Object§ Analysis

i o
S N, e
- R Wl
A

Threa_ds

Principles of Software Construction:
Objects, Design and Concurrency

Distributed System Design, Part 3

15-214
toad

Fall 2013
Jonathan Aldrich Charlie Garrod

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH

© 2012-13 C Garrod, J Aldrich, and W Scherlis

Administrivia

e Homework 5: The Framework Strikes Back
= 5¢ plug-ins due Tuesday, 11:59 p.m.
¢ 2 plug-ins for teams of 2 members
¢ 4 plug-ins for teams of 3 members
e Chosen-frameworks available tonight, details via Piazza

institute for
15-214 Garrod 2 [Hi o

Key topics from Tuesday

Pap—— it FOf
15-214 Garrod 3 sorumie

Key topics from Tuesday

e Failure models
e Distributed system design principles

e Replication and partitioning for reliability and
scalability

e Consistent hashing

institute for
15-214 Garrod a [Bf o

Master/tablet-based systems

e Dynamically allocate range-based partitions
= Master server maintains tablet-to-server assignments
= Tablet servers store actual data
= Front-ends cache tablet-to-server assignments

Master
_ Tablet server 1%
{a-c:2, \
d-g:3, K-2:

h-j:3, {pete:12,
— 2| reif:42}

front-end :
Tablet server 3::
front-end ; _ d-g: '
\Jablet server 2: (deb: 16}
a-C. h_:
{alice:90, I)
bob:42,
cohen:9}

e = _\r_‘s'[fﬁx_tﬁ'—ﬁ)r/
15-214 Garrod 5 sormati

Today

e MapReduce: a robust, scalable framework for
distributed computation

- institute for
15-214 Garrod s [

Goal: Robust, scalable distributed computation...

e ...0n replicated, partitioned data

~"Master:
_ Tablet server 1%
{a-c:2, \
d-g:3, k-z:

h-j:3, {pete:12,
k-z:1} — | reif:42}

Tablet server 3
d-g:

front-end

front-end

Jablet server 2:

{deb:16}
a-C. h_:
{alice:90, I ’
bob:42,
cohen:9}

\\\\\ = institute for /,’/
15-214 Garrod S —— 7---- { Yl sarrvaes -

Map from a functional perspective

emap(f, x[0..n-11])

e Apply the function £ to each element of list x

Input list \\ J

Mapping function

- - - - - - -~ - - -~ - -
Output list

map/reduce images src: Apache Hadoop tutorials

e E.g., in Python:
def square(x): return x*x
map (square, [1l, 2, 3, 4]) would return [1, 4, 9, 16]

e Parallel map implementation is trivial
= What is the work? What is the depth?

- institute for
15-214 Garrod 8 RESEARCH

Reduce from a functional perspective

e reduce(f, x[0..n-11])
= Repeatedly apply binary function £ to pairs of items in x,
replacing the pair of items with the result until only one
item remains
= One sequential Python implementation:
def reduce(f, Xx):
if len(x) == 1l: return x[0]
return reduce(f, [£(x[0],x[1])] + xX[2:])

= e.g., in Python: Input list

def add(x,y): return x+y
reduce(add, [1,2,3,4])

would return 10 as Reducing function
reduce(add, [1,2,3,4])

reduce(add, [3,3,4])
reduce(add, [6,4])

Output value

reduce(add, [10]) -> 10

= Institute for
15-214 Garrod o M

Reduce with an associative binary function

e If the function £ is associative, the order £ is
applied does not affect the result

/\ /N /\/\/\
/\ 1) 2N -
/\ AN

3] [

1 +((2+3)+4) 1+ ((2+(3+4)) (1+2) + (3+4)

e Parallel reduce implementation is also easy
« What is the work? What is the depth?

15-214 Garrod 10 [N

SSSSSSSS
RRRRRRRR

Distributed MapReduce

e The distributed MapReduce idea is similar to (but

not the same as!):
reduce(f2, map(fl, x))

e Key idea: a "data-centric" architecture
= Send function f1 directly to the data
e Execute it concurrently
= Then merge results with reduce
e Also concurrently

e Programmer can focus on the data processing
rather than the challenges of distributed systems

Pap—— it FOf
15-214 Garrod 11 sorumie

MapReduce with key/value pairs (Google style)

e Master
= Assign tasks to workers

= Ping workers to test for
failures

e Map workers
= Map for each key/value pair
= Emit intermediate key/value
pairs

e Reduce workers
= Sort data by intermediate
key and aggregate by key

= Reduce for each key

15-214 Garrod

Node 1

EEEREH

Mapp ng process

ﬁﬁﬁﬁﬁ

Node 2

EEERL

Node 3

BiLILir

Mapp ng process

ﬁéﬁﬁﬁ

Mpp ng pro

i

the shuffle: @%

Node 1

@@@@

Rd cing pro

——

Node 2

@@@@@@

Node 3

@@@@@

Rd ing pro

Rd ing pro

m—

m

12

-
ute for
I S SOFTWARE
RESEARCH

MapReduce with key/value pairs (Google style)

e E.g., for each word on the Web, count the number

of times that word occurs

= For Map: keyl is a document name, value is the
contents of that document

= For Reduce: key2 is a word, values is a list of the
number of counts of that word

fl1(String keyl, String value): f2(String key2, Iterator values):
for each word w in value: int result = 0;
EmitIntermediate(w, 1); for each v in values:

result += v;

Emit(key2, result);

Map: (keyl, vl1) > (key2, v2)* Reduce: (key2, v2*) - v2*
MapReduce: (keyl, v1)* > (key2, v2*)*

MapReduce: (docName, docText)* - (word, wordCount)*
nstitute for

15-214 Garrod 13 Li?i%’?’ﬁ

MapReduce architectural detalils

e Usually integrated with a

distributed storage system
= Map worker executes function
on its share of the data

e Map output usually written

to worker's local disk

- Shuffle: reduce worker often ~ ______ P
pulls intermediate data from s e
| . Py 1: :

map worker's local disk d-g:3, k-z: !

/ h-j:3, > [{pete:12,
e Reduce output usually / k-z:1} reif:42)

written back to distributed ; J e
storage system | Map/reduce worker | riob.1gy |
9 Y | a-c: 3:[h-j:{ }

Map/reduce workgr

N

{alice:90,
bob:42,
\ cohen:9} '

T

e Institute FOV
15-214 Garrod 14 SOFTWARE

RESEARCH

Handling server failures with MapReduce

e Map worker failure:
= Re-map using replica of the
storage system data

e Reduce worker failure:
= New reduce worker can pull
intermediate data from map
worker's local disk, re-reduce

——

_ .~ Master: e
e Master failure: [aaa, | MiprEtuce worker
d-g:3, | Kz |

= Options: : h-j:3, < |{pete:12,

e Restart system using / k-z:1} Sl

new master . f ap/reduce worker
* Replicate master E Map/reduce worker %;1%5:16} i
®... @ 2]a-c 3:[h-j:{ N |
: {alice:90, |

| bob:42, :

\ cohen:9} 7

Il e e e e e

= institute for
15-214 Garrod 15 [

The beauty of MapReduce

e Low communication costs (usually)
= The shuffle (between map and reduce) is expensive

e MapReduce can be iterated
« Input to MapReduce: key/value pairs in the distributed
storage system
= Output from MapReduce: key/value pairs in the
distributed storage system

= institute for
15-214 Garrod 16 RESEARCH

Another MapReduce example

e E.g., for person in a social network graph, output

the number of mutual friends they have
« For Map: keyl is a person, value is the list of her friends
» For Reduce: key2 is ???, values is a list of ???

fl1(String keyl, String value): f2(String key2, Iterator values):

Map: (keyl, vl1) > (key2, v2)* Reduce: (key2, v2*) - v2*
MapReduce: (keyl, v1)* > (key2, v2*)*

MapReduce: (person, friends)* - (pair of people, count of mutual friends)*
- nstitute for

15-214 Garrod 17 sorminst

Another MapReduce example

e E.g., for person in a social network graph, output
the number of mutual friends they have
« For Map: keyl is a person, value is the list of her friends

= For Reduce: key2 is a pair of people, values is a list of
1s, for each mutual friend that pair has

fl1(String keyl, String value): f2(String key2, Iterator values):
for each pair of friends int result = 0;
in value:

for each v in values:

EmitIntermediate(pair, 1):
(P r)i result += v;

Emit(key2, result);

Map: (keyl, vl1) > (key2, v2)* Reduce: (key2, v2*) - v2*
MapReduce: (keyl, v1)* > (key2, v2*)*

MapReduce: (person, friends)* - (pair of people, count of mutual friends)*

nstitute for

15-214 Garrod 18 Li?i%’?’ﬁ

Another MapReduce example

e E.g., for each page on the Web, create a list of

the pages that link to it
= For Map: keyl is a document name, value is the
contents of that document
= For Reduce: key2 is ???, values is a list of ???

fl1(String keyl, String value): f2(String key2, Iterator values):

Map: (keyl, vl1) > (key2, v2)* Reduce: (key2, v2*) - v2*
MapReduce: (keyl, v1)* > (key2, v2*)*

MapReduce: (docName, docText)* > (docName, list of incoming links)*
- nstitute for

15-214 Garrod 19 sorminst

Next week

e Static analysis

= institute for
15-214 Garrod 20 [HH o

