
© 2012-2013 W Scherlis, J Aldrich, C Garrod, and C Kästner

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Formal Analysis of

Software Artifacts

Jonathan Aldrich Charlie Garrod

7
15-214

Back to Testing

• Piazza Question: How can I automatically test making good
moves when the player gets random tiles?

• Answer: Design your game with testing in mind

• Your ideas?

• E.g. Provide a method to set the random seed

• In tests, the seed determines each player’s tiles

• Look at those tiles, and design your tests accordingly

• In real executions, seed based on time, or other data

• E.g. Provide a method to replace tiles with known
ones

• Only used in testing

8
15-214

Testing and Proofs

• Testing (Validation)
� Observable properties

� Verify program for one
execution

� Manual development with
automated regression

� Most practical approach now

• Proofs (Verification)
� Any program property

� Verify program for all
executions

� Manual development with
automated proof checkers

� Practical for small programs,
may scale up in the future

• So why study proofs if they aren’t (yet) practical?
• Proofs tell us how to think about program correctness
• Important for development, inspection, dynamic assertions
• Foundation for static analysis tools
• These are just simple, automated theorem provers
• Many are practical today!

9
15-214

Dafny Class Invariants - from the Previous Lecture

class SimpleSet {

var contents:array<int>;

var size:int;

function valid() : bool

reads this, contents;

{size >= 0

&& contents != null

&& contents.Length >= size }

valid() represents the class
invariant.
It must be explicitly added to:
• The constructor postcondition
• The precondition of functions

and methods
• The postcondition of methods

that modify this

A Dafny function is used in
specifications. It cannot be called
(though function methods can)

The reads clause of a function
defines the objects on whose fields
the function’s value depends. This
is so Dafny can determine when a
function’s value might be affected
by a field write.

In this case the class invariant
asserts that:
• The size is non-negative
• The contents array is non-null
• The contents array is big

enough to hold size elements

10
15-214

Dafny Constructors - from the Previous Lecture

method init(capacity:int)

requires capacity >=0;

modifies this;

ensures valid();

ensures size == 0;

ensures contents.Length == capacity;

ensures fresh(contents);

{

contents := new int[capacity];

size := 0;

}

An ordinary method can be called
to initialize an object in Dafny.
Here, init acts like a constructor.

We have to say what objects each
method modifies . That way Dafny
knows that previous assertions
about the object might no longer
be true.

The constructor establishes the
class invariant , so valid() is in the
postcondition (the ensures
clause). valid() is not in the
precondition because the object is
uninitialized before calling init.

This helps Dafny to know that
contents does not alias an external
array. If it did, we could mess up
the invariants of SimpleSet by
writing to the external array.

11
15-214

This is the main effect of
the method—changing the
mathematical set this
object represents

Specifying a Method in Dafny - from the Previous Lecture

method add(i:int)

requires valid();

requires size < contents.Length || i in mset();

modifies this, contents;

ensures valid();

ensures mset() == old(mset()) + {i};

ensures contents == old(contents);

ensures i in old(mset()) ==> size == old(size);

ensures !(i in old(mset())) ==> size == old(size)+1;

{ … }

This method modifies the receiver
object and its constituent array.

Typically methods other than the
constructor need to assume the
class invariant holds.

Since we modified the
object we need to assert
the class invariant again

The identity of the contents
array did not change Size is incremented iff the element

was not in the mathematical set
represented by this SimpleSet when
the method was called

12
15-214

Reference: mset() - from the Previous Lecture

function mset() : set<int>

reads this, contents;

requires valid();

{

set j:int | 0 <= j < size :: contents[j]

}

13
15-214

Reference: contains() - from the Previous Lecture

method contains(i:int) returns (b: bool)

requires valid();

ensures b <==> i in mset();

{var j := 0;

while (j < size)

invariant 0 <= j <= size;

invariant !(i in set k:int | 0 <= k < j :: contents[k]);

decreases size - j; {

if (contents[j] == i) { return true; }

j := j + 1;

}

return false;

}

14
15-214

Behavioral Subtyping (Liskov Substitution Principle)

• An object of a subclass should be substitutable for an object of its
superclass

• Known already from types:

• May use subclass instead of superclass

• Subclass can add, but not remove methods

• Overridden method must return same or supertype

• Overridden method may not throw additional exceptions

• Applies more generally to behavior:

• A subclass must fulfill all contracts that the superclass does

• Same or stronger invariants

• Same or stronger postconditions for all methods

• Same or weaker preconditions for all methods

Let q(x) be a property provable about objects x of type T. Then q(y)
should be provable for objects y of type S where S is a subtype of T.

Barbara Liskov

15
15-214

Behavioral Subtyping (Liskov Substitution Principle)

abstract class Vehicle {
int speed, limit;
//@ invariant speed < limit;

//@ requires speed != 0;
//@ ensures |speed| < |\old{speed}|
void break();

}

class Car extends Vehicle {
int fuel;
boolean engineOn;
//@ invariant fuel >= 0;

//@ requires fuel > 0 && ! engineOn;
//@ ensures engineOn;
void start() { … }

void accelerate() { … }

//@ requires speed != 0;
//@ ensures |speed| < |\old{speed}|
void break() { … }

}

Subclass fulfills the same invariants (and additional ones)
Overridden method has the same pre and postconditions

16
15-214

Behavioral Subtyping (Liskov Substitution Principle)

class Car extends Vehicle {
int fuel;
boolean engineOn;
//@ invariant fuel >= 0;

//@ requires fuel > 0 && ! engineOn;
//@ ensures engineOn;
void start() { … }

void accelerate() { … }

//@ requires speed != 0;
//@ ensures |speed| < |\old{speed}|
void break() { … }

}

class Hybrid extends Car {
int charge;
//@ invariant charge >= 0;

//@ requires (charge > 0 || fuel > 0)
&& ! engineOn;

//@ ensures engineOn;
void start() { … }

void accelerate() { … }

//@ requires speed != 0;
//@ ensures |speed| < |\old{speed}|
//@ ensures charge > \old{charge}
void break() { … }

}

Subclass fulfills the same invariants (and additional ones)
Overridden method start has weaker precondition
Overridden method break has stronger postcondition

17
15-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {
int h, w;

Rectangle(int h, int w) {
this.h=h; this.w=w;

}

//methods
}

class Square extends Rectangle {
Square(int w) {

super(w, w);
}

}

Is Square a behavior subtype of Rectangle?

18
15-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {
//@ invariant h>0 && w>0;
int h, w;

Rectangle(int h, int w) {
this.h=h; this.w=w;

}

//methods
}

class Square extends Rectangle {
//@ invariant h==w;
Square(int w) {

super(w, w);
}

}

Is Square a behavior subtype of Rectangle?

19
15-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {
//@ invariant h>0 && w>0;
int h, w;

Rectangle(int h, int w) {
this.h=h; this.w=w;

}

void scale(int factor) {
w=w*factor;
h=h*factor;

}
}

class Square extends Rectangle {
//@ invariant h==w;
Square(int w) {

super(w, w);
}

}

Is Square a behavior subtype of Rectangle?

20
15-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {
//@ invariant h>0 && w>0;
int h, w;

Rectangle(int h, int w) {
this.h=h; this.w=w;

}

void scale(int factor) {
w=w*factor;
h=h*factor;

}

void setWidth(int neww) {
w=neww;

}
}

class Square extends Rectangle {
//@ invariant h==w;
Square(int w) {

super(w, w);
}

}

Is Square a behavior subtype of Rectangle?

21
15-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {
//@ invariant h>0 && w>0;
int h, w;

Rectangle(int h, int w) {
this.h=h; this.w=w;

}

void scale(int factor) {
w=w*factor;
h=h*factor;

}

void setWidth(int neww) {
w=neww;

}
}

class Square extends Rectangle {
//@ invariant h==w;
Square(int w) {

super(w, w);
}

}

With these methods, Square is not
a behavior subtype of Rectangle

← Invalidates stronger
invariant (w==h) in subclass

22
15-214

Formal Analysis Summary

• Specification between textual and formal specifictions

• Proving (e.g. with Dafny) vs. Testing

• Class Invariants and Behavioral Subtyping

• Tools such as Dafny can make proofs more practical

• Reduces effort relative to proof by hand

• Still considerable work in writing specifications and
invariants

• Can be useful in documenting code and finding errors

• The current tool may miss some defects

