
toad

Spring 2013

© 2012-13 C Kästner, C Garrod, J Aldrich, and W Sc herlis

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design and Concurrency

Design Patterns and Java I/O

Jonathan Aldrich Charlie Garrod

15-214

toad 215-214 Aldrich

Design Patterns

• "Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem,
in such a way that you can use this solution a
million times over, without ever doing it the same
way twice”
– Christopher Alexander

• Every Composite has its own domain-specific
interface
� But they share a common problem and solution

toad 315-214 Aldrich

Example: Composite Windows

• Problem
� Express a part-whole hierarchy of shapes
� Allow treating a group of shapes just like shapes

• Consequences
� Makes clients simple; they can ignore the difference
� Easy to add new kinds of shapes

Shape

draw()

Rectangle

draw()

components

*

for s in components:
s.draw()ShapeGroup

draw()

toad 415-214 Aldrich

Elements of a Pattern

• Name
� Important because it becomes part of a design
vocabulary

� Raises level of communication

• Problem
� When the pattern is applicable

• Solution
� Design elements and their relationships
� Abstract: must be specialized

• Consequences
� Tradeoffs of applying the pattern

• Each pattern has costs as well as benefits
• Issues include flexibility, extensibility, etc.
• There may be variations in the pattern with different

consequences

toad 515-214 Aldrich

Example: Composite Windows

• Problem
� Express a part-whole hierarchy of shapes
� Allow treating a group of shapes just like shapes

• Consequences
� Makes clients simple; they can ignore the difference
� Easy to add new kinds of shapes

Shape

draw()

Rectangle

draw()

components

*

for s in components:
s.draw()ShapeGroup

draw()

toad 615-214 Aldrich

Composite Pattern

• Problem (generic)
� Express a part-whole hierarchy of components
� Allow treating a composite just like a component

• Consequences (generic)
� Makes clients simple; they can ignore the difference
� Easy to add new kinds of components
� Can be overly general – uniformity is not always good

Component

operation()

Leaf

operation()

components

*

for c in components:
c.operation()Composite

operation()

toad 715-214 Aldrich

Example: Shape Change Notification

• Problem
� Drawing changes from shape to shape, but updating
doesn’t - want to reuse updating code

� Future shape implementations should not forget to update

• Consequences
� Code reuse
� Authors of subclasses will not unintentionally forget to do
the update

AbstractShape

+draw()
#doUpdate()
#doDraw()

doDraw();

doUpdate();

Rectangle

#doDraw()

«final»

ShapeGroup

#doUpdate()
#doDraw()

toad 815-214 Aldrich

Template Method Pattern

• Problem (generic)
� Express an algorithm with varying and invariant parts
� When common behavior should be factored and localized
� When subclass extensions should be limited

• Consequences (generic)
� Code reuse
� Inverted “Hollywood” control: don’t call us, we’ll call you
� Invariant algorithm parts are not changed by subclasses

AbstractClass

+templateMethod()
#primitiveOperation1()
#primitiveOperation2()

…
primitiveOperation1();
…
primitiveOperation2();
…

ConcreteClass1

#primitiveOperation2()

«final»

ConcreteClass2

#primitiveOperation1()
#primitiveOperation2()

toad 915-214 Aldrich

The Template Method Pattern in the Virtual World

• Did you use a template method in the Virtual
World assignment? How and why?

• Let’s look at the code…

• For more details, see the Piazza post “How to
Reuse Code in hw2”

toad 1015-214 Aldrich

Problem: Line Breaking Implementations

• Context: document editor

• Many ways to break a paragraph into lines
� Blind: just cut off at 80 columns
� Greedy: fit as many words in this line, then wrap
� Global (e.g. TeX): minimize badness in entire paragraph

•Might move a small word to next line if it reduces extra
spaces there

• Option 1: We could put this in class Paragraph
� But this is not Paragraph’s main function
� Putting many algorithms into Paragraph makes it too big
� Other classes might need line breaking, too
� Adding new line breaking algorithms is difficult

• Option 2?

toad 1115-214 Aldrich

Option 2: Encapsulate the Line Breaking Strategy

• Problem
� Paragraphs needs to break lines in different ways
� Want to easily change or extend line breaking algorithm
� Want to reuse algorithm in new places

• Consequences
� Easy to add new line breaking strategies
� Separates strategy � vary strategy, paragraph independently
� Adds objects and dynamism � code harder to understand

Paragraph

draw()

LineBreakStrategy

computeBreaks(text)

SimpleLineBreaker

computeBreaks(text)

TeXLineBreaker

computeBreaks(text)

strategy

1

toad 1215-214 Aldrich

Strategy Pattern

• Problem (generic)
� Behavior varies among instances of an abstraction
� An abstraction needs different variants of an algorithm

• Consequences (generic)
� Easy to add new strategies (e.g. compared to conditionals)
� Separates algorithm � vary algorithm, context independently
� Adds objects and dynamism � code harder to understand
� Fixed strategy interface � high overhead for some impls.

Context

contextInterface()

Strategy

algorithmInterface()

ConcreteStrategyA

algorithmInterface()

ConcreteStrategyB

algorithmInterface()

strategy

1

toad 1315-214 Aldrich

The Strategy Pattern in the Virtual World

• Did you see the strategy pattern in the Virtual
World assignment? How and why?

• Let’s look at the code…

toad 1415-214 Aldrich

Tradeoffs

void sort(int[] list, String order) {
…

boolean mustswap;
if (order.equals("up")) {

mustswap = list[i] < list[j];
} else if (order.equals("down")) {

mustswap = list[i] > list[j];
}
…

}

void sort(int[] list, Comparator cmp) {
…

boolean mustswap;
mustswap = cmp.compare(list[i], list[j]);
…

}
interface Comparator {

boolean compare(int i, int j);
}
class UpComparator implements Comparator {

boolean compare(int I, int j) { return i<j; }}

class DownComparator implements Comparator {
boolean compare(int I, int j) { return i>j; }}

toad 1515-214 Aldrich

Fundamental OO Design Principles

• Patterns emerge from fundamental principles
applied to recurring problems
� Design to interfaces
� Favor composition over inheritance
� Find what varies and encapsulate it

• Patterns are discovered, not invented
� Best practice by experienced developers

toad 1615-214 Aldrich

Fundamental Principles underlying the Strategy Pattern

• Design to interfaces
� Strategy: the algorithm interface

• Favor composition over inheritance
� Strategy could be implemented with inheritance

• Multiple subclasses of Context, each with an algorithm
• Drawback: couples Context to algorithm, both become harder

to change
• Drawback: can’t change algorithm dynamically

• Find what varies and encapsulate it
� Strategy: the algorithm used

• Side note: how do you implement the Strategy
pattern in functional languages?

toad 1715-214 Aldrich

Kinds of Patterns

• Categories
� Structural – vary object structure
� Behavioral – vary the behavior you want
� Creational – vary object creation

• Derived from scenarios

• UML diagram credit: Pekka Nikander
� http://www.tml.tkk.fi/~pnr/GoF-models/html/

17

toad 1815-214 Aldrich

Patterns to Know

• Façade, Adapter, Composite, Strategy, Bridge,
Abstract Factory, Factory Method, Decorator,
Observer, Template Method, Singleton,
Command, State, Proxy, and Model-View-
Controller

• Know pattern name, problem, solution, and
consequences

toad 1915-214 Aldrich

Java Streams – and their Patterns

• What is System.out? Let's look at the Javadoc

toad 2015-214 Aldrich

System.out is a java.io.PrintStream

• java.io.PrintStream : Allows you to

conveniently print common types of data
void close();
void flush();
void print(String s);
void print(int i);
void print(boolean b);
void print(Object o);
…
void println(String s);
void println(int i);
void println(boolean b);
void println(Object o);
…

toad 2115-214 Aldrich

Let’s look at the stream design

toad 2215-214 Aldrich

The fundamental I/O abstraction: a stream of data

• java.io.InputStream
void close();
abstract int read();
int read(byte[] b);

• java.io.OutputStream
void close();
void flush();
abstract void write(int b);
void write(byte[] b);

• Aside: If you have an OutputStream you can
construct a PrintStream :
PrintStream(OutputStream out);
PrintStream(File file);
PrintStream(String filename);
…

toad 2315-214 Aldrich

Design Problem: how to add functionality to streams?

• We could do lots of things to a stream of data
� Compress it
� Encrypt it
� Compute (or check) a checksum or digest
� Translate it
� (your idea here)

• It’s unreasonable to add all this functionality
explicitly to OutputStream

• What can we do instead?

toad 2415-214 Aldrich

The Decorator Pattern

newBeforeBehavior()
super.operation()
newAfterBehavior()

component.operation()

Component

+ operation()

1

ConcreteDecoratorB

newAfterBehavior()
newBeforeBehavior()
+ operation()

ConcreteDecoratorA

+ operation()

– addedState

Decorator

+ operation()

ConcreteComponent

+ operation()

toad 2515-214 Aldrich

Structural: Decorator

• Applicability
� To add responsibilities

to individual objects
dynamically and
transparently

� For responsibilities
that can be withdrawn

� When extension by
subclassing is
impractical

• Consequences
� More flexible than

static inheritance
� Avoids monolithic

classes
� Breaks object identity
� Lots of little objects

toad 2615-214 Aldrich

FilterOutputStream as a Decorator

toad 2715-214 Aldrich

Why “Decorator?”

• Origins in GUIs

• Imagine you have a window that can display a lot
of text on any size screen, but doesn’t scroll

• Scrolling can be added via a decorator that:
� Overrides draw
� Draws a scrollbar
� Scales and moves the viewport according to the scrolling
position

� Calls draw() on the underlying window

