Object§ Analysis

i o
S N, e
- R Wl
A

Threa_ds

Principles of Software Construction:
Objects, Design and Concurrency

Distributed System Design, Part 1

15-214
toad

Fall 2013
Jonathan Aldrich Charlie Garrod

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH

© 2012-13 C Garrod, J Aldrich, and W Scherlis

Administrivia

e Homework 5: The Framework Strikes Back
« 5b implementations due next Tuesday, 11:59 p.m.

e Do you want to be a software engineer?

800 w5 - Twitt
uuuuuu Total Tweets Tweets vs. Time of Day
ooooooooo
2,500 1‘
§ 2,0001
__razrulzi H 1,500}
'S 1,000
*]
500 ‘
e —— ————————
12-6am 6-12pm 12-6pm 6-12am
Time of Da
aznulz

- institute for
15-214 Garrod 2 [

The foundations of the Software Engineering minor

e Core computer science fundamentals
e Building good software

e Organizing a software project
= Development teams, customers, and users
= Process, requirements, estimation, management, and
methods

e The larger context of software
= Business, society, policy

e ENngineering experience

e Communication skills
= Written and oral

Pap—— it FOf
15-214 Garrod 3 sorumie

SE minor requirements

e Prerequisite: 15-214

e TWO core courses
= 15-313 (fall semesters)
« 15-413 (spring semesters)

e Three electives
= Technical
= Engineering
= Business or policy

e Software engineering internship + reflection
=« 8+ weeks in an industrial setting, then
- 17-413

- institute for
15-214 Garrod s [Hie

To apply to be a Software Engineering minor

e Email jonathan.aldrich@cs.cmu.edu and
poprocky@cs.cmu.edu
= Your name, Andrew ID, class year, QPA, and minor/majors
= Why you want to be a software engineer
» Proposed schedule of coursework

e Fall applications due by Wednesday, 13 Nov 2013
= Only 15 SE minors accepted per graduating class

e More information at:
= http://isri.cmu.edu/education/undergrad/

- institute for
15-214 Garrod s [H i

Key topics from Tuesday

Pap—— it FOf
15-214 Garrod 6 sorumie

In the trenches of parallelism

e An implementation of prefix sums using the Java
concurrency framework

Parallel work: 1092 core milliseconds.
Parallel depth: 995 milliseconds.
Sequential depth: 118 milliseconds.

= institute for
15-214 Garrod 7 [H o

Today: Distributed system design

e Java I/O fundamentals

e Introduction to distributed systems
= Motivation: reliability and scalability
= Failure models
= Techniques for:
e Reliability (availability)
e Scalability
e Consistency

15-214 Garrod

8

institute for
SOFTWARE
RESEARCH

System.out is a java.io.PrintStream

® java.

io.PrintStream: Allows you to

conveniently print common types of data

void
void
void
void
void
void

void
void
void
void

15-214 Garrod

close();

flush();
print(String s);
print(int 1i);
print (boolean b);
print (Object 0);

println(String s);
println(int 1i);

println(boolean b);
println(Object 0);

.
institute for
9 I S SOFTWARE
RESEARCH

The fundamental I/O abstraction: a stream of data

® java.lo0.InputStream

void close();
abstract int read();
int read(byte[] b);

* java.io.0utputStream

void close();

void flush();
abstract void write(int b);
void write(byte[] b);

e Aside: If you have an outputStream you can

construct a PrintStream:
PrintStream(OutputStream out);
PrintStream(File file);
PrintStream(String filename);

- institute for
15-214 Garrod 10 RESEARCH

To read and write arbitrary objects

e Your object must implement the

java.io.Serializable interface

=« Methods: nonel!

« If all of your data fields are themselves serializable,
Java can automatically serialize your class

o If not, will get runtime NotSerializableException

e See QABean.java and FileObjectExample.java

- institute for
15-214 Garrod PN | S [Foves

Our destination: Distributed systems

e Multiple system components (computers)
communicating via some medium (the network)

e Challenges:
= Heterogeneity
= Scale
= Geography
= Security
= Concurrency
= Failures

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internetl.pdf

- institute for
15-214 Garrod 12 [l

Communication protocols

e Agreement between parties Friendly greeting.
for how communication

should take place \
= e.g., buying an airline ticket

through a travel agent uttered repl
Desm?\

/@rgh.
Tham

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internetl.pdf

- Institute ror
15-214 Garrod 13 RESEARCH

Abstractions of a network connection

15-214 Garrod 14

Packet-oriented and stream-oriented connections

e UDP: User Datagram Protocol
= Unreliable, discrete packets of data

e TCP: Transmission Control Protocol
= Reliable data stream

Pap—— it FOV
159214 Garrod 15 SOttt

Internet addresses and sockets

e For IP version 4 (IPv4) host address is a 4-byte

number

=e.g. 127.0.0.1

= Hostnames mapped to host IP addresses via DNS
= ~4 billion distinct addresses

e Port is a 16-bit number (0-65535)

= Assigned conventionally
ee.g., port 80 is the standard port for web servers

e INn Java:

= java.net.InetAddress
= java.net.Inet4Address
= java.net.Inet6Address
= java.net.Socket

= java.net.InetSocket

- institute for
15-214 Garrod 16 RESEARCH

Networking in Java

e The java.net.InetAddress:

static InetAddress getByName(String host);
static InetAddress getByAddress(byte[] b);
static InetAddress getLocalHost();

e The java.net.Socket:
Socket (InetAddress addr, int port);

boolean isConnected();
boolean isClosed();
void close();

InputStream getInputStream();
OutputStream getOutputStream();

e The java.net.ServerSocket:
ServerSocket (int port);
Socket accept();
void close();

nstitute for

15-214 Garrod 17 ‘ﬁ?tsiﬂ“\“.{\c"é

A simple Sockets demo

e TransferThread.java
e TextSocketClient.java

e TextSocketServer.java

institute for

15-214 Garrod 18 sorminse

Higher levels of abstraction

e Application-level communication protocols

e Frameworks for simple distributed computation
= Remote Procedure Call (RPC)
= Java Remote Method Invocation (RMI)

e Common patterns of distributed system design

e Complex computational frameworks
= e.g., distributed map-reduce

= institute for
15-214 Garrod 19 [Hi o

Today

e Java I/O fundamentals

e Introduction to distributed systems
= Motivation: reliability and scalability
= Failure models
= Techniques for:
e Reliability (availability)
e Scalability
e Consistency

- institute for
15-214 Garrod 20 RESEARCH

v owerPoint File it View Insert Format Arrange Tools ide Show indow # elp A D = 100% (I Tue 11: arles Garro =
® P P File Edit V | F A Tools Slide Sh Wind Hel 5 G 3 2 4« [0 100%ED Tue 11:38 AM Charles Garrod Q

He
Slides
W

New Slide

etc — bash — 80x24 26-distributed-systems — bash — 80x24
Committed revision 2034. code-draft/ concurrency.pptx svn-commit.tmp
erebus$ vim todo.txt concurrency-whole.pptx concurrency2.pdf
erebus$ svn up . e A R Losnatzaanaiian s
Updating '.': ® 006 distributed-systems1.pptx
svn: E210002: Unable to ¢ ¢ = =1) = T——
ri.cmu.edu/usr@/home/char | Ly H =) | = & a2% =@ (Qr yuted-systems/
svn: E210002: To better ¢
'ssh' in the [tunnels] s
svn: E210002: Network con Slides Font Paragraph Insert
erebus$ svn up (+) . Aslv @

v

- P— . » Hv
A Home Themes Tables Charts SmartArt Transitions Animations Slide Show » A ¥ foncurrency4. pptx

> m ributed-systems
New Slide i N &E' Arrang

You need to restart your computer. Hold down the Power as back
button for several seconds or press the Restart button.

Veuillez redémarrer votre ordinateur. Maintenez la touche
de démarrage enfoncée pendant plusieurs secondes ou bien
appuyez sur le bouton de réinitialisation.

Sie mussen lhren Computer neu starten. Halten Sie dazu
die Einschalttaste einige Sekunden gedruckt oder driicken
Sie die Neustart-Taste.

AVE1—5ZBENT 2UEHNBDET, KNT—RI¥ V%
WML S0, VEYRRZ U EZBLTLEZWN,

dvl=# \q

could not save history to file "/afs/cs/usr/charlie/.psql_history": Permission d
enied

transit$ logout

Connection to transit.apt.ri closed.

garrod-dell$ logout

Connection to garrod.isri.cmu.edu closed.

erebus$

Screen Shot
2012..2 AM

Screen Shot
2012..5AM

Aside: The robustness vs. redundancy curve

robustness
redundancy

- institute for
15-214 Garrod 22 RESEARCH

A case study: Passive primary-backup replication

e Architecture before replication:

f database server:
.<—> ront-end \ {alice:90,

i bob:42,
.<—>front-end / L

= Problem: Database server might fail

e Solution: Replicate data onto multiple servers

.<—> front-end primary: backup:
Ni'\{alice:%, {alice:90, |

i bob:42, _
.<—>front-end /) i bo}b.42,
| ,\, backup:

{alice:90,
bob:42, 5 [His

15-214 Garrod

Passive primary-backup replication protocol

1. Front-end issues request with unique ID to
primary DB

2. Primary checks request ID
» If already executed request, re-send response and exit
protocol

3. Primary executes request and stores response

4. If request is an update, primary DB sends

updated state, ID, and response to all backups
« Each backup sends an acknowledgement

5. After receiving all acknowledgements, primary
DB sends response to front-end

= institute for
15-214 Garrod 24 [H1 o

Issues with passive primary-backup replication

Pap—— it FOr
159214 Garrod 25 SOttt

Issues with passive primary-backup replication

e Many subtle issues with partial failures

o If primary DB crashes, front-ends need to agree

upon which unique backup is new primary DB
= Primary failure vs. network failure?

o If backup DB becomes new primary, surviving
replicas must agree on current DB state

o If backup DB crashes, primary must detect failure

to remove the backup from the cluster
= Backup failure vs. network failure?

o If replica fails* and recovers, it must detect that it
previously failed

= institute for
15-214 Garrod 26 |SYf sorme

More issues...

e Concurrency problems?
= Out of order message delivery?
e Time...

e Performance problems?
= 2N messages for n replicas
= Failure of any replica can delay response
= Routine network problems can delay response

e Throughput problems?
= All replicas are written for each update, but primary DB
responds to every request
= Does not address the scalability challenge

= institute for
15-214 Garrod 27 RESEARCH

Aside: Facebook and primary-backup replication

e VVariant for scalability only:
= Read-any, write-all
= Palo Alto, CA is primary replica

llllllllll

I:?okuth Wisconsin ale
Oson e akota Michigan ?
Wyoming .
. S Chlgago Hi
ebraska llinois i Pennsylvania 5 \\Mas
Nevada | United States Indiana NI\ MRhode
al
g Colorado Kansas Missouri wei?ltia \ nnnnn ek
California Kentucky %rginia New Jers:
T North
* Losl Oklahoma s - AMIeNNIeSEos Carolina Delaware
agees Arizona New SR South Harand
o/¥: Mexico Dallas Mississi PP Carolina District of
A Phoenix © Alabam Columbia
San Diego T 208 aG i
exas eorgia
Louisiana
o OH
ASan ouston
Gulf of Antonio .
California Mo \ glorida
onterre!
iy Gulf of
Mexico
Mexico Havana

= A 2010 conversation:
Academic researcher: What would happen if X occurred?
Facebook engineer: We don't know. X hasn't happened
yet...but it would be bad.

e Institute For
15-214 Garrod 28 [H1 o

Types of failure behaviors

e Fail-stop
e Other halting failures

e Communication failures
= Send/receive omissions
= Network partitions
= Message corruption

e Performance failures
= High packet loss rate
= Low throughput
= High latency

e Data corruption

e Byzantine failures

Pap—— it FOV
159214 Garrod 29 SOttt

Common assumptions about failures

e Behavior of others is fail-stop (ugh)

e Networ
e Networ
e Networ

e Networ

K is reliable (ugh)
K is semi-reliable but asynchronous

K is lossy but messages are not corrupt

K failures are transitive

e Failures are independent

e Local data is not corrupt

e Failures are reliably detectable

e Failures are unreliably detectable

15-214 Garrod

-
institute for
30 i S SOFTWARE
RESEARCH

Some distributed system design goals

e The end-to-end principle
= When possible, implement functionality at the end nodes
(rather than the middle nodes) of a distributed system

e The robustness principle

= Be strict in what you send, but be liberal in what you
accept from others

e Protocols
e Failure behaviors

e Benefit from incremental changes

e Be redundant
= Data replication
= Checks for correctness

- institute for
15-214 Garrod 31 RESEARCH

A case of contradictions: RAID

e RAID: Redundant Array of Inexpensive Disks
= Within a single computer, replicate data onto multiple
disks
= e.g., with 5 1TB disks can get 4TB of useful storage and
recover from any single disk failure

Stripe 1 (64K)
Stripe 2

2 2 2
H . .

,_
—_—
J—
S——
PR
-—
JR—
—

Stripe n

Disk 1 Disk 2 - Disk n

- institute for
15-214 Garrod 32 [Hl e

A case of contradictions: RAID

e RAID: Redundant Array of Inexpensive Disks
= Within a single computer, replicate data onto multiple
disks
= e.g., with 5 1TB disks can get 4TB of useful storage and
recover from any single disk failure

suipe 1 54¢) [N
stripe 2 (IR
N

stipen | | | |

Disk 1 Disk 2 - Disk n

e Aside: Does Google use RAID?

= institute for
15-214 Garrod 33 [H e

Next time...

= institute for
15-214 Garrod P | S [et

