
toad

Fall 2013

© 2012-13 C Kästner, C Garrod, J Aldrich, and W Sc herlis

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design and Concurrency

Conceptual Modeling in Design

Jonathan Aldrich Charlie Garrod

15-214

With slides from Klaus Ostermann

toad 215-214 Kästner

The four course themes

• Threads and Concurrency
� Concurrency is a crucial system abstraction

� E.g., background computing while responding to users

� Concurrency is necessary for performance

� Multicore processors and distributed computing

� Our focus: application-level concurrency

� Cf. functional parallelism (150, 210) and systems concurrency (213)

• Object-oriented programming
� For flexible designs and reusable code

� A primary paradigm in industry – basis for modern frameworks

� Focus on Java – used in industry, some upper-division courses

• Analysis and Modeling
� Practical specification techniques and verification tools

� Address challenges of threading, correct library usage, etc.

• Design
� Proposing and evaluating alternatives

� Modularity, information hiding, and planning for change

� Patterns: well-known solutions to design problems

toad 315-214 Kästner

Learning Goals

• What is software design?

• Conceptual Modeling
� able to model a domain and their relationships

• Design Goals (Modularity, …)
� able to critique designs, discuss tradeoffs

• Design Considerations with GRASP Principles
� justify designs
� toolkit to perform design decisions

toad 415-214 Kästner

Goal of Software Design

• For each desired program behavior there are
infinitely many programs that have this behavior
� What are the differences between the variants?
� Which variant should we choose?

• Since we usually have to synthesize rather than
choose the solution…
� How can we design a variant that has the desired
properties?

toad 515-214 Kästner

Tradeoffs

void sort(int[] list, String order) {
…

boolean mustswap;
if (order.equals("up")) {

mustswap = list[i] < list[j];
} else if (order.equals("down")) {

mustswap = list[i] > list[j];
}
…

}

void sort(int[] list, Comparator cmp) {
…

boolean mustswap;
mustswap = cmp.compare(list[i], list[j]);
…

}
interface Comparator {

boolean compare(int i, int j);
}
class UpComparator implements Comparator {

boolean compare(int I, int j) { return i<j; }}

class DownComparator implements Comparator {
boolean compare(int I, int j) { return i>j; }}

toad 615-214 Kästner

Quality of a Software Design

• How can we measure the internal quality of a
software design?
� Extensibility, Maintainability, Understandability,
Readability, …

� Robustness to change
� Low Coupling & High Cohesion
� Reusability
� Testability
� => modularity

• …as opposed to external quality
� Correctness: Valid implementation of requirements
� Ease of Use
� Resource consumption
� Legal issues, political issues, …

toad 715-214 Kästner

"Software engineering is the branch of computer science that
creates practical, cost-effective solutions to computing and
information processing problems, preferentially by applying
scientific knowledge, developing software systems in the service
of mankind.
Software engineering entails making decisions under constraints
of limited time, knowledge, and resources. […]

Engineering quality resides in engineering judgment. […]

Quality of the software product depends on the engineer's
faithfulness to the engineered artifact. […]

Engineering requires reconciling conflicting constraints. […]

Engineering skills improve as a result of careful systematic
reflection on experience. […]

Costs and time constraints matter, not just capability. […]

Software Engineering for the 21st Century: A basis for rethinking the curriculum
Manifesto, CMU-ISRI-05-108

toad 815-214 Kästner

Conceptual Design

toad 915-214 Kästner

Conceptual Modeling / Domain Models

• Find the concepts in the problem domain
� Real-world abstractions, not necessarily software objects

• Establish a common vocabulary

• Common documentation, big pictutre

• For communication!

• Often using UML class diagrams as (informal)
notation

• Starting point for finding classes

toad 1015-214 Kästner

Running Example

© CC License by Cyberslayer on Flickr

toad 1115-214 Kästner

Running Example

• Point of sale (POS) or checkout is the place where a retail
transaction is completed. It is the point at which a customer
makes a payment to a merchant in exchange for goods or
services. At the point of sale the merchant would use any of a
range of possible methods to calculate the amount owing - such as
a manual system, weighing machines, scanners or an electronic
cash register. The merchant will usually provide hardware and
options for use by the customer to make payment. The merchant
will also normally issue a receipt for the transaction.

• For small and medium-sized retailers, the POS will be customized
by retail industry as different industries have different needs. For
example, a grocery or candy store will need a scale at the point of
sale, while bars and restaurants will need to customize the item
sold when a customer has a special meal or drink request. The
modern point of sale will also include advanced functionalities to
cater to different verticals, such as inventory, CRM, financials,
warehousing, and so on, all built into the POS software. Prior to
the modern POS, all of these functions were done independently
and required the manual re-keying of information, which resulted
in a lot of errors. http://en.wikipedia.org/wiki/Point_of_sale

toad 1215-214 Kästner

Read description carefully, look for nouns and verbs

• Point of sale (POS) or checkout is the place where a retail
transaction is completed. It is the point at which a customer
makes a payment to a merchant in exchange for goods or
services. At the point of sale the merchant would use any of a
range of possible methods to calculate the amount owing - such as
a manual system, weighing machines, scanners or an electronic
cash register. The merchant will usually provide hardware and
options for use by the customer to make payment. The merchant
will also normally issue a receipt for the transaction.

• For small and medium-sized retailers, the POS will be customized
by retail industry as different industries have different needs. For
example, a grocery or candy store will need a scale at the point of
sale, while bars and restaurants will need to customize the item
sold when a customer has a special meal or drink request. The
modern point of sale will also include advanced functionalities to
cater to different verticals, such as inventory, CRM, financials,
warehousing, and so on, all built into the POS software. Prior to
the modern POS, all of these functions were done independently
and required the manual re-keying of information, which resulted
in a lot of errors. http://en.wikipedia.org/wiki/Point_of_sale

toad 1315-214 Kästner

First Steps toward a Domain Model

StoreRegister SaleItem

Cash
Payment

Sales
LineItem

Cashier Customer

Product
Catalog

Product
Description

Ledger

toad 1415-214 Kästner

Domain Model

toad 1515-214 Kästner

Classes vs. Attributes

• "If we do not think of some conceptual class X as
text or a number in the real world, it's probably a
conceptual class, not an attribute"

Sale

store

Sale Store

phoneNr
vs.

toad 1615-214 Kästner

Associations

• When do we care about a relationship between
two objects? (in the real world)

ItemStore Stocks

*

multiplicity of the role

1

toad 1715-214 Kästner

Domain Model (excerpt)

Register

ItemStore

Sale

CashPayment

Sales
LineItem

CashierCustomer

Product
Catalog

Product
Description

Stocks

*

Houses

1..*

Used-by

*

Contains

1..*

Describes

*

Captured-on

Contained-in

1..*

Records-sale-of

0..1

Paid-by Is-for

Logs-
completed

*

3 Works-on

1

1

1

1 1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-
accounts-

for

1

1

toad 1815-214 Kästner

Note

• Focus on concepts, not software classes, not data
� ideas, things, objects
� Give it a name, define it and give examples (symbol,
intension, extension)

� Add glossary
� Some might be implemented as classes, other might not

• There are many choices

• Agree on a single vocabulary

• The model will never be perfectly correct
� that’s okay
� start with a partial model, model what's needed
� extend with additional information later
� communicate changes clearly
� otherwise danger of "analysis paralysis"

toad 1915-214 Kästner

Three perspectives of class diagrams

• Conceptual: Draw a diagram that represents the
concepts in the domain under study
� Little or no regard for the software that might implement
it

• Specification: Describing the interfaces of the
software, not the implementation
� Often confused in OO since classes combine both
interfaces and implementation

• Implementation: Diagram describes actual
implementation classes

Understanding the intended perspective is
crucial to drawing and reading class

diagrams, even though the lines between
them are not sharp

