Introduction to Static Analysis

17-654: Analysis of Software Artifacts

Jonathan Aldrich
L]

H ,=

&/
2/21/2011 17-654: Analysis of Software Artifacts

Static Analysis
-
. Source: Engler et al., Checking System Rules
F I n d th e B u g ' Using System-Specific, Programmer-Written
" Compiler Extensions, OSDI '00.

/* From Linux 2.3.99 drivers/block/raid5.c */
static struct buffer_head *
get_free_buffer(struct stripe_head *sh,
int b_size) {
struct buffer_head *bh;
unsigned long flags;

save_flags(flags) ; disable interrupts
cli();

if ((bh = sh->buffer_pool) == NULL)

return NULL; <—
sh->buffer_pool = bh->b_next;
bh->b_size = b_size;
restore_flags{flags);
return bh;

ERROR: returning
with interrupts disabled

re-enable interrupts

}

2/21/2011 17-654: Analysis of Software Artifacts 2
Static Analysis

M etal I nte rru pt An a IyS i S Source: Engler et al., Checking System Rules

Using System-Specific, Programmer-Written

{ #include "linux-includes.h" } Compiler Extensions, OSDI '00.
sm check_interrupts {
// Variables enable =>

// used in patterns err(double enable)
decl { unsigned } flags;

// Patterns \

// to specify enable/disable functioms.
pat enable = { sti(); }

| { restore_flags(flags); } ;
pat disable = { c1li(); };

is_enabled

enable

// States is_disabled g path =>
// The first state is the initial state. err(end ath
is_enabled: disable ==> is_disabled . .p

| enable ==> { err('"double enable"); } with/intr

; disable => disabled)
is_disabled: enable ==> is_enabled Isable _
| disable ==> { err("double disable'); } err(dOUble dlsable)
// Special pattern that matches when the SM
// hits the end of any path in this state.
| end_of_path ==
{ err("exiting w/intr disabled!"); }

rtifacts 3

Source: Engler et al., Checking System Rules

Ap p I yi n g th e An a IyS i S Using System-Specific, Programmer-Written

Compiler Extensions, OSDI '00.

/* From Linux 2.3.99 drivers/block/raid5.c */
static struct buffer_head *
get_free_buffer(struct stripe_head *sh, jnitial state is enabled
int b_size) { -
struct buffer_head *bh;
unsigned long flags;

save_flags(flags);
cli(); transition to is_disabled
if ((bh = sh->buffer_pool) == NULL)
return NULL; final state is_disabled: ERROR!
sh->buffer_pool = bh->b_next;
bh->b_size = b_size;
restore_flags(flags) ; transition to is_enabled
return bh; final state is_enabled is OK

}

2/21/2011 17-654: Analysis of Software Artifacts 4
Static Analysis

Outline

« Why static analysis?
« The limits of testing and inspection

* What is static analysis?

* How does static analysis work?
« AST Analysis

« Dataflow Analysis

2/21/2011 17-654: Analysis of Software Artifacts 5
Static Analysis

haz been shut event damage

following file: s

our
e

. - address FBF ; FEFESOOO,

Process, Cost, and Quality

Slide: William Scherlis

4 Process intervention,
testing, and inspection
yield first-order

Additional technology
and tools are needed to

; close the ga
software quality) gap
improvement
Perfection
- - -"=-==" = (unattainable)
Critical Systems
e N = Acceptability
Software|
Quality
————+——+——+— _Process
cMM: 1 2 3 4 5 Rigor, Cost
S&S, Agile, RUP, etc: lessrigorous ... more rigorous
2/21/2011 17-654: Analysis of Software Artifacts 7

Static Analysis

Root Causes of Errors

Requirements problems
» Don't fit user needs
Static Analysis Contributions

+ Design flaws . .
& ¢ Lacks required qualities «— Does design achieve goals?
T Is design implemented right?
* Implementation errors
* Assign < Is data initialized?
Security® Checking < Is dereference/indexing valid?
* Algorithm
° Y¢ Timing < Are threads synchronized?
K Y% Interface < Are interface semantics followed?
Y¢ Relationship Are invariants maintained?

Taxonomy: [Chillarege et al., Orthogonal Defect Classification]

2/21/2011 17-654: Analysis of Software Artifacts 8
Static Analysis

Existing Approaches

« Testing: is the answer « Limitations
right? Non-local interactions
* Verifies features work * Uncommon paths
* Finds algorithmic * Non-determinism
problems

Static analysis: will | get

an answer?

Verifies non-local

consistency

* Checks all paths

» Considers all non-
deterministic choices

* Inspection: is the qualit
there?
* Missing requirements
* Design problems
» Style issues
* Application logic

2/21/2011 17-654: Analysis of Software Artifacts 9
Static Analysis

Static Analysis Finds “Mechanical” Errors

« Defects that result from inconsistently following simple,
mechanical design rules

* Security vulnerabilities
» Buffer overruns, unvalidated input...

* Memory errors
* Null dereference, uninitialized data...

* Resource leaks
* Memory, OS resources...

* Violations of API or framework rules
* e.g. Windows device drivers; real time libraries; GUI frameworks

* Exceptions
* Arithmetic/library/user-defined

* Encapsulation violations
* Accessing internal data, calling private functions...

* Race conditions
+ Two threads access the same data without synchronization

2/21/2011 17-654: Analysis of Software Artifacts 10
Static Analysis

Empirical Results on Static Analysis g

* Nortel study [Zheng et al. 2006]
« 3 C/C++ projects
* 3 million LOC total
« Early generation static analysis tools

« Conclusions
» Cost per fault of static analysis 61-72% compared
to inspections
« Effectively finds assignment, checking faults
« Can be used to find potential security
vulnerabilities

2/21/2011 17-654: Analysis of Software Artifacts 11
Static Analysis

Empirical Results on Static Analysis %

Statigtical Quality Gain (%)

140

* InfoSys study [Chaturvedi 2005]

5 projects

* Average 700 function points 120 1|
each

+ Compare inspection with and 100 7

without static analysis o0 L

« Conclusions B
* Fewer defects i |
» Higher productivity

i —

Productiviy Defects/KLOC
(FRMD

o S@Etic Analysis (E)
B bianual Review (%)

Adapted from [Chaturvedi 2005]

2/21/2011 17-654: Analysis of Software Artifacts 12
Static Analysis

Quality Assurance at Microsoft (Part 1) g

* Original process: manual code inspection
Effective when system and team are small
Too many paths to consider as system grew

« Early 1990s: add massive system and unit testing
Tests took weeks to run
Diversity of platforms and configurations
Sheer volume of tests
Inefficient detection of common patterns, security holes
Non-local, intermittent, uncommon path bugs
Was treading water in Windows Vista development

« Early 2000s: add static analysis
More on this later

2/21/2011 17-654: Analysis of Software Artifacts 13
Static Analysis

Outline %

« Why static analysis?

What is static analysis?
» Abstract state space exploration

How does static analysis work?
What do practical tools look like?
How does it fit into an organization?

2/21/2011 17-654: Analysis of Software Artifacts 14
Static Analysis

Static Analysis Definition g

« Static program analysis is the systematic
examination of an abstraction of a program’s
state space

* Metal interrupt analysis

* Abstraction
» 2 states: enabled and disabled
All program information—variable values, heap contents—is
abstracted by these two states, plus the program counter
+ Systematic
» Examines all paths through a function
What about loops? More later...
» Each path explored for each reachable state
Assume interrupts initially enabled (Linux practice)
Since the two states abstract all program information, the
exploration is exhaustive

2/21/2011 17-654: Analysis of Software Artifacts 15
Static Analysis

Outline %

« Why static analysis?
« What is static analysis?

* How does static analysis work?
* Termination

« AST Analysis
« Dataflow Analysis

2/21/2011 17-654: Analysis of Software Artifacts 16
Static Analysis

How can Analysis Search All Paths? g

* How many paths are in a program?
* Exponential # paths with if statements
* Infinite # paths with loops
* How could we possibly cover them all?

» Secret weapon: Abstraction
» Finite number of (abstract) states
* If you come to a statement and you’ve already
explored a state for that statement, stop.

Tth(:[z analysis depends only on the code and the current
state
Continuing the analysis from this program point and state
would yield the same results you got before

+ If the number of states isn’t finite, too bad
Your analysis may not terminate

2/21/2011 17-654: Analysis of Software Artifacts 17
Static Analysis

Example g

1. void foo(int x) { Path 1 (before stmt): true/no loop
2 if (X - 0) 2:is_enabled
. Al 3:is_enabled
3 bar(); cli(); 6: is_disabled
4. else _ 11: is_disabled
5. baz(); cli(); 12: is_enabled
6 while (x > 0) {
7 sti(); no errors
8. do_work();
9. cli();
10. }
11. sti();
12.}
2/21/2011 17-654: Analysis of Software Artifacts 18

Static Analysis

Example g

1. void foo(int x) { Path 2 (before stmt): true/1 loop
2 if (x == 0) 2:is_enabled
. ALl 3:is_enabled
3 bar(); cli(); 6: is_disabled
4. else _ 7 is_disabled
S. baz(); cli(); 8: is_enabled
6 while (x > 0) { 9:is_enabled
7 sti(); 11: is_disabled
8. d?—work(); already been here
9. cli();
10. }
11. sti();
12.}
2/21/2011 17-654: Analysis of Software Artifacts 19

Static Analysis

Example g

1. void foo(int x) { PathI 3 (before stmt): true/2+
i == loops
2 if (x == 0) o 2:is_enabled
3 bar(); cli(); 3:is_enabled
4. else 6: is_disabled
2. baz(); cli(); 7: is_disabled
6 while (x > 0) { 8: is_enabled
7 sti(): 9: is_enabled
’ 6: is_disabled
8. do_work(); -
9. cli(); already been here
10. }
11. sti();
12.}
2/21/2011 17-654: Analysis of Software Artifacts

Static Analysis

10

Example g

1. void foo(int x) { Path 4 (before stmt): false

2 if (x == 0) 2:is_enabled

3 bar()' Cll() 5:is_enabled

4 clse ’ ’ 6: is_disabled

5. baz(); cli(); already been here

6 while (x > 0) {

7 sti(); all of st?te %pace has been
8. do_work(); explore

9. cli();

10. '}

1. sti();

12.}

2/21/2011 17-654: Analysis of Software Artifacts 21

Static Analysis

Outline g

« Why static analysis?
What is static analysis?
How does static analysis work?

AST Analysis
« Abstract Syntax Tree Representation
« Simple Bug Finders: FindBugs

Dataflow Analysis

2/21/2011 17-654: Analysis of Software Artifacts 22
Static Analysis

11

Representing Programs g

« To analyze software automatically, we
must be able to represent it precisely

« Some representations
« Source code
« Abstract syntax trees
« Control flow graph
* Bytecode
* Assembly code
* Binary code

2/21/2011 17-654: Analysis of Software Artifacts 23
Static Analysis

Abstract Syntax Trees %

» A tree representation of source code

« Based on the language grammar

» One type of node for each production
e Si=x:=a ->

/N
X a
e S:=whilebdoS =>» /While\
b S

2/21/2011 17-654: Analysis of Software Artifacts 24
Static Analysis

12

Parsing: Source to AST

i

« Parsing process (top down)
1. Determine the top-level production to use

2. Create an AST element for that production

3. Determine what text corresponds to each

child of the AST element

4. Recursively parse each child
« Algorithms have been studied in detail

* For this course you only need the intuition

» Details covered in compiler courses

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

25

Parsing Example

y = X;

z:=1;

while y>1 do
z:=z%y,
y=y-1

* Top-level production?

* What are the parts?

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

26

13

Parsing Example g

y =X ;
z:=1;
while y>1 do

z:=z%y,

y=y-1

* Top-level production?
e 558,
* What are the parts?

2/21/2011 17-654: Analysis of Software Artifacts 27
Static Analysis

Parsing Example g

y =X, ;

z:=1; / \

while y>1 do y =X z:=1; while...
z:=z%y,
y=y-1

* Top-level production?

e SiS,
* What are the parts?
° yI=X

e z:=1;while ...

2/21/2011 17-654: Analysis of Software Artifacts 28
Static Analysis

14

Parsing Example g

y =X ;

z:=1, / \

while y>1 do = z :=1; while...
z:=z%y, / \
y=y-1 y X

* Top-level production?

e 558,
* What are the parts?
° YI=X

e« z:=1;while ...

2/21/2011 17-654: Analysis of Software Artifacts 29
Static Analysis

Parsing Example g

y =X ;
z:=1; / \
while y>1 do = ;
2i=2*y VAN
y:=y-1 y x z:=1 while...
* Top-level production?
e SiS,
* What are the parts?
c yiI=X
e z:=1;while ...
2/21/2011 17-654: Analysis of Software Artifacts 30

Static Analysis

15

Parsing Example g

y =X ;
z:=1; / \
while y>1 do = ;
zi=2"y; [N /N
y=y—1 y Xx = while...
* Top-level production? z 1
e 558,
* What are the parts?
* yI=X
e« z:=1;while ...
2/21/2011 17-654: Analysis of Software Artifacts 31

Static Analysis

Parsing Example g

y=Xx ;

z:=1; / \

while y>1 do = ;
z:=2"y, [N/ N\
y=y-1 y X /j while

* Top-level production? z 1 y>1 z:=.
©SES,

* What are the parts?
c yiI=X
e z:=1;while ...

2/21/2011 17-654: Analysis of Software Artifacts 32

Static Analysis

16

Parsing Example g

y =X

VAN
\

while y>1 do :
z:=z%y, /
y=y—1 y X hile

/

* Top-level production? z

. SS, /

* What are the parts?

/
|

:
[
s

° YI=X
e« z:=1;while ...
2/21/2011 17-654: Analysis of Software Artifacts 33

Static Analysis

Parsing Example g

rmt VAN
while y>1 do = ;
ANVAN
y:=y-1 y x = while
/)
* Top-level production? z

1 > ;
LSS, /N
. YVh;lLa;e the parts? y 1 z=z*y y:=y-1
e z:=1;while ...

2/21/2011 17-654: Analysis of Software Artifacts 34
Static Analysis

17

Parsing Example g

y =X

z:=1,; / \
while y>1 do
S
y:=y-— y Xx = whi
Top-level production? / 1l / \
. op-level production” z > ;
s AIVAN
. YVha’F_are the parts? y 1 = y=y-1
. zz;)‘l(;while... /l
z z%y
2/21/2011 17-654: Analysis of Software Artifacts 35

Static Analysis

Parsing Example g

ot ./\
\ /

while y>1 do

ANVAN
y=y- y x = while

- Top-level production? z'/1l z \
©SiS) ARV

- What are the parts? g1 o= yey
C 2= while . /l

Pes S \y .

Parsing Example g

y =X

z:=1, / \

while y>1 do =
I/
y=y—1 y X

* Top-level production?

e 558, /

* What are the parts?

: zzz)‘l(;while... /l

2/21/2011 17-654: Analysis of Software Artifacts \ 37
Static Analysis
\ Z y

>|Ie
[
11

<

Parsing Example g

y = X;

z:=1; / | \
while y>1 do =
SZ/ z SZ/ i¥| y/ \x ;/ >|Ie
Top-level production? / 1l / \
* Top-level production? z > ;
AN
. Wha’F_are the parts? y 1 := ‘=
: Z;;)‘l(;while... /l / \
2/21/2011 17-654: Analysis of Software Artifacts y &/l

~<</

Static Analysis
Y z

Quick Quiz g

Draw a parse tree for the function below. You can assume that the
“for” statement is at the top of the parse tree.

void copy_bytes(char dest[], char sourcef], int n) {
for (inti=0;i<n; ++i)
dest[i] = source]i];

2/21/2011 17-654: Analysis of Software Artifacts 39
Static Analysis

Matching AST against Bug Patterns %

« AST Walker Analysis
+ Walk the AST, looking for nodes of a particular type
» Check the immediate neighborhood of the node for a bug pattern
» Warn if the node matches the pattern

« Semantic grep
» Like grep, looking for simple patterns
« Unlike grep, consider not just names, but semantic structure of

AST
* Makes the analysis more precise

« Common architecture based on Visitors
» class Visitor has a visitX method for each type of AST node X
» Default Visitor code just descends the AST, visiting each node
* Tofind a bug in AST element of type X, override visitX

2/21/2011 17-654: Analysis of Software Artifacts 40
Static Analysis

20

Behavioral Patterns: Visitor g

* Applicability
* Structure with many classes
* Want to perform operations
that depend on classes
+ Set of classes is stable
* Want to define new
operations

» Consequences

+ Easy to add new operations | *"==]l HLaE

* Groups related behaviorin ——
Visitor

* Adding new elements is
hard

* Visitor can store state

* Elements must expose
interface

werel eElermer] {abstrae ¥

EteElement{this];

2/21/2011 17-654: Analysis of Software Artifacts 41
Static Analysis

Example: Shifting by more than 31 bits g

class BadShiftAnalysis extends Visitor
visitShiftExpression(ShiftExpression e) {
if (type of e’s left operand is int)
if (e’s right operand is a constant)
if (value of constant < 0 or > 31)

warn(“Shifting by less than 0 or more
than 31 is meaningless”)

super.visitShiftExpression(e);

2/21/2011 17-654: Analysis of Software Artifacts 42
Static Analysis

21

Example: String concatenation in a loop

class StringConcatLoopAnalysis extends Visitor
private int loopLevel = 0;

visitStringConcat(StringConcat e) {
if (loopLevel > 0)
warn(“Performance issue: String concatenation in loop (use
StringBuffer instead)”)
super.visitStringConcat(e); // visits AST children

}

visitWhile(While e) {
loopLevel++;
super.visitWhile(e); // visits AST children
loopLevel--;

}

// similar for other looping constructs

2/21/2011 17-654: Analysis of Software Artifacts 43
Static Analysis

Example Tool: FindBugs g

« Origin: research project at U. Maryland
* Now freely available as open source
« Standalone tool, plugins for Eclipse, etc.

* Checks over 250 “bug patterns”
« Over 100 correctness bugs
* Many style issues as well
* Includes the two examples just shown

* Focus on simple, local checks
« Similar to the patterns we’ve seen

* But checks bytecode, not AST
« Harder to write, but more efficient and doesn’t require source

* http://ffindbugs.sourceforge.net/

2/21/2011 17-654: Analysis of Software Artifacts 44
Static Analysis

22

Example FindBugs Bug Patterns g

* Correct equals()

+ Use of ==

* Closing streams

* lllegal casts

* Null pointer dereference

* Infinite loops

* Encapsulation problems

* Inconsistent synchronization
+ Inefficient String use

* Dead store to variable

2/21/2011 17-654: Analysis of Software Artifacts 45
Static Analysis

FindBugs Experiences %

» Useful for learning idioms of Java

* Rules about libraries and interfaces
* e.g. equals()

« Customization is important
+ Many warnings may be irrelevant, others may be

important — depends on domain
* e.g. embedded system vs. web application

» Useful for pointing out things to examine
* Not all are real defects
« Turn off false positive warnings for future analyses
on codebase

2/21/2011 17-654: Analysis of Software Artifacts 46
Static Analysis

23

Outline g

« Why static analysis?

« What is static analysis?

* How does static analysis work?
« AST Analysis

« Dataflow Analysis
» Control Flow Graph Representation
« Simple Flow Analysis: Zero/Null Values

2/21/2011 17-654: Analysis of Software Artifacts 47
Static Analysis

Motivation: Dataflow Analysis g

« Catch interesting errors
* Non-local: x is null, x is written to y, y is
dereferenced

* Optimize code
* Reduce run time, memory usage...

* Soundness required
+ Safety-critical domain
» Assure lack of certain errors
+ Cannot optimize unless it is proven safe
* Correctness comes before performance

* Automation required
+ Dramatically decreases cost

* Makes cost/benefit worthwhile for far more
purposes

2/21/2011 17-654: Analysis of Software Artifacts 48
Static Analysis

24

Dataflow analysis g

» Tracks value flow through program

» Can distinguish order of operations
» Did you read the file after you closed it?
» Does this null value flow to that dereference?
» Differs from AST walker
* Walker simply collects information or checks patterns
» Tracking flow allows more interesting properties

e Abstracts values

» Chooses abstraction particular to property
* Is a variable null?
» s afile open or closed?
» Could a variable be 0?
* Where did this value come from?

* More specialized than Hoare logic
* Hoare logic allows any property to be expressed
» Specialization allows automation and soundness

2/21/2011 17-654: Analysis of Software Artifacts 49
Static Analysis

Zero Analysis g

« Could variable x be 07
+ Useful to know if you have an expression y/x
* In C, useful for null pointer analysis

* Program semantics
* 1 maps every variable to an integer

« Semantic abstraction

* o maps every variable to non zero (NZ), zero(Z2),
or maybe zero (MZ)
* Abstraction function for integers o, :
© ogh(0)=Z
* az(n)=NZ foralln=0)
* We may not know if a value is zero or not
* Analysis is always an approximation
* Need MZ option, too

2/21/2011 17-654: Analysis of Software Artifacts 50
Static Analysis

25

Zero Analysis Example

o=[]

x:=10;
y =X
z:=0;
while y > -1 do

X:=xly;

y =y-1;

z:=5;

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

51

Zero Analysis Example

i

o =]

X :=10; o =[x~ (10)]

y =X

z:=0;

while y > -1 do
X:=x/y;
y :=y-1;
z:=5;

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

52

26

Zero Analysis Example

i

x:=10;

y =X

z:=0;

while y > -1 do
X:=xly;
y =y-1;
z:=5;

o =[]
o =[x~NZ]

2/21/2011

17-654: Analysis of Software Artifacts
Static Analysis

53

Zero Analysis Example

i

x :=10;

y =X

z:=0;

while y > -1 do
X:=x/y;
y :=y-1;
z:=5;

o =[]
o =[x>NZ]
o =[x~NZ,y~o(x)]

2/21/2011

17-654: Analysis of Software Artifacts
Static Analysis

54

27

Zero Analysis Example g

o =[]

x :=10; o =[x~NZ]
y =X o =[x»NZ,y~NZ]
z:=0;
while y > -1 do

x:=x1y;

y =y-1;

z:=5;

2/21/2011 17-654: Analysis of Software Artifacts 55
Static Analysis

Zero Analysis Example g

o =[]

x:=10; o =[x~NZ]
y=x: o =[x~>NZ,y»NZ]
Z:=0: o =[x>NZ,y»NZ,z~az(0)]
while y > -1 do

x:=x1y;

y:=y-1;

z:=5;

2/21/2011 17-654: Analysis of Software Artifacts 56
Static Analysis

28

Zero Analysis Example g

o=[]
x :=10; o =[x~NZ]
y =X o =[x»NZ,y~NZ]
z:=0; o =[x»NZ,y»NZ,z~Z]
while y > -1 do
X:=xly;
y:=y-1
z:=9;
2/ A e Anatyais et >
Zero Analysis Example g
o=l
x :=10; o =[x~NZ]
Yy i=X; o =[x~»NZ,y~»NZ]
z:=0; o =[x>NZ,y»NZ,z~Z]
while y > -1 do o =[x»NZ,y»NZ,z~Z]
X:=x/y;
y :=y-1;
z:=95;
2/21/2011 17-654: Analysis of Software Artifacts 58

Static Analysis

Zero Analysis Example g

o =[]
x :=10; o =[x~NZ]
y =X o =[x»NZ,y~NZ]
z:=0; o =[x»NZ,y»NZ,z~Z]
while y > -1 do o =[x~»NZ,y->NZ,z~Z]
X:=xly; o =[x»NZ,y»NZ,z~Z]
y:=y-1
z:=5;
2/ A e Anatyais et *
Zero Analysis Example g
o=l
x :=10; o =[x~NZ]
Yy i=X; o =[x~»NZ,y~»NZ]
z:=0; o =[x~»NZ,y->NZ,z~Z]
while y > -1 do o =[x»NZ,y»NZ,z~Z]
x:=xly; o =[x»NZ,y»NZ,z~Z]
y :=y-1; o =[x»NZ,y»MZ,z~7Z]
z:=95;
2/21/2011 17-654: Analysis of Software Artifacts 60

Static Analysis

Zero Analysis Example g

o =[]

x :=10; o =[x~NZ]
y =X o =[x»NZ,y~NZ]
z:=0; o =[x»NZ,y»NZ,z~Z]
while y > -1 do o =[x~»NZ,y->NZ,z~Z]
X:=xly; o =[x»NZ,y»NZ,z~Z]
y =y-1; o =[x~»NZ,y~»MZ,z~Z]
z:=5; o =[x~»NZ,y~MZ,z~NZ]
2/ A e Anatyais e o
Zero Analysis Example g
o=l
x :=10; o =[x~NZ]
Yy i=X; o =[x~»NZ,y~»NZ]
z:=0; o =[x>NZ,y»NZ,z~Z]
while y > -1 do o =[x»NZ,y»MZ,z-~MZ]
x:=xly; o =[x»NZ,y»NZ,z~Z]
y :=y-1; o =[x»NZ,y»MZ,z~7Z]
z:=5; o =[x>NZ,y-~MZ,z~NZ]

2/21/2011

17-654: Analysis of Software Artifacts 62
Static Analysis

31

Zero Analysis Example g

o =[]

x :=10; o =[x~NZ]

y =X o =[x»NZ,y~NZ]

z:=0; o =[x»NZ,y»NZ,z~Z]

while y > -1 do o =[x~»NZ,y-MZ,z-~MZ]
X:=xly; o =[x»NZ,y»MZ,z~MZ]
y =y-1; o =[x~»NZ,y~»MZ,z~Z]
z:=5; o =[x~»NZ,y~MZ,z~NZ]

2/ A e Anatyais e .

Zero Analysis Example g

o=l

x :=10; o =[x~NZ]

Yy i=X; o =[x~»NZ,y~»NZ]

z:=0; o =[x>NZ,y»NZ,z~Z]

while y > -1 do o =[x»NZ,y~MZ,z~MZ]
X:=x/y; o =[x~»NZ,y»MZ,z-~MZ]
y :=y-1; o =[x~»NZ,y»MZ,z-~MZ]
z:=5; o =[x>NZ,y-~MZ,z~NZ]

2/21/2011

17-654: Analysis of Software Artifacts 64
Static Analysis

32

Zero Analysis Example g

x:=10;

y =X

z:=0;

while y > -1 do
X:=xly;
y =y-1;
z:=5;

o =[]

o =[x~»NZ]

o =[x»NZ,y~NZ]

o =[x»NZ,y»NZ,z~Z]

o =[x»NZ,y»MZ,z~MZ]
o =[x»NZ,y»MZ,z-~MZ]
o =[x»NZ,y»MZ,z~MZ]
o =[x»NZ,y-~MZ,z~NZ]
Nothing more happens!

2/21/2011

17-654: Analysis of Software Artifacts 65
Static Analysis

Zero Analysis Termination g

* The analysis values will not change, no matter how

many times we execute the loop
Proof: our analysis is deterministic

* We run through the loop with the current analysis values,
none of them change

* Therefore, no matter how many times we run the loop, the
results will remain the same

» Therefore, we have computed the dataflow analysis results
for any number of loop iterations

2/21/2011

17-654: Analysis of Software Artifacts 66
Static Analysis

33

Zero Analysis Termination g

* The analysis values will not change, no matter how

many times we execute the loop
Proof: our analysis is deterministic

* We run through the loop with the current analysis values,
none of them change

* Therefore, no matter how many times we run the loop, the
results will remain the same

* Therefore, we have computed the dataflow analysis results
for any number of loop iterations

. Why does this work
If we simulate the loop, the data values could (in principle)
keep changing indefinitely
* There are an infinite number of data values possible
* Not true for 32-bit integers, but might as well be true
+ Counting to 232 is slow, even on today’s processors
« Dataflow analysis only tracks 2 possibilities!
» So once we've explored them all, nothing more will change
* This is the secret of abstraction

* We will make this argument more precise later

2/21/2011 17-654: Analysis of Software Artifacts 67
Static Analysis

Using Zero Analysis g

* Visit each division in the program

* Get the results of zero analysis for the divisor

« If the results are definitely zero, report an error
» If the results are possibly zero, report a warning

2/21/2011 17-654: Analysis of Software Artifacts 68
Static Analysis

34

Quick Quiz g

Fill in the table to show how what information zero

analysis will compute for the function given.

Program Statement Analysis Info after that statement
0: <beginning of program>

1:x:=0

2:y:=1

3:if (z==0)

4: X =X+y

b:elsey:=y—-1

6:w:=y

2/21/2011 17-654: Analysis of Software Artifacts 69

Static Analysis

Outline g

Why static analysis?

What is static analysis?

How does static analysis work?
AST Analysis

Dataflow Analysis

Further Examples and Discussion

2/21/2011 17-654: Analysis of Software Artifacts 70

Static Analysis

35

Static Analysis Definition

« Static program analysis is the systematic examination
of an abstraction of a program’s state space

« Simple model checking for data races
» Data Race defined:
[From Savage et al., Eraser: A Dynamic Data Race Detector for
Multithreaded Programs]
* Two threads access the same variable
» Atleast one access is a write
* No explicit mechanism prevents the accesses from being
simultaneous
» Abstraction
* Program counter of each thread, state of each lock
Abstract away heap and program variables
+ Systematic
» Examine all possible interleavings of all threads
Flag error if no synchronization between accesses
Exploration is exhaustive, since abstract state abstracts all concrete
program state

2/21/2011 17-654: Analysis of Software Artifacts 71
Static Analysis

Model Checking for Data Races

thread1() { Thread 1 Thread 2
read x; rea|d X

) lock

thread2() {
lock(); write x
write X; unl|ock
unlock();

}

Interleaving 1: OK

2/21/2011 17-654: Analysis of Software Artifacts 72
Static Analysis

36

Model Checking for Data Races g

thread1() { Thread 1 Thread 2
read x; | O|0k

} .

thread2() { write x
lock(); unlock
write X; read x
unlock();

}

Interleaving 1: OK
Interleaving 2: OK

2/21/2011 17-654: Analysis of Software Artifacts 73
Static Analysis

Model Checking for Data Races g

thread1() { Thread 1 Thread 2
read x; Io|ck

) read x

thread2() {
lock(); write x
write X; unl|ock
unlock();

}

Interleaving 1: OK
Interleaving 2: OK
Interleaving 3: Race

2/21/2011 17-654: Analysis of Software Artifacts 74
Static Analysis

37

Model Checking for Data Races g

thread1() { Thread 1 Thread 2
read x; Io|ck
) write X
thread2() {
lock(); read x
write X; unlock
unlock();
}

Interleaving 1: OK
Interleaving 2: OK
Interleaving 3: Race
Interleaving 4: Race

2/21/2011 17-654: Analysis of Software Artifacts 75
Static Analysis

Compare Analysis to Testing, Inspection %

« Why might it be hard to test/inspect for:
* Null pointer errors?

* Forgetting to re-enable interrupts?

* Race conditions?

2/21/2011 17-654: Analysis of Software Artifacts 76
Static Analysis

38

Compare Analysis to Testing, Inspection g

* Null Pointers, Interrupts
* Testing
» Errors typically on uncommon paths or uncommon input
» Difficult to exercise these paths
* Inspection

* Non-local and thus easy to miss
» Object allocation vs. dereference
* Disable interrupts vs. return statement

* Finding Data Races
* Testing
* Cannot force all interleavings
* Inspection
* Too many interleavings to consider

* Check rules like “lock protects x” instead
» But checking is non-local and thus easy to miss a case

2/21/2011 17-654: Analysis of Software Artifacts 77
Static Analysis

Sound Analyses %

* A sound analysis never misses an error
[of the relevant error category]
* No false negatives (missed errors)
* Requires exhaustive exploration of state space

* Inductive argument for soundness

« Start program with abstract state for all possible initial
concrete states

* At each step, ensure new abstract state covers all concrete
states that could result from executing statement on any
concrete state from previous abstract state

+ Once no new abstract states are reachable, by induction all
concrete program executions have been considered

2/21/2011 17-654: Analysis of Software Artifacts 78
Static Analysis

39

Soundness and Precision

-».-t»)l-»&~&\)

ﬁ Program state covered in actual execution
unsound imprecise

(false negative) (false positive)

[] Program state covered by abstract
execution with analysis

2/21/2011 17-654: Analysis of Software Artifacts 79
Static Analysis

Soundness and Precision

- 3N

.A Program state covered in actual execution

Program state covered by abstract
execution with analysis

unsound imprecise
(false negative) (false positive)

2/21/2011 17-654: Analysis of Software Artifacts 80
Static Analysis

40

Abstraction and Soundness g

» Consider “Sound Testing”
[testing that finds every bug]
* Requires executing program on every input
* (and on all interleavings of threads)
* Infinite number of inputs for realistic programs
» Therefore impossible in practice

* Abstraction
* Infinite state space - finite set of states
» Can achieve soundness by exhaustive exploration

2/21/2011 17-654: Analysis of Software Artifacts 81
Static Analysis

Zero Analysis Precision g

1. void foo(unsigned n) { Path 1 (after stmt):
2 intx =-1; 1. 0
3. X = X+2; 2: x»NZ
4 inty = 10/x; 3: xoMZ
5.}
warning: possible divide by zero at

What will be the result of static line 4

analysis? False positive! (not a real error)

What went wrong?

» Before statement 3 we only know
X is nonzero

« We need to know that x is -1

2/21/2011 17-654: Analysis of Software Artifacts 82
Static Analysis

41

Regaining Zero Analysis Precision g

» Keep track of exact value of variables

* Infinite states
« or 232 close enough

* Add a -1 state
* Not general enough

« Track formula for every variable
* Undecidable for arbitrary formulas

* Track restricted formulas

* Decent solution in practice
* Presburger arithmetic

2/21/2011 17-654: Analysis of Software Artifacts 83
Static Analysis

Analysis as an Approximation g

. AnaIyS|s must approximate in practice
May report errors where there are really none
» False positives
* May not report errors that really exist
* False negatives
« All analysis tools have either false negatives or false
positives

* Approximation strategy

* Find a pattern P for correct code
* which is feasible to check (analysis terminates quickly),
» covers most correct code in practice (low false positives),
» which implies no errors (no false negatives)

* Analysis can be pretty good in practice

« Many tools have low false positive/negative rates

» A sound tool has no false negatives
* Never misses an error in a category that it checks

2/21/2011 17-654: Analysis of Software Artifacts 84
Static Analysis

42

Attribute-Specific Analysis

i

* Analysis is specific to
* A quality attribute
* Race condition
» Buffer overflow, divide by zero
* Useafterfree _
» A strategy for verifying that attribute
* Protect each shared piece of data with a lock
* Presburger arithmetic decision procedure for array
indexes, zero analysis
* Only one variable points to each memory location

. AnaIyS|s is inappropriate for some attributes
Approach to assurance is ad-hoc and follows no
clear pattern

* No known decision procedure for checking an
assurance pattern that is followed
 Examples?

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

85

Soundness Tradeoffs

i

« Sound Analysis * Unsound Analysis
* Assurance that no * No assurance that
bugs are left bugs are gone
+ Ofthe target error « Must still apply
class other QA

* Can focus other
QA resources on
other errors

* May have more
false positives

techniques
* May have fewer
false positives

2/21/2011 17-654: Analysis of Software Artifacts
Static Analysis

86

43

Which to Choose? g

* Cost/Benefit tradeoff

+ Benefit: How valuable is the bug?
* How much does it cost if not found?
* How expensive to find using testing/inspection?
* Cost: How much did the analysis cost?
» Effort spent running analysis, interpreting results —
includes false positives
» Effort spent finding remaining bugs (for unsound analysis)

* Rule of thumb
» For critical bugs that testing/inspection can’t find, a

sound analysis is worth it
* Aslong as false positive rate is acceptable

* For other bugs, maximize engineer productivity

2/21/2011 17-654: Analysis of Software Artifacts 87
Static Analysis

Questions? g

2/21/2011 17-654: Analysis of Software Artifacts 88
Static Analysis

44

Additional Slides/Examples g

2/21/2011 17-654: Analysis of Software Artifacts 89
Static Analysis

Static Analysis Definition g

+ Static program analysis is the systematic
examination of an abstraction of a program’s
state space

* Simple array bounds analysis

* Abstraction
« Given array a, track whether each integer variable and
expression is <,=, or > than length(a)
Abstract away precise values of variables and expressions
Abstract away the heap
+ Systematic
« Examines all paths through a function
« Each path explored for each reachable state
Exploration is exhaustive, since abstract state abstracts all
concrete program state

2/21/2011 17-654: Analysis of Software Artifacts 90
Static Analysis

45

Array Bounds Example g

1. void foo(unsigned n) { Path 1 (before stmt): then branch
2 char str = new char[n+1]; 2: Y

3 intidx = 0; 3: n»<

4. if (n > 5) 4: n-<, idx~<

5. idx =n 5: ne<, idx—-<

6 else 8: n<, idx—-<

7 idx = n+1 9: n<, idx—-<

8 str[idx] = ‘c’;

9 } no errors

2/21/2011 17-654: Analysis of Software Artifacts 91

Static Analysis

Array Bounds Example %

1. void foo(unsigned n) { Path 1 (before stmt): else branch

2 char str = new char[n+1]; 2:J

3 intidx = 0; 3: n<

4. if (n > 5) 4: ne<, jdxe-<

5. idx =n 7: n-<, idx-<,=

6 else 8: ne<, idxe<,=

7 idx = n+1 9: N<, idx-<,=

8 strlidx] = ‘c’;

9. } error: array out of bounds at line 8
2/21/2011 17-654: Analysis of Software Artifacts 92

Static Analysis

46

