Object§ Analysis

i o
S N, e
- R Wl
A

Threa_ds

Principles of Software Construction:
Objects, Design and Concurrency

Distributed System Design, Part 2

15-214
toad

Fall 2013
Jonathan Aldrich Charlie Garrod

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH

© 2012-13 C Garrod, J Aldrich, and W Scherlis

Administrivia

e Homework 5: The Framework Strikes Back
« 5b implementations due tonight
« 5¢ plug-ins due next Tuesday, 11:59 p.m.

w5 - Twitte
"’“”’17 Total Tweets Tweets vs. Time of Day

- institute for
15-214 Garrod 2 [

Key topics from last Thursday

Pap—— it FOf
15-214 Garrod 3 sorumie

Higher levels of abstraction

e Application-level communication protocols

e Frameworks for simple distributed computation
= Remote Procedure Call (RPC)
= Java Remote Method Invocation (RMI)

e Common patterns of distributed system design

e Complex computational frameworks
= e.g., distributed map-reduce

= institute for
15-214 Garrod a [H o

v owerPoint File it View Insert Format Arrange Tools ide Show indow # elp A D = 100% (I Tue 11: arles Garro =
® P P File Edit V | F A Tools Slide Sh Wind Hel 5 G 3 2 4« [0 100%ED Tue 11:38 AM Charles Garrod Q

He
Slides
W

New Slide

etc — bash — 80x24 26-distributed-systems — bash — 80x24
Committed revision 2034. code-draft/ concurrency.pptx svn-commit.tmp
erebus$ vim todo.txt concurrency-whole.pptx concurrency2.pdf
erebus$ svn up . e A R Losnatzaanaiian s
Updating '.': ® 006 distributed-systems1.pptx
svn: E210002: Unable to ¢ ¢ = =1) = T——
ri.cmu.edu/usr@/home/char | Ly H =) | = & a2% =@ (Qr yuted-systems/
svn: E210002: To better ¢
'ssh' in the [tunnels] s
svn: E210002: Network con Slides Font Paragraph Insert
erebus$ svn up (+) . Aslv @

v

- P— . » Hv
A Home Themes Tables Charts SmartArt Transitions Animations Slide Show » A ¥ foncurrency4. pptx

> m ributed-systems
New Slide i N &E' Arrang

You need to restart your computer. Hold down the Power as back
button for several seconds or press the Restart button.

Veuillez redémarrer votre ordinateur. Maintenez la touche
de démarrage enfoncée pendant plusieurs secondes ou bien
appuyez sur le bouton de réinitialisation.

Sie mussen lhren Computer neu starten. Halten Sie dazu
die Einschalttaste einige Sekunden gedruckt oder driicken
Sie die Neustart-Taste.

AVE1—5ZBENT 2UEHNBDET, KNT—RI¥ V%
WML S0, VEYRRZ U EZBLTLEZWN,

dvl=# \q

could not save history to file "/afs/cs/usr/charlie/.psql_history": Permission d
enied

transit$ logout

Connection to transit.apt.ri closed.

garrod-dell$ logout

Connection to garrod.isri.cmu.edu closed.

erebus$

Screen Shot
2012..2 AM

Screen Shot
2012..5AM

Aside: The robustness vs. redundancy curve

robustness
redundancy

- institute for
15-214 Garrod 6 RESEARCH

Today

e Introduction to distributed systems
= Motivation: reliability and scalability
= Failure models

e Techniques for reliability and scalability
= Replication
= Partitioning

- institute for
15-214 Garrod 7 M

Metrics of success

e Reliability
= Often in terms of availability: fraction of time system is
working
¢ 99,999% available is "5 nines of availability"

e Scalability
= Ability to handle workload growth

= institute for
15-214 Garrod 8 RESEARCH

A case study: Passive primary-backup replication

e Architecture before replication:

database server:

front-end \ {alice:90,

i bob:42,
front-end /)

~
~

= Problem: Database server might fail

= institute for
15-214 Garrod 9 RESEARCH

A case study: Passive primary-backup replication

e Architecture before replication:

f database server:
.<—> ront-end \ {alice:90,

i bob:42,
.<—>front-end / L

= Problem: Database server might fail

e Solution: Replicate data onto multiple servers

.<—> front-end primary: backup:
Ni'\{alice:%, {alice:90, |

i bob:42, _
.<—>front-end /) i bo}b.42,
| ,\, backup:

{alice:90,
bob:42,

= Institute for
15-214 Garrod o [Hi:s

Passive primary-backup replication protocol

1. Front-end issues request with unique ID to
primary DB

2. Primary checks request ID
» If already executed request, re-send response and exit
protocol

3. Primary executes request and stores response

4. If request is an update, primary DB sends

updated state, ID, and response to all backups
« Each backup sends an acknowledgement

5. After receiving all acknowledgements, primary
DB sends response to front-end

= institute for
15-214 Garrod 11 [H o

Issues with passive primary-backup replication

o If primary DB crashes, front-ends need to agree

upon which unique backup is new primary DB
= Primary failure vs. network failure?

o If backup DB becomes new primary, surviving
replicas must agree on current DB state

o If backup DB crashes, primary must detect failure

to remove the backup from the cluster
= Backup failure vs. network failure?

o If replica fails* and recovers, it must detect that it
previously failed

e Many subtle issues with partial failures

= institute for
15-214 Garrod 12 NI o

More issues...

e Concurrency problems?
= Out of order message delivery?
e Time...

e Performance problems?
= 2N messages for n replicas
= Failure of any replica can delay response
= Routine network problems can delay response

e Scalability problems?
= All replicas are written for each update, but primary DB
responds to every request

= institute for
15-214 Garrod 13 RESEARCH

Types of failure behaviors

e Fail-stop
e Other halting failures

e Communication failures
= Send/receive omissions
= Network partitions
= Message corruption

e Performance failures
= High packet loss rate
= Low throughput
= High latency

e Data corruption

e Byzantine failures

Pap—— it FOV
159214 Garrod 14 SOttt

Common assumptions about failures

e Behavior of others is fail-stop (ugh)

e Networ
e Networ
e Networ

e Networ

K is reliable (ugh)
K is semi-reliable but asynchronous

K is lossy but messages are not corrupt

K failures are transitive

e Failures are independent

e Local data is not corrupt

e Failures are reliably detectable

e Failures are unreliably detectable

15-214 Garrod

-
institute for
1 5 i S SOFTWARE
RESEARCH

Some distributed system design goals

e The end-to-end principle
= When possible, implement functionality at the end nodes
(rather than the middle nodes) of a distributed system

e The robustness principle

= Be strict in what you send, but be liberal in what you
accept from others

e Protocols
e Failure behaviors

e Benefit from incremental changes

e Be redundant
= Data replication
= Checks for correctness

- institute for
15-214 Garrod 16 RESEARCH

Today

e Introduction to distributed systems
= Motivation: reliability and scalability
= Failure models

e Techniques for reliability and scalability
= Replication
= Partitioning

- institute for
15-214 Garrod 17 [Hlies

Replication for scalability: Client-side caching

e Architecture before replication:

front-end

database server:

front-end

= Problem: Server throughput is too low

{alice:90,
bob:42,

~
~

e Solution: Cache responses at (or near) the client
= Cache can respond to repeated read requests

— front-end

— | front-end

15-214 Garrod

\ {alice:90,

database server:

bob:42,

-
institute for
SOFTWARE

18 RESEARCH

Replication for scalability: Client-side caching

e Hierarchical client-side caches:

" databa
\ {alice:

. bob::
front-end <> 1

- institute for
15-214 Garrod 19 SOFTWARE

Replication for scalability: Server-side caching

e Architecture before replication:

database server:

front-end \ {alice:90,
; bob:42,
front-end / L

~
~

= Problem: Database server throughput is too low

9

e Solution: Cache responses on multiple servers
= Cache can respond to repeated read requests

front-end
front-end

- institute for
15-214 Garrod 20 SOPTARE

database server:

{alice:90,
bob:42,

Cache invalidation

e Time-based invalidation (a.k.a. expiration)
= Read-any, write-one
= Old cache entries automatically discarded
= No expiration date needed for read-only data

e Update-based invalidation
= Read-any, write-all

= DB server broadcasts invalidation message to all caches
when the DB is updated

e What are the advantages and disadvantages of
each approach?

- institute for
15-214 Garrod 21 RESEARCH

Cache replacement policies

e Problem: caches have finite size

e Common* replacement policies
= Optimal (Belady's) policy
e Discard item not needed for longest time in future
« Least Recently Used (LRU)

e Track time of previous access, discard item accessed
least recently

= Least Frequently Used (LFU)

e Count # times item is accessed, discard item accessed
least frequently

= Random
e Discard a random item from the cache

= institute for
15-214 Garrod 22 RESEARCH

Partitioning for scalability

e Partition data based on some property, put each
partition on a different server

CMU server:

{cohen:9,
bob:42,

)

front-end </'/>

Yale server: {feei?_:ig !
{alice:90, R
pete:12,
o)

= institute for
15-214 Garrod 23 RESEARCH

Horizontal partitioning

e a.k.a. "sharding”

e A table of data:

15-214 Garrod

username school value
cohen CMU 9
bob CMU 42
alice Yale 90
pete Yale 12
deb MIT 16
reif MIT 40

24

titute for
SOFTWARE
RESEARCH

Recall: Basic hash tables

e For n-size hash table, put each item X in the

bucket: X.hashCode() %

15-214 Garrod

n
0 o———>{reif:40}

1

2

3 o——>{bob:42}
4

5 o——>{pete:12}
6

7

8

9

10

11 o——>{deb:16}

12

o>

{alice:90}

{cohen:9}

25

institute for
SOFTWARE
RESEARCH

Partitioning with a distributed hash table

e Fach server stores data for one bucket

e To store or retrieve an item, front-end server
hashes the key, contacts the server storing that
bucket T e e

. Server 1.
Server O:

{reif:40} { b

front-end <//>

front-end Server S:

{pete:12,

Server 3: alice:90%

{bob:42}

e = s F/
15-214 Garrod 26 é‘é’s?(.{\c'*ﬁ

Consistent hashing

e Goal: Benefit from incremental changes

= Resizing the hash table (i.e., adding or removing a
server) should not require moving many objects

e E.g., Interpret the range of hash codes as a ring
= Each bucket stores data for a range of the ring
e Assign each bucket an ID in the range of hash codes
e To store item X don't compute X.hashCode() % n.
Instead, place X in bucket with the same ID as or next
higher ID than X.hashCode()

= institute for
15-214 Garrod 27 RESEARCH

Problems with hash-based partitioning

e Front-ends need to determine server for each

bucket

» Each front-end stores look-up table?
= Master server storing look-up table?
= Routing-based approaches?

e Places related content on different servers
= Consider range queries:
SELECT * FROM users WHERE lastname STARTSWITH 'G'

- institute for
15-214 Garrod 28 RESEARCH

Master/tablet-based systems

e Dynamically allocate range-based partitions
= Master server maintains tablet-to-server assignments
= Tablet servers store actual data
= Front-ends cache tablet-to-server assignments

Master
_ Tablet server 1%
{a-c:2, \
d-g:3, K-2:

h-j:3, {pete:12,
— 2| reif:42}

front-end :
Tablet server 3::
front-end ; _ d-g: '
\Jablet server 2: (deb: 16}
a-C. h_:
{alice:90, I)
bob:42,
cohen:9}

e = _\r_‘s'[fﬁx_tﬁ'—ﬁ)r/
15-214 Garrod 29 sormati

Combining approaches

e Many of these approaches are orthogonal

e E.g., For master/tablet systems:
= Masters are often partitioned and replicated
= Tablets are replicated
= Meta-data frequently cached
= Whole master/tablet system can be replicated

- institute for
15-214 Garrod 30 RESEARCH

Next time

e Map-reduce

= institute for
15-214 Garrod PR | S [ot

