
:

Programming with Typestates

and Permissions

Jonathan Aldrich

15-214

December 2013

School of Computer Science



APIs Define Protocols

• APIs often define object protocols

• Protocols restrict possible orderings of method calls

– Violations result in error or undefined behavior

package java.io;

class FileReader {

int read() { … }

…

/** Closes the stream and releases any system resources associated with it. 
Once the stream has been closed, further read(), ready(), mark(), reset(), or 
skip() invocations will throw an IOException. Closing a previously closed stream 
has no effect. **/

void close() { … }

}

Plaid: Programming with States 2

open closed
close()

read()



APIs Define Protocols

• Another protocol: Iterator

package java.util;

interface Iterator<E> {

/** Returns true if the iteration has more elements. **/

boolean hasNext();

/** Returns the next element in the iteration.  Throws NoSuchElementException if 
the iteration has no more elements. **/

E next();

/** Removes from the underlying collection the last element returned by the 
iterator. This method can be called only once per call to next. Throws 
IllegalStateException if the next method has not yet been called, or 
the remove method has already been called after the last call to 
the next method.**/

void remove();

}

Plaid: Programming with States 3

available atEnd

hasNext() = true hasNext() = false

next() 

Discussion: what does the state machine look like 

with remove?



Outline and Research Questions

• How common are protocols?

• Do protocols cause problems in practice?

• Can we integrate protocols more directly into programming?

• Does such a programming model have benefits?

• Other current and future research

Plaid: a Permission-Based 

Programming Language
4



Empirical Study: Protocols in Java

• Object Protocol [Beckman, Kim, & Aldrich, ECOOP 2011]

– Finite set of abstract states, among which an object will transition

– Clients must be aware of the current state to use an object correctly

• Question: how commonly are protocols defined & used?

– Corpus study on 2 million LOC: Java standard library, open source

• Results

– 7% of all types define object protocols

• c.f. 2.5% of types define type parameters using Java Generics

– 13% of all classes act as object protocol clients

– 25% of these protocols are in classes designed for concurrent use

Plural and Plaid: Protocols in Practice 5



Outline and Research Questions

• How common are protocols?

• Do protocols cause problems in practice?

• Can we integrate protocols more directly into programming?

• Does such a programming model have benefits?

• Other current and future research

Plaid: a Permission-Based 

Programming Language
6



Protocols Cause Problems

• Preliminary evidence: help forums

– 75% of problems in one ASP.NET forum involved temporal constraints 

[Jaspan 2011]

• Preliminary evidence: security issues

– Georgiev et al.  The most dangerous code in the world: validating SSL 

certificates in non-browser software.  ACM CCS ’12.

• “SSL certificate validation is completely broken in many security-critical 

applications and libraries…. The root causes of these vulnerabilities are 

badly designed APIs of SSL implementations.”

• Fix includes not forgetting to verify the hostname (a protocol issue)

Plaid: Programming with States 7



User Study: Programming with Protocols

• User Study [Sunshine & Aldrich, submitted]

– Selected protocol-related tasks from StackOverflow forums

– Watched developers perform the tasks in the lab

• Think-aloud: developers say what they are thinking so we can gain insight 

into the barriers they encounter

– Gathered transcripts, timings, and performed open coding of 

problems

• Results

– 71% of time spent answering 4 kinds of protocol-related questions

Plural and Plaid: Protocols in Practice 8



How long does it take to answer each 

question?

9

A) What abstract state is the object in?

C) In what state(s) can I do operation Z? 

B) What are the capabilities of object in state X? 

D) How do I transition from state X to state Y?

24%

6%

20%
24%

10%

16%

A B C

D A+B C+D

% of questions

21%

4%

16%

20%

8%

31%

% of time



Outline and Research Questions

• How common are protocols?

• Do protocols cause problems in practice?

• Can we integrate protocols more directly into programming?

• Does such a programming model have benefits?

• Other current and future research

Plaid: a Permission-Based 

Programming Language
10



Typestate-Oriented Programming

A new programming paradigm in which:

programs are made up of dynamically created objects,

each object has a typestate that is changeable

and each typestate has an interface, representation, and behavior.

Typestate-oriented Programming is embodied in the language

Plaid: a Permission-Based 

Programming Language
11

*Plaid (rhymes with “dad”) is 

a pattern of Scottish origin, 

composed of multicolored 

crosscutting threads



Typestate-Oriented Programming

state File {

val String filename;

}

state ClosedFile = File with {

method void open() [ClosedFile>>OpenFile];

}

state OpenFile = File with {

private val CFile fileResource;

method int read();

method void close() [OpenFile>>ClosedFile];

}

Plaid: a Permission-Based 

Programming Language
12

State 

transition

Different 

representation
New methods

open closed

close()

read()

open()



Implementing Typestate Changes

method void open() [ClosedFile>>OpenFile] {

this <- OpenFile {

fileResource = fopen(filename);

}

}

Plaid: a Permission-Based 

Programming Language
13

Typestate change 

primitive – like 

Smalltalk become

:

Values must be 

specified for 

each new field



Why Typestate in the Language?

14

• The world has state – so should programming languages

– egg -> caterpillar -> butterfly; sleep -> work -> eat -> play; hungry <-> full

• Language influences thought [Sapir ‘29, Whorf ‘56, Boroditsky ’09]

– Language support encourages engineers to think about states

• Better designs, better documentation, more effective reuse

• Improved library specification and verification

– Typestates define when you can call read()

– Make constraints that are only implicit today, explicit

• Expressive modeling

– If a field is not needed, it does not exist

– Methods can be overridden for each state

• Simpler reasoning

– Without state: fileResource non-null if File is open, null if closed

– With state: fileResource always non-null

• But only exists in the FileOpen state
Plaid: a Permission-Based 

Programming Language



Typestate Expressiveness

Plaid: a Permission-Based 

Programming Language
15

open
closed

forward

Only

scrollable

readOnly

updatable

scrolling

inserting

insert inserted

begin

end

validread

notYet

Read

noUpdate

pending

• Research questions

– Can we express the structure of real state machines expressed in UML?

– Can we break protocols into component parts and reuse them?

– Can we provide better error messages when something goes wrong?

• [Sunshine et al., OOPSLA 2011]



Checking Typestate

method void openHelper(ClosedFile>>OpenFile aFile) {

aFile.open();

}

method int readFromFile(ClosedFile f) {

openHelper(f);

val x = computeBase() + f.read();

f.close();

return x;

}

Plaid: a Permission-Based 

Programming Language
16

This method 

transitions the 

argument from 

ClosedFile to 

OpenFile

Must leave in 

the ClosedFile

state

Use the type of 

openHelper

f is open so 

read is OK

Correct 

postcondition; f 

is in ClosedFile

Question: How do we 

know computeBase

doesn’t affect the file 

(thorugh an alias)?



Typestate Permissions
• unique OpenFile

– File is open; no aliases exist

– Default for mutable objects

• immutable OpenFile
– Cannot change the File

• Cannot close it

• Cannot write to it, or change the position

– Aliases may exist but do not matter

– Default for immutable objects

• shared OpenFile@NotEOF [OOPSLA ’07]

– File is aliased

– File is currently not at EOF
• Any function call could change that, due to aliasing

– It is forbidden to close the File
• OpenFile is a guaranteed state that must be respected by all operations through all aliases

• full – like shared but is the exclusive writer

• pure – like shared but cannot write

Plaid: a Permission-Based 

Programming Language
17

File

ClosedFile OpenFile

NotEOF EOF

[Chan et al. ’98]

pure resource-based 

programming

pure functional 

programming

shared OpenFile@OpenFile

is (almost) traditional object-

oriented programming

Key innovations vs. prior work 

(c.f. Fugue, Boyland, Haskell 

monads, separation logic, etc.)



Permission Splitting

• Permissions may not be duplicated

– No aliases to a unique object!

• Splitting that follows permission semantics is allowed, however

– unique � full

– unique � shared

– unique � immutable

– shared ���� shared, shared

– immutable ���� immutable, immutable

– X � X, pure // for any non-unique permission X

• Research challenges

– Practical permission accounting [POPL ’12]

– Adding dynamic checks / casts [ECOOP ’11]

Plaid: a Permission-Based 

Programming Language
18



: Explicit Dependencies for Concurrency

• Concurrency is a major challenge

– Avoiding race conditions, understanding execution

• Inspiration: functional programming is “naturally  concurrent”

– Up to data dependencies in program

• Idea: use permissions to construct dataflow graph

– Easier to track dependencies than all possible concurrent executions

– Functional programming passes data explicitly to show dependencies

– For stateful programs, we pass permissions explicitly instead

• Consequence: stateful programs can be naturally concurrent

– Furthermore, we can provide strong reasoning about correctness

19
Plaid: a Permission-Based 

Programming Language



Features: Sharing and Dependencies

method unique Data createData();

method void print(immutable Data d);

method unique Stats getStats(immutable Data d);

method void manipulate(unique Data d,

immutable Stats s);

val d = createData();

print(d);

val s = getStats(d);

manipulate(d, s);

print(d);

20

createData

split

print getStats

join

manipulate

print

unique

immutable immutable

unique

immutable
immutable

Plaid: a Permission-Based 

Programming Language



Features: Sharing and Dependencies

method void produce(‘QG Queue q);

method void consume(‘QG Queue q);

method void dispose(unique Queue q);

group QG;

val QG Queue q = new Queue;

split QG: produce(q) || consume(q);

q.dispose();

21

new QueueQG

adopt

split

uniqueunique

produce consume

join

shared

emancipate

unique

unique

disposePlaid: a Permission-Based 

Programming Language



Outline and Research Questions

• How common are protocols?

• Do protocols cause problems in practice?

• Can we integrate protocols more directly into programming?

• Does such a programming model have benefits?

Plaid: a Permission-Based 

Programming Language
22



User Experiment:

Protocol Documentation Benefits
• Can a state-based programming language help programmers?

– Multiple possible mechanisms: better documentation, typechecker
catches more errors, better run-time error messages

• More focused question

– Can state-based documentation help programmers complete state-related 
tasks faster?

• Controlled Laboratory Experiment

– Similar tasks to the qualitative study described earlier, done in Java

– Subjects given standard Javadoc, or “Plaiddoc” with state info

• Hard to test Plaid directly

• But if we had Plaid, we could generate better state documentation

• So let’s test that

• Results: Plaiddoc participants were dramatically faster

– Factor of 2x for state-related tasks, p=0.0003

– No slowdown for non-state-related tasks

– Also less likely to make errors

23



The Plaid Language

• A holistic, permission-based approach to managing state

– First-class abstractions for characterizing state change

– Use permission flow to infer concurrent execution

– Practical mix of static & dynamic checking

• Opens a new area of research

– Languages based on changeable states and permissions

• Benefits

– Productivity enhancements from improved documentation

– Programs can more faithfully model the target domain

– Permissions encode design constraints for static/dynamic checking

– Naturally safe parallel execution model

http://www.plaid-lang.org/

24
Plaid: a Permission-Based 

Programming Language


