
	

toad	

	

Fall	
 2013	

© 2012-13 C Garrod, J Aldrich, and W Scherlis

School of
Computer Science

Principles of Software Construction:
Objects, Design and Concurrency

Distributed System Design, Part 2

Jonathan Aldrich Charlie Garrod

15-214

2 15-­‐214	
 	
 Garrod	

Administrivia

• Homework 5: The Framework Strikes Back
§ 5b implementations due tonight
§ 5c plug-ins due next Tuesday, 11:59 p.m.

3 15-­‐214	
 	
 Garrod	

Key topics from last Thursday

4 15-­‐214	
 	
 Garrod	

Higher levels of abstraction

• Application-level communication protocols

• Frameworks for simple distributed computation
§ Remote Procedure Call (RPC)
§  Java Remote Method Invocation (RMI)

• Common patterns of distributed system design

• Complex computational frameworks
§  e.g., distributed map-reduce

5 15-­‐214	
 	
 Garrod	

6 15-­‐214	
 	
 Garrod	

Aside: The robustness vs. redundancy curve

? redundancy
robustness

7 15-­‐214	
 	
 Garrod	

Today

• Introduction to distributed systems
§ Motivation: reliability and scalability
§  Failure models

• Techniques for reliability and scalability
§ Replication
§  Partitioning

8 15-­‐214	
 	
 Garrod	

Metrics of success

• Reliability
§ Often in terms of availability: fraction of time system is
working
• 99.999% available is "5 nines of availability"

• Scalability
§ Ability to handle workload growth

9 15-­‐214	
 	
 Garrod	

A case study: Passive primary-backup replication

• Architecture before replication:

§  Problem: Database server might fail

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

10 15-­‐214	
 	
 Garrod	

A case study: Passive primary-backup replication

• Architecture before replication:

§  Problem: Database server might fail

• Solution: Replicate data onto multiple servers

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end {alice:90,
 bob:42,
 …} client front-end

primary:

{alice:90,
 bob:42,
 …}

backup:

{alice:90,
 bob:42,
 …}

backup:

11 15-­‐214	
 	
 Garrod	

Passive primary-backup replication protocol

1.  Front-end issues request with unique ID to
primary DB

2.  Primary checks request ID
§  If already executed request, re-send response and exit
protocol

3.  Primary executes request and stores response

4.  If request is an update, primary DB sends
updated state, ID, and response to all backups

§ Each backup sends an acknowledgement

5.  After receiving all acknowledgements, primary
DB sends response to front-end

12 15-­‐214	
 	
 Garrod	

Issues with passive primary-backup replication

• If primary DB crashes, front-ends need to agree
upon which unique backup is new primary DB
§  Primary failure vs. network failure?

• If backup DB becomes new primary, surviving
replicas must agree on current DB state

• If backup DB crashes, primary must detect failure
to remove the backup from the cluster
§ Backup failure vs. network failure?

• If replica fails* and recovers, it must detect that it
previously failed

• Many subtle issues with partial failures

• …

13 15-­‐214	
 	
 Garrod	

More issues…

• Concurrency problems?
§ Out of order message delivery?

• Time…

• Performance problems?
§ 2n messages for n replicas
§  Failure of any replica can delay response
§ Routine network problems can delay response

• Scalability problems?
§ All replicas are written for each update, but primary DB
responds to every request

14 15-­‐214	
 	
 Garrod	

Types of failure behaviors

• Fail-stop

• Other halting failures

• Communication failures
§ Send/receive omissions
§ Network partitions
§ Message corruption

• Performance failures
§ High packet loss rate
§  Low throughput
§ High latency

• Data corruption

• Byzantine failures

15 15-­‐214	
 	
 Garrod	

Common assumptions about failures

• Behavior of others is fail-stop (ugh)

• Network is reliable (ugh)

• Network is semi-reliable but asynchronous

• Network is lossy but messages are not corrupt

• Network failures are transitive

• Failures are independent

• Local data is not corrupt

• Failures are reliably detectable

• Failures are unreliably detectable

16 15-­‐214	
 	
 Garrod	

Some distributed system design goals

• The end-to-end principle
§ When possible, implement functionality at the end nodes
(rather than the middle nodes) of a distributed system

• The robustness principle
§ Be strict in what you send, but be liberal in what you
accept from others
• Protocols
• Failure behaviors

• Benefit from incremental changes

• Be redundant
§ Data replication
§ Checks for correctness

17 15-­‐214	
 	
 Garrod	

Today

• Introduction to distributed systems
§ Motivation: reliability and scalability
§  Failure models

• Techniques for reliability and scalability
§ Replication
§  Partitioning

18 15-­‐214	
 	
 Garrod	

Replication for scalability: Client-side caching

• Architecture before replication:

§  Problem: Server throughput is too low

• Solution: Cache responses at (or near) the client
§ Cache can respond to repeated read requests

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end

client front-end

{alice:90,
 bob:42,
 …}

database server: cache

cache

19 15-­‐214	
 	
 Garrod	

Replication for scalability: Client-side caching

• Hierarchical client-side caches:

client

front-end

client

front-end

{alice:90,
 bob:42,
 …}

database server:

cache

cache

cache

client

client

cache

cache

cache

20 15-­‐214	
 	
 Garrod	

Replication for scalability: Server-side caching

• Architecture before replication:

§  Problem: Database server throughput is too low

• Solution: Cache responses on multiple servers
§ Cache can respond to repeated read requests

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end

client front-end

{alice:90,
 bob:42,
 …}

database server: cache

cache

cache

21 15-­‐214	
 	
 Garrod	

Cache invalidation

• Time-based invalidation (a.k.a. expiration)
§ Read-any, write-one
§ Old cache entries automatically discarded
§ No expiration date needed for read-only data

• Update-based invalidation
§ Read-any, write-all
§ DB server broadcasts invalidation message to all caches
when the DB is updated

• What are the advantages and disadvantages of
each approach?

22 15-­‐214	
 	
 Garrod	

Cache replacement policies

• Problem: caches have finite size

• Common* replacement policies
§ Optimal (Belady's) policy

• Discard item not needed for longest time in future
§  Least Recently Used (LRU)

• Track time of previous access, discard item accessed
least recently

§  Least Frequently Used (LFU)
• Count # times item is accessed, discard item accessed
least frequently

§ Random
• Discard a random item from the cache

23 15-­‐214	
 	
 Garrod	

Partitioning for scalability

• Partition data based on some property, put each
partition on a different server

client front-end
{cohen:9,
 bob:42,
 …}

client front-end

CMU server:

{alice:90,
 pete:12,
 …}

Yale server: {deb:16,
 reif:40,
 …}

MIT server:

24 15-­‐214	
 	
 Garrod	

Horizontal partitioning

• a.k.a. "sharding"

• A table of data:
username school value
cohen CMU 9
bob CMU 42
alice Yale 90
pete Yale 12
deb MIT 16
reif MIT 40

25 15-­‐214	
 	
 Garrod	

Recall: Basic hash tables

• For n-size hash table, put each item X in the
bucket: X.hashCode() % n!

0
1
2
3
4
5
6
7
8
9
10
11
12

{reif:40}

{bob:42}

{pete:12}

{deb:16}

{alice:90}

{cohen:9}

26 15-­‐214	
 	
 Garrod	

Partitioning with a distributed hash table

• Each server stores data for one bucket

• To store or retrieve an item, front-end server
hashes the key, contacts the server storing that
bucket

client front-end
{reif:40}

client front-end

Server 0:

{bob:42}
Server 3: {pete:12,

 alice:90}

Server 5:

{ }
Server 1:

…

27 15-­‐214	
 	
 Garrod	

Consistent hashing

• Goal: Benefit from incremental changes
§ Resizing the hash table (i.e., adding or removing a
server) should not require moving many objects

• E.g., Interpret the range of hash codes as a ring
§ Each bucket stores data for a range of the ring

• Assign each bucket an ID in the range of hash codes
• To store item X don't compute X.hashCode() % n.
Instead, place X in bucket with the same ID as or next
higher ID than X.hashCode()!

28 15-­‐214	
 	
 Garrod	

Problems with hash-based partitioning

• Front-ends need to determine server for each
bucket
§ Each front-end stores look-up table?
§ Master server storing look-up table?
§ Routing-based approaches?

• Places related content on different servers
§ Consider range queries:
 SELECT * FROM users WHERE lastname STARTSWITH 'G'!

29 15-­‐214	
 	
 Garrod	

Master/tablet-based systems

• Dynamically allocate range-based partitions
§ Master server maintains tablet-to-server assignments
§  Tablet servers store actual data
§  Front-ends cache tablet-to-server assignments

client front-end

k-z:
{pete:12,
 reif:42}

client front-end

Tablet server 1:

a-c:
{alice:90,
 bob:42,
 cohen:9}

Tablet server 2: d-g:
{deb:16}
h-j:{ }

Tablet server 3:

{a-c:2,
 d-g:3,
 h-j:3,
 k-z:1}

Master:

30 15-­‐214	
 	
 Garrod	

Combining approaches

• Many of these approaches are orthogonal

• E.g., For master/tablet systems:
§ Masters are often partitioned and replicated
§  Tablets are replicated
§ Meta-data frequently cached
§ Whole master/tablet system can be replicated

31 15-­‐214	
 	
 Garrod	

Next time

• Map-reduce

