
Design and Information Hiding
15-214:
Foundations of Software Engineering

Jonathan Aldrich

Related Reading: D. L. Parnas. On the Criteria
To Be Used in Decomposing Systems into
Modules. CACM 15(12):1053-1058, Dec 1972.

Some ideas from David Notkin’s CSE 503 class

1 October 2013

What makes one design better than
another?
•  Not what result is produced, or whether it is right
•  Instead, quality attributes

•  How the result is produced
•  Characteristics of the code

•  Examples:
•  Evolvability– ability to easily add and change

capabilities
•  Local reasoning– ability to reason about parts

separately
•  Reuse – avoid duplicating functionality
•  Robustness – operates under stress or invalid input
•  Performance – yields results at a high rate or with

low latency
•  Testability, security, fault-tolerance,

1 October 2013

Design Case Study:
Key Word In Context (KWIC)

•  “The KWIC [Key Word In Context] index system accepts an
ordered set of lines, each line is an ordered set of words, and
each word is an ordered set of characters. Any line may be
"circularly shifted" by repeatedly removing the first word and
appending it at the end of the line. The KWIC index system
outputs a listing of all circular shifts of all lines in alphabetical
order.”
- Parnas, 1972

•  Consider KWIC applied to the title of this slide

Design Case Study:
Case Study: Design
Study: Design Case
Key Word In Context (KWIC)
Word In Context (KWIC) Key
In Context (KWIC) Key Word
Context (KWIC) Key Word In
(KWIC) Key Word In Context

(KWIC) Key Word In Context
Case Study: Design
Context (KWIC) Key Word In
Design Case Study:
In Context (KWIC) Key Word
Key Word In Context (KWIC)
Study: Design Case
Word In Context (KWIC) Key

1 October 2013

KWIC Modularization #1
Master Control

Input Output Circular
Shift

Alphabetize

Lines

Shifts Shifts

memory
access

function
call

1 October 2013

KWIC Modularization #2
Master Control

Input Output

Circular
Shift

cschar(i,w,c)

Alphabetize
ith(i)

Line
Storage

getChar(r,w,c)
setChar(r,w,c,d)

function
call

function
call

1 October 2013

KWIC Observations
•  Similar at run time

•  May have identical data representations,
algorithms, even compiled code

•  Different in code
•  Understanding
•  Documenting
•  Evolving

1 October 2013

Software Change
•  …accept the fact of change as a way of life,

rather than an untoward and annoying
exception.
—Brooks, 1974

•  Software that does not change becomes
useless over time.
—Belady and Lehman

•  For successful software projects, most of
the cost is spent evolving the system, not
in initial development
•  Therefore, reducing the cost of change is one of

the most important principles of software design

1 October 2013

Effect of Change?
•  Change input

format
•  Don’t store all

lines in memory at
once

•  Use an encoding to
save line storage
space

•  Store the shifts
directly instead of
indexing

•  Amortize
alphabetization
over searches

Master Control

Input Output Circular
Shift

Alphabetize

Lines

Shifts Shifts

Master Control

Input Output
Circular

Shift
cschar(l,w,c)

Alphabetize
ith(i)

Line
Storage

getChar(r,w,c)
setChar(r,w,c,l)

1 October 2013

Effect of Change?
•  Change input format

•  Input module only
•  Don’t store all lines in memory at once

•  Design #1: all modules
•  Design #2: Line Storage only

•  Use an encoding to save line storage space
•  Design #1: all modules
•  Design #2: Line Storage only

•  Store the shifts directly instead of indexing
•  Design #1: Circular Shift, Alphabetizer, Output
•  Design #2: Circular Shift only

•  Amortize alphabetization over searches
•  Design #1: Alphabetizer, Output, and maybe Master

Control
•  Design #2: Alphabetizer only

1 October 2013

Other Factors
•  Independent Development

•  Data formats (#1) more complex than
data access interfaces (#2)

•  Easier to agree on interfaces in #2
because they are more abstract

•  More work is independent, less is shared
•  Comprehensibility

•  Design of data formats in #1 depends on
details of each module

•  More difficult to understand each module
in isolation for #1

1 October 2013

A Note on Performance
•  Parnas says that if we are not careful,

decomposition #2 will run slower
•  He points out that a compiler can

replace the function calls with inlined,
efficient operations

•  Lesson: don’t prematurely optimize
•  Smart compilers enable smart designs
•  Evolvability usually trumps the overhead

of a function call anyway

1 October 2013

Decomposition Criteria
•  Functional decomposition

•  Break down by major processing steps
•  Information hiding decomposition

•  Each module is characterized by a design
decision it hides from others

•  Interfaces chosen to reveal as little as
possible about this

1 October 2013

Information Hiding
Derived from definition by Edward Berard – concept due to Parnas
•  Decide what design decisions are likely to change

and which are likely to be stable
•  Put each design decision likely to change into a

module
•  Assign each module an interface that hides the

decision likely to change, and exposes only stable
design decisions

•  Ensure that the clients of a module depend only on
the stable interface, not the implementation

•  Benefit: if you correctly predict what may change,
and hide information properly, then each change
will only affect one module
•  That’s a big if…do you believe it?

1 October 2013

Hiding design decisions
Information hiding is NOT just about data representation

Decision Mechanism
•  Data representation
•  Platform
•  I/O format
•  User Interface
•  Algorithm

1 October 2013

Hiding design decisions
•  Algorithms – procedure
•  Data representation – abstract data type
•  Platform – virtual machine, hardware

abstraction layer
•  Input/output data format – I/O library
•  User interface – model-view pattern

1 October 2013

What is an Interface?
•  Function signatures?
•  Performance?
•  Ordering of function calls?
•  Resource use?
•  Locking policies?

•  Conceptually, an interface is
everything clients are allowed to
depend on
•  May not be expressible in your favorite

programming language

1 October 2013

Correspondence
•  How well the design of the code matches the

requirements
•  If each requirement is implemented by a separate

module, then a change in a requirement should
only require changes to one module
•  Hard to achieve in practice
•  OO approaches design code after a model of the

world
•  This helps, but some requirements crosscut the

structure of the world as well!
•  Separation of Concerns

•  Generalizes correspondence to “concerns” that may
be implementation issues, not just requirements

1 October 2013

Design Practices

1 October 2013

Specification:
The Starting Point for Design

•  Functionality
•  Usually a set of use cases

•  Detailed scenarios of system use
•  Includes normal and exceptional cases

•  Less often: mathematical specifications

•  Quality attributes
•  Expected areas of extension
•  Robustness, Security
•  Performance, Fault-tolerance

•  We’ll talk more about specifications and
requirements gathering later

1 October 2013

Example: Use Cases

1 October 2013

Example: Quality Attributes

1 October 2013

Identifying Classes: Noun Extraction
•  Start with short problem description
•  Identify the nouns and analyze

•  External entities: leave out
•  unless system needs to model them
•  example: “The User”

•  Tangible entities: classes
•  Abstract nouns: classes or attributes (fields)

•  weight, brightness, size
•  Complex abstract nouns might end up as a

class
•  e.g. Color, Message, Event

•  Add
•  Boundary classes: interaction with world

•  Typically one per screen/dialog
•  Control classes: encapsulate non-trivial

computations
•  Data structures that support the entities
•  Classes for abstract implementation concepts

•  Controller, Router, Manager, …

1 October 2013

What should be a Class?
•  Retained information

•  Need to remember data about the object
•  Needed services

•  Operations that change attribute values or
compute information

•  Multiple attributes
•  Class groups data related by a concept
•  No class usually needed for a scalar

•  Common attributes & operations
•  A set of attributes/operations is common to

many objects
•  Essential requirements

•  Entities in the problem space

Source: [Coad and Yourdon 91]

1 October 2013

Example: Noun Extraction

1 October 2013

Abstract Design: CRC Cards
•  Class-Responsibility-Collaboration

•  Name of class
•  Responsibilities/functionality of the class
•  Other classes it invokes to achieve that functionality

•  Responsibility guidelines
•  Spread out functionality

•  No “god” classes – make maintenance difficult
•  State responsibilities generally

•  More reusable, more abstract
•  Group behavior with related information

•  Enhances cohesion, reduces coupling
•  Promotes information hiding of data structures

•  Information about one thing goes in one place
•  Spreading it out makes it hard to track

1 October 2013

CRC Validation

•  Validation
•  Ensure all functionality in specification is

covered by some class
•  Reason through how functionality could

be achieved
•  Abstractly executing the program
•  What other classes are needed?
•  Are their responsibilities enough for this

class to do what it needs to do?

•  Refine as needed

1 October 2013

Example: CRC Cards

1 October 2013

Attributes, Associations, and
Operations

•  Go through use cases
•  Attribute: something that belongs to a

class
•  Needed for computation in the use case

•  Association: one class stores another
•  Usually implemented by a field or

collection—but keep abstract early in
design

•  Operation: verbs in use cases
•  OO: usually goes in the object on which

the verb operates
•  Categories

•  accessors: access data
•  mutators: manipulate data
•  computational methods

1 October 2013

Quality Attributes
•  So far, we’ve focused on capturing

functionality in a design

•  But good design is primarily about quality
attributes, e.g.
•  Extensibility – ability to easily add and change

capabilities
•  Robustness – operate under stress or invalid

input
•  Usability – ability for users to easily accomplish

tasks
•  Security – withstand attacks
•  Fault-tolerance – recover from component

failure
•  Performance – yields results at a high rate or

with low latency

1 October 2013

Refining a Design
•  Step through Use Cases

•  Verify completeness of diagram by asking:
•  Which methods execute?
•  What methods are called?
•  What does each method or object have to know?

•  Consider quality attributes
•  Make concrete with a test

•  e.g. modification scenario, performance target
•  Generate multiple designs – NOT JUST ONE!

•  What design patterns achieve this attribute?
•  May be helpful to have different people develop

designs independently
•  Evaluate designs

•  How well does this design achieve the entire set of
quality attributes?

•  May require prioritizing attributes

1 October 2013

1 October 2013

Cohesion
•  The number of dependences within a

module
•  High cohesion is good

•  Changes are likely to be local to a
module

•  Easier to understand a module in
isolation

1 October 2013

Coupling
•  The number of dependences between

modules
•  may be syntactic or semantic

•  Costs of high coupling
•  change to an interface affects other

modules
•  difficulty understanding or reusing code

•  Coupling increases over time
•  I need to use that function over there…

1 October 2013

Coupling and Information Hiding
•  Coupling

•  How many dependencies?
•  Proxy for cost of interface change

•  Information hiding
•  Depend only on stable design decisions
•  Incorporates likelihood of interface change

•  Thus a more direct measurement of a design’s
value

•  Sometimes coupling is OK!
•  High coupling between framework and client
•  Framework interface captures assumptions that

don’t change between applications
•  Also hides framework implementation decisions

that are likely to change
•  Client encapsulates code specific to an

application

