
	

toad	

	

Fall	
 2013	

© 2012-13 C Garrod, J Aldrich, and W Scherlis

School of
Computer Science

Principles of Software Construction:
Objects, Design and Concurrency

Distributed System Design, Part 1

Jonathan Aldrich Charlie Garrod

15-214

2 15-­‐214	
 	
 Garrod	

Administrivia

• Homework 5: The Framework Strikes Back
§ 5b implementations due next Tuesday, 11:59 p.m.

• Do you want to be a software engineer?

3 15-­‐214	
 	
 Garrod	

The foundations of the Software Engineering minor

• Core computer science fundamentals

• Building good software

• Organizing a software project
§ Development teams, customers, and users
§  Process, requirements, estimation, management, and
methods

• The larger context of software
§ Business, society, policy

• Engineering experience

• Communication skills
§ Written and oral

4 15-­‐214	
 	
 Garrod	

SE minor requirements

• Prerequisite: 15-214

• Two core courses
§ 15-313 (fall semesters)
§ 15-413 (spring semesters)

• Three electives
§  Technical
§ Engineering
§ Business or policy

• Software engineering internship + reflection
§ 8+ weeks in an industrial setting, then
§ 17-413

5 15-­‐214	
 	
 Garrod	

To apply to be a Software Engineering minor

• Email jonathan.aldrich@cs.cmu.edu and
poprocky@cs.cmu.edu
§  Your name, Andrew ID, class year, QPA, and minor/majors
§ Why you want to be a software engineer
§  Proposed schedule of coursework

• Fall applications due by Wednesday, 13 Nov 2013
§ Only 15 SE minors accepted per graduating class

• More information at:
§ http://isri.cmu.edu/education/undergrad/

6 15-­‐214	
 	
 Garrod	

Key topics from Tuesday

7 15-­‐214	
 	
 Garrod	

In the trenches of parallelism

• An implementation of prefix sums using the Java
concurrency framework

8 15-­‐214	
 	
 Garrod	

Today: Distributed system design

• Java I/O fundamentals

• Introduction to distributed systems
§ Motivation: reliability and scalability
§  Failure models
§  Techniques for:

• Reliability (availability)
• Scalability
• Consistency

9 15-­‐214	
 	
 Garrod	

System.out is a java.io.PrintStream

• java.io.PrintStream: Allows you to
conveniently print common types of data
void close();!
void flush();!
void print(String s);!
void print(int i);!
void print(boolean b);!
void print(Object o);!
…!
void println(String s);!
void println(int i);!
void println(boolean b);!
void println(Object o);!
…

10 15-­‐214	
 	
 Garrod	

The fundamental I/O abstraction: a stream of data

• java.io.InputStream
void close();!
abstract int read();!
int read(byte[] b);

• java.io.OutputStream
void close();!
void flush();!
abstract void write(int b);!
void write(byte[] b);

• Aside: If you have an OutputStream you can
construct a PrintStream:
PrintStream(OutputStream out);!
PrintStream(File file);!
PrintStream(String filename);!
…!

11 15-­‐214	
 	
 Garrod	

To read and write arbitrary objects

• Your object must implement the
java.io.Serializable interface
§ Methods: none!
§  If all of your data fields are themselves Serializable,
Java can automatically serialize your class
• If not, will get runtime NotSerializableException!

• See QABean.java and FileObjectExample.java

12 15-­‐214	
 	
 Garrod	

Our destination: Distributed systems

• Multiple system components (computers)
communicating via some medium (the network)

• Challenges:
§ Heterogeneity
§ Scale
§ Geography
§ Security
§ Concurrency
§  Failures

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internet1.pdf

13 15-­‐214	
 	
 Garrod	

Communication protocols

• Agreement between parties
for how communication
should take place
§  e.g., buying an airline ticket
through a travel agent

Friendly greeting.

Muttered reply.

Destination?

Pittsburgh.

Thank you.

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internet1.pdf

14 15-­‐214	
 	
 Garrod	

Abstractions of a network connection

IP

TCP | UDP | …

HTTP | FTP | …

HTML | Text | JPG | GIF | PDF | …

data link layer

physical layer

15 15-­‐214	
 	
 Garrod	

Packet-oriented and stream-oriented connections

• UDP: User Datagram Protocol
§ Unreliable, discrete packets of data

• TCP: Transmission Control Protocol
§ Reliable data stream

16 15-­‐214	
 	
 Garrod	

Internet addresses and sockets

• For IP version 4 (IPv4) host address is a 4-byte
number
§  e.g. 127.0.0.1
§ Hostnames mapped to host IP addresses via DNS
§ ~4 billion distinct addresses

• Port is a 16-bit number (0-65535)
§ Assigned conventionally

• e.g., port 80 is the standard port for web servers

• In Java:
§  java.net.InetAddress!
§  java.net.Inet4Address!
§  java.net.Inet6Address!
§  java.net.Socket!
§  java.net.InetSocket!

17 15-­‐214	
 	
 Garrod	

Networking in Java

• The java.net.InetAddress:
static InetAddress getByName(String host);!
static InetAddress getByAddress(byte[] b);!
static InetAddress getLocalHost();

• The java.net.Socket:
Socket(InetAddress addr, int port);!
boolean isConnected();!
boolean isClosed();!
void close();!
InputStream getInputStream();!
OutputStream getOutputStream();

• The java.net.ServerSocket:
ServerSocket(int port);!
Socket accept();!
void close();!
…!

18 15-­‐214	
 	
 Garrod	

A simple Sockets demo

• TransferThread.java

• TextSocketClient.java

• TextSocketServer.java

19 15-­‐214	
 	
 Garrod	

Higher levels of abstraction

• Application-level communication protocols

• Frameworks for simple distributed computation
§ Remote Procedure Call (RPC)
§  Java Remote Method Invocation (RMI)

• Common patterns of distributed system design

• Complex computational frameworks
§  e.g., distributed map-reduce

20 15-­‐214	
 	
 Garrod	

Today

• Java I/O fundamentals

• Introduction to distributed systems
§ Motivation: reliability and scalability
§  Failure models
§  Techniques for:

• Reliability (availability)
• Scalability
• Consistency

21 15-­‐214	
 	
 Garrod	

22 15-­‐214	
 	
 Garrod	

Aside: The robustness vs. redundancy curve

? redundancy
robustness

23 15-­‐214	
 	
 Garrod	

A case study: Passive primary-backup replication

• Architecture before replication:

§  Problem: Database server might fail

• Solution: Replicate data onto multiple servers

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end {alice:90,
 bob:42,
 …} client front-end

primary:

{alice:90,
 bob:42,
 …}

backup:

{alice:90,
 bob:42,
 …}

backup:

24 15-­‐214	
 	
 Garrod	

Passive primary-backup replication protocol

1.  Front-end issues request with unique ID to
primary DB

2.  Primary checks request ID
§  If already executed request, re-send response and exit
protocol

3.  Primary executes request and stores response

4.  If request is an update, primary DB sends
updated state, ID, and response to all backups

§ Each backup sends an acknowledgement

5.  After receiving all acknowledgements, primary
DB sends response to front-end

25 15-­‐214	
 	
 Garrod	

Issues with passive primary-backup replication

26 15-­‐214	
 	
 Garrod	

Issues with passive primary-backup replication

• Many subtle issues with partial failures

• If primary DB crashes, front-ends need to agree
upon which unique backup is new primary DB
§  Primary failure vs. network failure?

• If backup DB becomes new primary, surviving
replicas must agree on current DB state

• If backup DB crashes, primary must detect failure
to remove the backup from the cluster
§ Backup failure vs. network failure?

• If replica fails* and recovers, it must detect that it
previously failed

• …

27 15-­‐214	
 	
 Garrod	

More issues…

• Concurrency problems?
§ Out of order message delivery?

• Time…

• Performance problems?
§ 2n messages for n replicas
§  Failure of any replica can delay response
§ Routine network problems can delay response

• Throughput problems?
§ All replicas are written for each update, but primary DB
responds to every request

§ Does not address the scalability challenge

28 15-­‐214	
 	
 Garrod	

Aside: Facebook and primary-backup replication

• Variant for scalability only:
§ Read-any, write-all
§  Palo Alto, CA is primary replica

§ A 2010 conversation:
Academic researcher: What would happen if X occurred?
Facebook engineer: We don't know. X hasn't happened
yet…but it would be bad.

29 15-­‐214	
 	
 Garrod	

Types of failure behaviors

• Fail-stop

• Other halting failures

• Communication failures
§ Send/receive omissions
§ Network partitions
§ Message corruption

• Performance failures
§ High packet loss rate
§  Low throughput
§ High latency

• Data corruption

• Byzantine failures

30 15-­‐214	
 	
 Garrod	

Common assumptions about failures

• Behavior of others is fail-stop (ugh)

• Network is reliable (ugh)

• Network is semi-reliable but asynchronous

• Network is lossy but messages are not corrupt

• Network failures are transitive

• Failures are independent

• Local data is not corrupt

• Failures are reliably detectable

• Failures are unreliably detectable

31 15-­‐214	
 	
 Garrod	

Some distributed system design goals

• The end-to-end principle
§ When possible, implement functionality at the end nodes
(rather than the middle nodes) of a distributed system

• The robustness principle
§ Be strict in what you send, but be liberal in what you
accept from others
• Protocols
• Failure behaviors

• Benefit from incremental changes

• Be redundant
§ Data replication
§ Checks for correctness

32 15-­‐214	
 	
 Garrod	

A case of contradictions: RAID

• RAID: Redundant Array of Inexpensive Disks
§ Within a single computer, replicate data onto multiple
disks

§  e.g., with 5 1TB disks can get 4TB of useful storage and
recover from any single disk failure

33 15-­‐214	
 	
 Garrod	

A case of contradictions: RAID

• RAID: Redundant Array of Inexpensive Disks
§ Within a single computer, replicate data onto multiple
disks

§  e.g., with 5 1TB disks can get 4TB of useful storage and
recover from any single disk failure

• Aside: Does Google use RAID?

34 15-­‐214	
 	
 Garrod	

Next time...

