Software Architecture

Jonathan Aldrich, Ph.D.
Associate Professor

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Carnegie Mellon January 2014

© 2014 Jonathan Aldrich These materials may not be duplicated or distributed without advance
written permission from the author.

Outline

« What is software architecture?

 What are its benefits?

 How to develop a software architecture?
 How to document a software architecture?
e Conclusion and takeaways

© 2014 Jonathan Aldrich

Carnegie Mellon

What Is (Building) Architecture?
And why Is It use_gul?

I \\.'\

© 2014 Jonathan Aldrich

109 876 543210 o 20
e p 1 ‘

Exe;mple Architecture:
Aftrophyfikalifches Inftitut zu Potsdam. EOSENOISVET

Carnegie Mellon

What Is Software Architecture?

&

7 s P e [y 7 | ';‘\:\\
! . N

NS

e
p
V. | N\
VAN \,

l<_>l<_>- Software architecture represents the high-level design

of a software system, showing how desired system
properties are achieved

High-Level Design

© 2014 Jonathan Aldrich

108 87 6 5
l r

Example Architecture:
Aftrophyfikalifches Inftitut zu Potsdam. [EEdEeENOl STV

Carnegie Mellon

Where Architecture Fits

 Requirements Wkat

— What the system should do

— What properties it should have 5
« Architecture

— High-level design, how properties are achieved §
e Detailed design

— Lower-level design, how system functions

v

« Code How

— How the system actually works

Carnegie Mellon

Two Architectures for Web Search

requests — « . > %%??% requests W

network

g

=8

SEEEEEETITNE
(T

© 2014 Jonathan Aldrich

Big server
Cluster of
commodity
How does architecture affect system properties? servers

* Modifiability / ease of change
« Consistency of results

e System cost

« Scalability of system

* Reliability of system

Carnegie Mellon

Two Architectures for Sending Emaill

Modules within sendmail process Processes implementing gmail

sendmail

parsing

© 2014 Jonathan Aldrich

libsm libsmutil libmilter e—

Which architecture was better in 1980? Which was better in 20007
Factors to consider

o Simplicity

« Efficiency

o Security

Carnegie Mellon

Two Architectures for Sending Emaill

SMTP Server Market Share

100%

EEEENE
JFE
m

223483
© 2014 Jonathan Aldrich

« Sendmail was the dominant email client from 1982 until 2000.

* |n 1988 the Morris worm, the first internet worm, took advantage of a
sendmail vulnerability; many other vulnerabilities have been found
since.

* By 2000 sendmail had begun a steep and permanent decline, and
gmail was growing exponentially.

Carnegie Mellon

Architecture I1s an Abstraction

* Focus on principal design decisions
— Structure — components and connections

— Behavior — responsibilities of each component,
high level algorithms

— Interaction — rules governing how components communicate
— Quality attributes — strategy for achieving
— Implementation — language, platform, libraries, etc.

© 2014 Jonathan Aldrich

- An){)de_cision that impacts key stakeholder concerns or has
global impact on the program

e Elide unimportant details

— Decisions that are internal to a component
 i.e. which other components cannot depend on
* e.g. internal algorithms, data structures, local design patterns

— AND do not impact key stakeholder concerns

Architecture is design, but not all design is architectural

Carnegie Mellon

Outline

 What is software architecture?

« What are its benefits?

 How to develop a software architecture?
 How to document a software architecture?
e Conclusion and takeaways

© 2014 Jonathan Aldrich

Carnegie Mellon

Architecture Benefits: System Properties

o Architecture is not about a system’s function
but rather the system’s properties

e Some properties and their conseguences
— Fitness: performance, reliability, security - competitive advantage
— Modifiability/ease of changing - business agility
— Reuse of code - reduced cost

2014 Jonathan Aldrich

©

Carnegie Mellon

Business Case: Cell Phones . Bass]

« Market is driven by killer products
— e.g. Razr, iPhone

« Most profit is made at initial release
— Premium charged on initial sales
— Drops rapidly when copycats arrive

» Business model
— Be first to market with new features

o Software quality attributes
— Ability to change rapidly and at low cost

« True story: effect of architecture

— Leading cell phone manufacturer

* not enough new products

 starts to lose market share, decides to release faster

» leads to trouble: e.g. tone so loud it damages hearing = recalls
— Analysis

» software structure did not enable rapid change

» too costly to rewrite software from scratch

« eventually left cell phone business entirely

© 2014 Jonathan Aldrich

Carnegie Mellon

Telecom Architecture Scenario

@ - x
e Context: telecommunications wholesaler
— Provides services both to end users and resellers
— 8 legacy applications built with different interfaces, technologies

.

 Challenges
— Duplicate functionality between end user / reseller channels
— Several manual steps in process; difficult to automate
— Difficult to roll out new services
— Need to free reserved resources when an operation is canceled

© 2014 Jonathan Aldrich

 What would you do?

Carnegie Mellon

Telecom Architecture Solution

« Service-Oriented Architecture
— Wrap legacy applications with a standard web services interface
— Automate tasks using scripting (BPEL)

— Share common operations, services between the different
channels

— Incorporate undoing reservations into the script

 Impacts
— Common interface enabled automation - lower cost
— Also facilitates replacing components - agility
— Scripts make business operation changes easier = agility
— Reuse of common components - lower cost
— Built-in undo avoids wasting resources > reliability, lower cost

© 2014 Jonathan Aldrich

Carnegie Mellon

Outline

 What is software architecture?

 What are its benefits?

« How to develop a software architecture?
 How to document a software architecture?
e Conclusion and takeaways

© 2014 Jonathan Aldrich

Carnegie Mellon

How to Develop a Software Architecture

Investment driven by complexity and scale
Fitness evaluated by key risks

Design appropriate for the domain
Structure aligned with the organization

© 2014 Jonathan Aldrich

Carnegie Mellon

Tradeoffs in Architecture Investment

100] = — — % of project schedule devoted to initial architecture and risk resolution
% Added schedule devoted to rework (COCOMO 1l RESL factor)
"""""""" Total % added schedule
10.00 @® Swest Spot

o 80 ksLoc\:,

= 3
g
£
@ E
= 60. 5
o 100 g
3 KSLOC S
2
g ©
2 40 _
©

1+

g
= [

o
2 20 10
KSLOC
0o+~ Source: Boehm,
|

Valerdi, Honour
0 10 20 30 40 50 2008

% time added for architecture and risk resolution

Carnegie Mellon

Driving Architecture via Risks

Low risk = little investment needed 0 g a
\\\ é ~

— Typically use a reference architecture (e.g. 3-tier web)
— Reference architectures capture (“hoist”) known domain risks

Otherwise, evaluate architecture fitness using risks

© 2014 Jonathan Aldrich

Major risks are architectural drivers

Example drivers and architectural analysis approaches
— Maintainability/Reuse: variation, interface standards

— Performance: queuing theory, real-time analysis

— Security: threat modeling

— Distributed development: interfaces between teams

Carnegie Mellon

Domain-Specific Architectures

« Pattern: A reusable solution to a recurring architecture design problem

web —
—_— — <
requests

presentation logic data
tier tier tier

© 2014 Jonathan Aldrich

 Example: 3-tier web applications
— Data tier stores data in a database
— Logic tier implements business logic
— Presentation tier handles web requests
— Benefits?

Carnegie Mellon

Domain-Specific Architectures

« Pattern: A reusable solution to a recurring architecture design problem

web —
—_— — <
requests

presentation logic data
tier tier tier

© 2014 Jonathan Aldrich

 Example: 3-tier web applications
— Data tier stores data in a database
— Logic tier implements business logic
— Presentation tier handles web requests
— Benefits include modifiability, scalability

Carnegie Mellon

Architecture-Organization Alignment

-
.\ et -

¢
« Conway’s Law A

Any organization that designs a system...will inevitably
produce a design whose structure is a copy of the
organization's communication structure (Conway, 1968)

© 2014 Jonathan Aldrich

o Case example: product line
— Applications initially developed independently
— Desired reusable library to reduce cost, increase agility
— Failed to build library using existing teams
— Success required a team dedicated to the core library.

Carnegie Mellon

Outline

 What is software architecture?

 What are its benefits?

 How to develop a software architecture?

« How to document a software architecture?
e Conclusion and takeaways

© 2014 Jonathan Aldrich

Carnegie Mellon

Architectural Views

 Many possible “views” of architecture

— Implementation structures

 Modules, packages

* Modifiability, Independent construction, ...
— Run-time structures

« Components, connectors

* Interactions, dynamism, reliability, ...
— Deployment structures

 Hardware, processes, networks
e Security, fault tolerance, ...

© 2014 Jonathan Aldrich

Carnegie Mellon

Why Document Architecture?

e Blueprint for the system

— Artifact for early analysis

— Primary carrier of quality attributes
— Key to post-deployment maintenance and
enhancement
 Documentation speaks for the architect,
today and 20 years from today

— As long as the system is built, maintained, and
evolved according to its documented architecture

© 2014 Jonathan Aldrich

Carnegie Mellon

What is Wrong Today?

* In practice today’s documentation
consists of

— Ambiguous box-and-line diagrams 5
— Inconsistent use of notations
— Confusing combinations of A -

viewtypes /\
3)

e Many things are left unspecified: 8 ——f c
— What kind of elements?
— What kind of relations? D

— What do the boxes and arrows
mean?

— What is the significance of the
layout?

Carnegie Mellon

What could the arrow mean?

What could the arrow mean?

 Many possibilities
— A passes control to B
—A passes datato B A | B
— A gets a value from B
— A streams data to B
— A sends a message to B
—A creates B

Representing C&C Views

system

N

connector

<
component g
N\

role

Guidelines: Avoiding Ambiguity

 Always include a legend
« Define precisely what the boxes mean
* Define precisely what the lines mean
« Don’t mix viewtypes unintentionally
— Recall: Module (classes), C&C (components)
« Supplement graphics with explanation
— Very important: rationale (architectural intent)

Do not try to do too much in one diagram
— Each view of architecture should fit on a page
— Use hierarchy

© 2014 Jonathan Aldrich

Carnegie Mellon

Technique: Hierarchy

e Use hierarchy to define elements in more
detall in separate views

 Helps keep an architectural description
manageable

Carnegie Mellon

Top-level C&C View .

Q Web Component
Administrator O Fagade
Console Component - LDAP Directory
@ RDBMS
|:| Direct Adapter =
Rule & Integrated =
Configuration g DataRep |:| Indirect Adapter g
DB @
e
- Controller =
5
|:| Viewer 3
—
I:l Interface &
©

Transaction Log ‘

D—O—D SOAP Connector

& roles
LDAP Connector

& roles
——=n

DB Connector

> > —
Change Lo o [N J (= > [X J
i o L _§ =} a 23 & roles
o =3
T8 T8 2 T @ B——O—— RMI Connector
~ N ~+
= N - & roles
— Event Bus
— Connector
& roles

Adapter
Regist
System Boundary
—
External
DB1

v 9

External External
LDAP1 LDAP2

External
DB1

Carnegie Mellon

Showing Detalls of Component

Receiver

Transaction
Coordinator

—O—H&

Rule
Translator

[—QOQ—18

Router

Legend
Message
Handler
- Interface
._._. Call &
Return
Agent
O Send port
(] Receive port
Context
<Fagade
Component>

<gQq uoneinbyuod>
pue 3|y

<Event Bus>

Carnegie Mellon

© 2014 Jonathan Aldrich

Outline

 What is software architecture?

 What are its benefits?

 How to develop a software architecture?
 How to document a software architecture?
 Conclusion and takeaways

© 2014 Jonathan Aldrich

Carnegie Mellon

Conclusion: Key Takeaways

« Architecture captures high-level design of software
— Structure and communication
— Key design decisions

e Enables desired properties of system
— Reuse - reduce cost
— Modifiability - business agility
— Fitness for use - competitive advantage

© 2014 Jonathan Aldrich

Carnegie Mellon

Extra: Architecture Research at CMU

» Architecture modeling and analysis
— Verify security, performance properties
— Ensure an architecture is realizable

© 2014 Jonathan Aldrich

» Architecture adaptation models
— React to breakdowns, security breaches
— Adapt to changing resources (e.g. network bandwidth)

» Architecture-based development
— Synchronizing code and architecture
— Verifying constraints at architectural interfaces

Carnegie Mellon

References and Further Reading

References * Software Architecture: Perspectives on an Emerging
Discipline. Mary Shaw and David Garlan. Prentice Hall, 1996.

» Software Architecture: Foundations, Theory, and Practice.
Taylor, Medvidovic, and Dashofy. Wiley, 20009.

© 2014 Jonathan Aldrich

Further = Software Architecture in Practice. Bass, Clements, and
Reading Kazman. Addison-Wesley, 2003.

= Just Enough Software Architecture. George Fairbanks.
Marshall & Brainerd, 2006.

Carnegie Mellon

