

Principles of Software Construction: Objects, Design and Concurrency

Distributed System Design, Part 1

15-214 toad

Fall 2013

Jonathan Aldrich

**Charlie Garrod** 



#### Administrivia

- Homework 5: The Framework Strikes Back
  - 5b implementations due next Tuesday, 11:59 p.m.
- Do you want to be a software engineer?



institute for SOFTWARE RESEARCH

### The foundations of the Software Engineering minor

- Core computer science fundamentals
- Building good software
- Organizing a software project
  - Development teams, customers, and users
  - Process, requirements, estimation, management, and methods
- The larger context of software
  - Business, society, policy
- Engineering experience
- Communication skills
  - Written and oral



#### SE minor requirements

- Prerequisite: 15-214
- Two core courses
  - 15-313 (fall semesters)
  - 15-413 (spring semesters)
- Three electives
  - Technical
  - Engineering
  - Business or policy
- Software engineering internship + reflection
  - 8+ weeks in an industrial setting, then
  - **•** 17-413

ISI institute for SOFTWARE RESEARCH

### To apply to be a Software Engineering minor

- Email jonathan.aldrich@cs.cmu.edu and poprocky@cs.cmu.edu
  - Your name, Andrew ID, class year, QPA, and minor/majors
  - Why you want to be a software engineer
  - Proposed schedule of coursework
- Fall applications due by Wednesday, 13 Nov 2013
  - Only 15 SE minors accepted per graduating class
- More information at:
  - http://isri.cmu.edu/education/undergrad/



# Key topics from Tuesday

institute for SOFTWARI

### In the trenches of parallelism

 An implementation of prefix sums using the Java concurrency framework

Parallel work: 1092 core milliseconds.

Parallel depth: 995 milliseconds. Sequential depth: 118 milliseconds.

ISI institute for SOFTWARE RESEARCH

### Today: Distributed system design

- Java I/O fundamentals
- Introduction to distributed systems
  - Motivation: reliability and scalability
  - Failure models
  - Techniques for:
    - Reliability (availability)
    - Scalability
    - Consistency

institute for SOFTWARE RESEARCH

# System.out is a java.io.PrintStream

• java.io.PrintStream: Allows you to conveniently print common types of data

```
void close();
void flush();
void print(String s);
void print(int i);
void print(boolean b);
void print(Object o);
void println(String s);
void println(int i);
void println(boolean b);
void println(Object o);
```

#### The fundamental I/O abstraction: a stream of data

• java.io.InputStream void close(); abstract int read(); int read(byte[] b); • java.io.OutputStream void close(); void flush(); abstract void write(int b); write(byte[] b); void Aside: If you have an OutputStream you can construct a PrintStream: PrintStream(OutputStream out); PrintStream(File file);

institute for SOFTWARE RESEARCH

15-214 Garrod **10** 

PrintStream(String filename);

### To read and write arbitrary objects

- Your object must implement the java.io.Serializable interface
  - Methods: none!
  - If all of your data fields are themselves Serializable,
     Java can automatically serialize your class
    - If not, will get runtime NotSerializableException

See QABean.java and FileObjectExample.java

institute for SOFTWARE RESEARCH

### Our destination: Distributed systems

- Multiple system components (computers) communicating via some medium (the network)
- Challenges:
  - Heterogeneity
  - Scale
  - Geography
  - Security
  - Concurrency
  - Failures

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internet1.pdf



### Communication protocols

- Agreement between parties for how communication should take place
  - e.g., buying an airline ticket through a travel agent



(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internet1.pdf

#### Abstractions of a network connection





#### Packet-oriented and stream-oriented connections

- UDP: User Datagram Protocol
  - Unreliable, discrete packets of data
- TCP: Transmission Control Protocol
  - Reliable data stream

institute for SOFTWARE RESEARCH

#### Internet addresses and sockets

- For IP version 4 (IPv4) host address is a 4-byte number
  - e.g. 127.0.0.1
  - Hostnames mapped to host IP addresses via DNS
  - ~4 billion distinct addresses
- Port is a 16-bit number (0-65535)
  - Assigned conventionally
    - e.g., port 80 is the standard port for web servers
- In Java:
  - java.net.InetAddress
  - java.net.Inet4Address
  - java.net.Inet6Address
  - java.net.Socket
  - java.net.InetSocket



### Networking in Java

The java.net.InetAddress:

```
static InetAddress getByName(String host);
static InetAddress getByAddress(byte[] b);
static InetAddress getLocalHost();
```

• The java.net.Socket:

```
Socket(InetAddress addr, int port);
boolean isConnected();
boolean isClosed();
void close();
InputStream getInputStream();
OutputStream getOutputStream();
```

The java.net.ServerSocket:

```
ServerSocket(int port);
Socket accept();
void close();
```

•••

institute for SOFTWARE RESEARCH

# A simple Sockets demo

- TransferThread.java
- TextSocketClient.java
- TextSocketServer.java

institute for SOFTWARE RESEARCH

### Higher levels of abstraction

- Application-level communication protocols
- Frameworks for simple distributed computation
  - Remote Procedure Call (RPC)
  - Java Remote Method Invocation (RMI)
- Common patterns of distributed system design
- Complex computational frameworks

e.g., distributed map-reduce

institute for SOFTWARE RESEARCH

# Today

- Java I/O fundamentals
- Introduction to distributed systems
  - Motivation: reliability and scalability
  - Failure models
  - Techniques for:
    - Reliability (availability)
    - Scalability
    - Consistency

institute for SOFTWARE RESEARCH



**Screen Shot** 2012...2 AM



**Screen Shot** 2012...5 AM

# Aside: The robustness vs. redundancy curve





#### A case study: Passive primary-backup replication

Architecture before replication:



- Problem: Database server might fail
- Solution: Replicate data onto multiple servers



### Passive primary-backup replication protocol

- 1. Front-end issues request with unique ID to primary DB
- 2. Primary checks request ID
  - If already executed request, re-send response and exit protocol
- 3. Primary executes request and stores response
- 4. If request is an update, primary DB sends updated state, ID, and response to all backups
  - Each backup sends an acknowledgement
- 5. After receiving all acknowledgements, primary DB sends response to front-end



# Issues with passive primary-backup replication

15-214 Garrod 2!



#### Issues with passive primary-backup replication

- Many subtle issues with partial failures
- If primary DB crashes, front-ends need to agree upon which unique backup is new primary DB
  - Primary failure vs. network failure?
- If backup DB becomes new primary, surviving replicas must agree on current DB state
- If backup DB crashes, primary must detect failure to remove the backup from the cluster
  - Backup failure vs. network failure?
- If replica fails\* and recovers, it must detect that it previously failed

• ...



#### More issues...

- Concurrency problems?
  - Out of order message delivery?
    - Time...
- Performance problems?
  - 2n messages for n replicas
  - Failure of any replica can delay response
  - Routine network problems can delay response
- Throughput problems?
  - All replicas are written for each update, but primary DB responds to every request
  - Does not address the scalability challenge



#### Aside: Facebook and primary-backup replication

- Variant for scalability only:
  - Read-any, write-all
  - Palo Alto, CA is primary replica



A 2010 conversation:

Academic researcher: What would happen if X occurred? Facebook engineer: We don't know. X hasn't happened yet...but it would be bad.



### Types of failure behaviors

- Fail-stop
- Other halting failures
- Communication failures
  - Send/receive omissions
  - Network partitions
  - Message corruption
- Performance failures
  - High packet loss rate
  - Low throughput
  - High latency
- Data corruption
- Byzantine failures



### Common assumptions about failures

- Behavior of others is fail-stop (ugh)
- Network is reliable (ugh)
- Network is semi-reliable but asynchronous
- Network is lossy but messages are not corrupt
- Network failures are transitive
- Failures are independent
- Local data is not corrupt
- Failures are reliably detectable
- Failures are unreliably detectable



### Some distributed system design goals

- The end-to-end principle
  - When possible, implement functionality at the end nodes (rather than the middle nodes) of a distributed system
- The robustness principle
  - Be strict in what you send, but be liberal in what you accept from others
    - Protocols
    - Failure behaviors
- Benefit from incremental changes
- Be redundant
  - Data replication
  - Checks for correctness



#### A case of contradictions: RAID

- RAID: Redundant Array of Inexpensive Disks
  - Within a single computer, replicate data onto multiple disks
  - e.g., with 5 1TB disks can get 4TB of useful storage and recover from any single disk failure





#### A case of contradictions: RAID

- RAID: Redundant Array of Inexpensive Disks
  - Within a single computer, replicate data onto multiple disks
  - e.g., with 5 1TB disks can get 4TB of useful storage and recover from any single disk failure



Aside: Does Google use RAID?



# Next time...