y-1

z     y
2/21/2011 17-654: Analysis of Software Artifacts                  

Static Analysis 
37

Parsing Example

y := x;

z := 1;

while y>1 do

z := z * y;

y := y – 1

• Top-level production?
• S

1
; S
2

• What are the parts?
• y := x

• z := 1; while K

;

:=                 ;

y      x      :=       while

z    1     >        ;

y   1    :=        :=

z       *       y       -

z     y       y 1
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Quick Quiz

Draw a parse tree for the function below. You can assume that the 
“for” statement is at the top of the parse tree.

void copy_bytes(char dest[], char source[], int n) {

for (int i = 0; i < n; ++i)

dest[i] = source[i];

}
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Matching AST against Bug Patterns

• AST Walker Analysis
• Walk the AST, looking for nodes of a particular type
• Check the immediate neighborhood of the node for a bug pattern
• Warn if the node matches the pattern

• Semantic grep
• Like grep, looking for simple patterns
• Unlike grep, consider not just names, but semantic structure of 

AST
• Makes the analysis more precise

• Common architecture based on Visitors
• class Visitor has a visitX method for each type of AST node X
• Default Visitor code just descends the AST, visiting each node
• To find a bug in AST element of type X, override visitX
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Behavioral Patterns: Visitor

• Applicability
• Structure with many classes
• Want to perform operations 

that depend on classes
• Set of classes is stable
• Want to define new 

operations

• Consequences
• Easy to add new operations
• Groups related behavior in 

Visitor
• Adding new elements is 

hard
• Visitor can store state
• Elements must expose 

interface
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Example: Shifting by more than 31 bits

class BadShiftAnalysis extends Visitor

visitShiftExpression(ShiftExpression e) {

if (type of e’s left operand is int)

if (e’s right operand is a constant)

if (value of constant < 0 or > 31)

warn(“Shifting by less than 0 or more

than 31 is meaningless”)

super.visitShiftExpression(e);

}
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Example: String concatenation in a loop

class StringConcatLoopAnalysis extends Visitor

private int loopLevel = 0;

visitStringConcat(StringConcat e) {

if (loopLevel > 0)

warn(“Performance issue: String concatenation in loop (use 
StringBuffer instead)”)

super.visitStringConcat(e); // visits AST children

}

visitWhile(While e) {

loopLevel++;

super.visitWhile(e); // visits AST children

loopLevel--;

}

// similar for other looping constructs
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Example Tool: FindBugs

• Origin: research project at U. Maryland
• Now freely available as open source
• Standalone tool, plugins for Eclipse, etc.

• Checks over 250 “bug patterns”
• Over 100 correctness bugs
• Many style issues as well
• Includes the two examples just shown

• Focus on simple, local checks
• Similar to the patterns we’ve seen
• But checks bytecode, not AST

• Harder to write, but more efficient and doesn’t require source

• http://findbugs.sourceforge.net/
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Example FindBugs Bug Patterns

• Correct equals()

• Use of ==

• Closing streams

• Illegal casts

• Null pointer dereference

• Infinite loops

• Encapsulation problems

• Inconsistent synchronization

• Inefficient String use

• Dead store to variable
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FindBugs Experiences

• Useful for learning idioms of Java
• Rules about libraries and interfaces

• e.g. equals()

• Customization is important
• Many warnings may be irrelevant, others may be 

important – depends on domain
• e.g. embedded system vs. web application

• Useful for pointing out things to examine
• Not all are real defects
• Turn off false positive warnings for future analyses 

on codebase
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Outline

• Why static analysis?

• What is static analysis?

• How does static analysis work?

• AST Analysis

• Dataflow Analysis
• Control Flow Graph Representation

• Simple Flow Analysis: Zero/Null Values

Motivation: Dataflow Analysis

• Catch interesting errors
• Non-local: x is null, x is written to y, y is 

dereferenced

• Optimize code
• Reduce run time, memory usageK

• Soundness required
• Safety-critical domain

• Assure lack of certain errors
• Cannot optimize unless it is proven safe

• Correctness comes before performance

• Automation required
• Dramatically decreases cost
• Makes cost/benefit worthwhile for far more 

purposes
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Dataflow analysis

• Tracks value flow through program
• Can distinguish order of operations

• Did you read the file after you closed it?
• Does this null value flow to that dereference?

• Differs from AST walker
• Walker simply collects information or checks patterns
• Tracking flow allows more interesting properties

• Abstracts values
• Chooses abstraction particular to property

• Is a variable null?
• Is a file open or closed?
• Could a variable be 0?
• Where did this value come from?

• More specialized than Hoare logic
• Hoare logic allows any property to be expressed
• Specialization allows automation and soundness
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Zero Analysis

• Could variable x be 0?
• Useful to know if you have an expression y/x
• In C, useful for null pointer analysis

• Program semantics
• η maps every variable to an integer

• Semantic abstraction
• σ maps every variable to non zero (NZ), zero(Z), 

or maybe zero (MZ)
• Abstraction function for integers αZI :

• αZI(0) = Z
• αZI(n) = NZ for all n ≠ 0

• We may not know if a value is zero or not
• Analysis is always an approximation
• Need MZ option, too
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Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]
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Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦αZI(10)]

2/21/2011 17-654: Analysis of Software Artifacts                  
Static Analysis 

52



27

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]
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Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦σ(x)]
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Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]
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Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦αZI(0)]
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Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]
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Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]
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Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]
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Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦Z]
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Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦NZ]
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Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦NZ]
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Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦NZ]

2/21/2011 17-654: Analysis of Software Artifacts                  
Static Analysis 

63

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦NZ]
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Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]

σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦NZ]

Nothing more happens!
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Zero Analysis Termination

• The analysis values will not change, no matter how 
many times we execute the loop
• Proof: our analysis is deterministic
• We run through the loop with the current analysis values, 

none of them change
• Therefore, no matter how many times we run the loop, the 

results will remain the same
• Therefore, we have computed the dataflow analysis results 

for any number of loop iterations
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Zero Analysis Termination

• The analysis values will not change, no matter how 
many times we execute the loop
• Proof: our analysis is deterministic
• We run through the loop with the current analysis values, 

none of them change
• Therefore, no matter how many times we run the loop, the 

results will remain the same
• Therefore, we have computed the dataflow analysis results 

for any number of loop iterations

• Why does this work
• If we simulate the loop, the data values could (in principle) 

keep changing indefinitely
• There are an infinite number of data values possible
• Not true for 32-bit integers, but might as well be true

• Counting to 232 is slow, even on today’s processors
• Dataflow analysis only tracks 2 possibilities!

• So once we’ve explored them all, nothing more will change
• This is the secret of abstraction

• We will make this argument more precise later
2/21/2011 17-654: Analysis of Software Artifacts                  

Static Analysis 
67

Using Zero Analysis

• Visit each division in the program

• Get the results of zero analysis for the divisor

• If the results are definitely zero, report an error

• If the results are possibly zero, report a warning
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Quick Quiz

Program Statement Analysis Info after that statement

0: <beginning of program>

1: x := 0

2: y := 1

3: if (z == 0)

4: x := x + y

5: else y := y – 1

6: w := y
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• Fill in the table to show how what information zero 

analysis will compute for the function given.
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Outline

• Why static analysis?

• What is static analysis?

• How does static analysis work?

• AST Analysis

• Dataflow Analysis

• Further Examples and Discussion
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Static Analysis Definition

• Static program analysis is the systematic examination 
of an abstraction of a program’s state space

• Simple model checking for data races
• Data Race defined:

[From Savage et al., Eraser: A Dynamic Data Race Detector for 
Multithreaded Programs]
• Two threads access the same variable
• At least one access is a write
• No explicit mechanism prevents the accesses from being 

simultaneous
• Abstraction

• Program counter of each thread, state of each lock
• Abstract away heap and program variables

• Systematic
• Examine all possible interleavings of all threads

• Flag error if no synchronization between accesses
• Exploration is exhaustive, since abstract state abstracts all concrete 

program state
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Model Checking for Data Races

thread1() {

read x;

}

thread2() {

lock();

write x;

unlock();

}

Interleaving 1: OK

Thread 1 Thread 2

read x

lock

write x

unlock
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Model Checking for Data Races

thread1() {

read x;

}

thread2() {

lock();

write x;

unlock();

}

Interleaving 1: OK

Interleaving 2: OK

Thread 1 Thread 2

read x

lock

write x

unlock
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Model Checking for Data Races

thread1() {

read x;

}

thread2() {

lock();

write x;

unlock();

}

Interleaving 1: OK

Interleaving 2: OK

Interleaving 3: Race

Thread 1 Thread 2

read x

lock

write x

unlock
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Model Checking for Data Races

thread1() {

read x;

}

thread2() {

lock();

write x;

unlock();

}

Interleaving 1: OK

Interleaving 2: OK

Interleaving 3: Race

Interleaving 4: Race

Thread 1 Thread 2

read x

lock

write x

unlock

2/21/2011 17-654: Analysis of Software Artifacts                  
Static Analysis 

76

Compare Analysis to Testing, Inspection

• Why might it be hard to test/inspect for:
• Null pointer errors?

• Forgetting to re-enable interrupts?

• Race conditions?
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Compare Analysis to Testing, Inspection

• Null Pointers, Interrupts
• Testing

• Errors typically on uncommon paths or uncommon input
• Difficult to exercise these paths

• Inspection
• Non-local and thus easy to miss

• Object allocation vs. dereference
• Disable interrupts vs. return statement

• Finding Data Races
• Testing

• Cannot force all interleavings

• Inspection
• Too many interleavings to consider
• Check rules like “lock protects x” instead

• But checking is non-local and thus easy to miss a case
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Sound Analyses

• A sound analysis never misses an error
[of the relevant error category]

• No false negatives (missed errors)
• Requires exhaustive exploration of state space

• Inductive argument for soundness
• Start program with abstract state for all possible initial 

concrete states
• At each step, ensure new abstract state covers all concrete 

states that could result from executing statement on any 
concrete state from previous abstract state

• Once no new abstract states are reachable, by induction all 
concrete program executions have been considered
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Soundness and Precision

Program state covered in actual execution

Program state covered by abstract

execution with analysis

unsound

(false negative)

imprecise

(false positive)
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Soundness and Precision

Program state covered in actual execution

Program state covered by abstract

execution with analysis

unsound

(false negative)

imprecise

(false positive)
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Abstraction and Soundness

• Consider “Sound Testing”
[testing that finds every bug]

• Requires executing program on every input
• (and on all interleavings of threads)

• Infinite number of inputs for realistic programs
• Therefore impossible in practice

• Abstraction
• Infinite state space � finite set of states

• Can achieve soundness by exhaustive exploration
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Zero Analysis Precision

1. void foo(unsigned n) {

2. int x = -1;

3. x = x+2;

4. int y = 10/x;

5. }

What will be the result of static 
analysis?

Path 1 (after stmt):

1: ∅

2: x↦NZ
3: x↦MZ

warning: possible divide by zero at 
line 4

False positive! (not a real error)

What went wrong?

• Before statement 3 we only know
x is nonzero

• We need to know that x is -1
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Regaining Zero Analysis Precision

• Keep track of exact value of variables
• Infinite states

• or 232, close enough

• Add a -1 state
• Not general enough

• Track formula for every variable
• Undecidable for arbitrary formulas

• Track restricted formulas
• Decent solution in practice

• Presburger arithmetic
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Analysis as an Approximation

• Analysis must approximate in practice
• May report errors where there are really none

• False positives
• May not report errors that really exist

• False negatives
• All analysis tools have either false negatives or false 

positives

• Approximation strategy
• Find a pattern P for correct code

• which is feasible to check (analysis terminates quickly),
• covers most correct code in practice (low false positives),
• which implies no errors (no false negatives)

• Analysis can be pretty good in practice
• Many tools have low false positive/negative rates
• A sound tool has no false negatives

• Never misses an error in a category that it checks
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Attribute-Specific Analysis

• Analysis is specific to
• A quality attribute

• Race condition
• Buffer overflow, divide by zero
• Use after free

• A strategy for verifying that attribute
• Protect each shared piece of data with a lock
• Presburger arithmetic decision procedure for array 

indexes, zero analysis
• Only one variable points to each memory location

• Analysis is inappropriate for some attributes
• Approach to assurance is ad-hoc and follows no 

clear pattern
• No known decision procedure for checking an 

assurance pattern that is followed
• Examples?
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Soundness Tradeoffs

• Sound Analysis
• Assurance that no 

bugs are left
• Of the target error 

class

• Can focus other 

QA resources on 

other errors

• May have more 

false positives

• Unsound Analysis
• No assurance that 

bugs are gone

• Must still apply 

other QA 

techniques

• May have fewer 

false positives
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Which to Choose?

• Cost/Benefit tradeoff
• Benefit: How valuable is the bug?

• How much does it cost if not found?

• How expensive to find using testing/inspection?

• Cost: How much did the analysis cost?
• Effort spent running analysis, interpreting results –

includes false positives

• Effort spent finding remaining bugs (for unsound analysis)

• Rule of thumb
• For critical bugs that testing/inspection can’t find, a 

sound analysis is worth it
• As long as false positive rate is acceptable

• For other bugs, maximize engineer productivity
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Questions?
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Additional Slides/Examples

2/21/2011 17-654: Analysis of Software Artifacts                  
Static Analysis 

89

2/21/2011 17-654: Analysis of Software Artifacts                  
Static Analysis 

90

Static Analysis Definition

• Static program analysis is the systematic 
examination of an abstraction of a program’s 
state space

• Simple array bounds analysis
• Abstraction

• Given array a, track whether each integer variable and 
expression is <,=, or > than length(a)
• Abstract away precise values of variables and expressions
• Abstract away the heap

• Systematic
• Examines all paths through a function
• Each path explored for each reachable state

• Exploration is exhaustive, since abstract state abstracts all 
concrete program state
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Array Bounds Example

1. void foo(unsigned n) {

2. char str = new char[n+1];

3. int idx = 0;

4. if (n > 5)

5. idx = n

6. else

7. idx = n+1

8. str[idx] = ‘c’;

9. }

Path 1 (before stmt): then branch

2: ∅

3: n↦<
4: n↦<, idx↦<
5: n↦<, idx↦<
8: n↦<, idx↦<
9: n↦<, idx↦<

no errors
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Array Bounds Example

1. void foo(unsigned n) {

2. char str = new char[n+1];

3. int idx = 0;

4. if (n > 5)

5. idx = n

6. else

7. idx = n+1

8. str[idx] = ‘c’;

9. }

Path 1 (before stmt): else branch

2: ∅

3: n↦<
4: n↦<, idx↦<
7: n↦<, idx↦<,=
8: n↦<, idx↦<,=
9: n↦<, idx↦<,=

error: array out of bounds at line 8


