
toad 115-214

Functional Correctness

• Specification

• Formal Verification

• Unit Testing

• Type Checking

• Statistic Analysis

• Requirements definition

• Inspections, Reviews

• Integration/System/Acceptance/Regression/GUI/Bl
ackbox/ Model-Based/Random Testing

• Change/Release Management

1
5

-2
1

4
1

5
-3

1
3

toad 215-214

Testing

• Executing the program with selected inputs in a
controlled environment

• Goals:
� Reveal bugs (main goal)
� Asses quality (hard to quantify)
� Clarify the specification, documentation
� Verify contracts

"Testing shows the presence,
not the absence of bugs

Edsger W. Dijkstra 1969

toad 315-214

What to test?

• Functional correctness of a method (e.g.,
computations, contracts)

• Functional correctness of a class (e.g., class
invariants)

• Behavior of a class in a subsystem/multiple
subsystems/the entire system

• Behavior when interacting with the world
� Interacting with files, networks, sensors, …
� Erroneous states
� Nondeterminism, Parallelism
� Interaction with users

• …

toad 415-214

Testing Decisions

Who tests?

• Developers

• Other Developers

• Separate Quality Assurance Team

• Customers

When to test?

• Before development

• During development

• After milestones

• Before shipping
Discuss tradeoffs

toad 515-214

Unit Tests

• Testing units of source code
� Smallest testable part of a system
� Test parts before assembling them
� Typically small units (methods, interfaces), but later units
are possible (packages, subsystems)

� Intended to catch local bugs

• Typically written by developers

• Many small, fast-running, independent tests

• Little dependencies on other system parts or
environment

• Insufficient but a good starting point,
extra benefits:
� Documentation (executable specification)
� Design mechanism (design for testability)

toad 615-214

From problem to idea to correct program

• “While the first binary search was published
in 1946, the first published binary search
without bugs did not appear until 1962.”

— Donald E. Knuth, Stanford

• “Given ample time, only about 10% of
professional programmers were able to
get this small program right”

— Jon Bentley, AT&T Bell Labs

toad 715-214

Writing Test Cases: Common Strategies

• Read specification

• Write tests for representative case
� Small instances are usually sufficient

• Write tests for invalid cases

• Write tests to check boundary conditions

• Are there difficult cases? (error guessing)
� Stress tests? Complex algorithms?

• Think like a user, not like a programmer
� The tester’s goal is to find bugs!

• Specification covered?

• Feel confident? Time/money left?

toad 815-214

Example
/**
* computes the sum of the first len values of the array
*
* @param array array of integers of at least length len
* @param len number of elements to sum up
* @return sum of the array values
*/
int total(int array[], int len);

toad 915-214

Example

• Test empty array

• Test array of length 1 and 2

• Test negative numbers

• Test invalid length (negative or longer than array.length)

• Test null as array

• Test with a very long array

/**
* computes the sum of the first len values of the array
*
* @param array array of integers of at least length len
* @param len number of elements to sum up
* @return sum of the array values
*/
int total(int array[], int len);

toad 1015-214

JUnit

• Popular unit-testing framework for Java

• Easy to use

• Tool support available

• Can be used as design mechanism

toad 1115-214

JUnit

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
@Test
public void testSanityTest(){

Graph g1 = new AdjacencyListGraph(10);
Vertex s1 = new Vertex("A");
Vertex s2 = new Vertex("B");
assertEquals(true, g1.addVertex(s1));
assertEquals(true, g1.addVertex(s2));
assertEquals(true, g1.addEdge(s1, s2));
assertEquals(s2, g1.getNeighbors(s1)[0]);

}

@Test
public void test….

private int helperMethod…
}

Set up
tests

Check
expected
results

toad 1215-214

assert, Assert

• assert is a native Java statement throwing an AssertionError
exception when failing
� assert expression: "Error Message";

• org.junit.Assert is a library that provides many more specific
methods
� static void assertTrue(java.lang.String message,

boolean condition)
// Asserts that a condition is true.

� static void assertEquals(java.lang.String message,
long expected, long actual);
// Asserts that two longs are equal.

� static void assertEquals(double expected, double actual,
double delta);
// Asserts that two doubles are equal to within a positive delta

� static void assertNotNull(java.lang.Object object)
// Asserts that an object isn't null.

� static void fail(java.lang.String message)
//Fails a test with the given message.

toad 1315-214

JUnit Conventions

• TestCase collects multiple tests (one class)

• TestSuite collects test cases (typically package)

• Tests should run fast

• Test should be independent

• Tests are methods without parameter and return
value

• AssertError signals failed test (unchecked exception)

• Test Runner knows how to run JUnit tests
� (uses reflection to find all methods with @Test annotat.)

toad 1415-214

Common Setup
import org.junit.*;
import org.junit.Before;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
Graph g;

@Before
public void setUp() throws Exception {

graph = createTestGraph();

@Test
public void testSanityTest(){

Vertex s1 = new Vertex("A");
Vertex s2 = new Vertex("B");
assertEquals(true, g.addVertex(s1));

}

toad 1515-214

Checking for presence of an exception

import org.junit.*;
import static org.junit.Assert.fail;

public class Tests {

@Test
public void testSanityTest(){

try {
openNonexistingFile();
fail("Expected exception");

} catch(IOException e) { }
}

@Test(expected = IOException.class)
public void testSanityTestAlternative() {

openNonexistingFile();
}

}

toad 1615-214

Test organization

• Conventions (not
requirements)

• Have a test class ATest for
each class A

• Have a source directory and a
test directory
� Store ATest and A in the same
package

� Tests can access members with
default (package) visibility

• Alternatively store exceptions
in the source directory but in a
separate package

toad 1715-214

Exercise (on paper!)

• Test a priority queue for Strings

public interface Queue {

void add(String s);

String getFirstAlphabetically();

}

• Write various kinds of test cases

toad 1815-214

JUnit Demo / Testing Practice

• Write some tests

• Write an invariant

toad 1915-214

Testing advice

toad 2015-214

Testable Code

• Think about testing when writing code

• Unit testing encourages to write testable code

• Separate parts of the code to make them
independently testable

• Abstract functionality behind interface, make it
replaceable

• Test-Driven Development
� A design and development method in which you write
tests before you write the code!

toad 2115-214

Run tests frequently

• You should only commit code that is passing all
tests

• Run tests before every commit

• Run tests before trying to understand other
developers' code

• If entire test suite becomes too large and slow for
rapid feedback, run tests in package frequently,
run all tests nightly
� Medium sized projects easily have 1000s of test cases and
run for minutes

• Continuous integration servers help to scale
testing

toad 2215-214

Continuous Integration

See also travis-ci.org

toad 2315-214

Test Coverage

toad 2415-214

Structural Analysis for Test Coverage

� Organized according to program decision structure
� Touching: statement, branch

24

public static int binsrch (int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (true) {

if (low > high) return -(low+1);

int mid = (low+high) / 2;

if (a[mid] < key) low = mid + 1;
else if (a[mid] > key) high = mid - 1;
else return mid;

}
}

• Will this statement get executed in a test?

• Does it return the correct result?

•Could this array index be out of bounds?

• Does this return statement ever get reached?

toad 2515-214

Method Coverage

• Trying to execute each method as part of at least
one test

• Does this guarantee correctness?

toad 2615-214

Statement Coverage

• Trying to test all parts of the implementation

• Execute every statement in at least one test

• Does this guarantee correctness?

toad 2715-214 27

Structure of Code Fragment to Test

Flow chart diagram for
junit.samples.money.Money.equals

toad 2815-214 28

Statement Coverage

• Statement coverage
� What portion of program statements

(nodes) are touched by test cases

• Advantages
� Test suite size linear in size of code

� Coverage easily assessed

• Issues
� Dead code is not reached

� May require some sophistication to
select input sets

� Fault-tolerant error-handling code
may be difficult to “touch”

� Metric: Could create incentive to
remove error handlers!

toad 2915-214 29

Branch Coverage

• Branch coverage
� What portion of condition branches are

covered by test cases?

� Or: What portion of relational expressions
and values are covered by test cases?

• Condition testing (Tai)

� Multicondition coverage – all boolean
combinations of tests are covered

• Advantages
� Test suite size and content derived

from structure of boolean expressions

� Coverage easily assessed

• Issues
� Dead code is not reached

� Fault-tolerant error-handling code
may be difficult to “touch”

toad 3015-214 30

Path Coverage

• Path coverage
� What portion of all possible paths through

the program are covered by tests?
� Loop testing: Consider representative and

edge cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
� Better coverage of logical flows

• Disadvantages
� Not all paths are possible, or necessary

• What are the significant paths?

� Combinatorial explosion in cases unless
careful choices are made

• E.g., sequence of n if tests can yield
up to 2^n possible paths

� Assumption that
program structure
is basically sound

toad 3115-214

int binarySearch(int[] a, int key) {
int imin = 0;
int imax = a.length-1;
while (imax >= imin) {

int imid = midpoint(imin, imax);
if (a[imid] < key)

imin = imid + 1;
else if (a[imid] > key)

imax = imid - 1;
else

return imid;
}
return -1;

}

Find test cases to maximize line, branch,
and path coverage.

toad 3215-214

Write testable code
//700LOC
public boolean foo() {

try {
synchronized () {

if () {
} else {
}
for () {

if () {
if () {

if () {
if ()?
{

if () {
for () {
}

}
}

} else {
if () {

for () {
if () {
} else {
}
if () {
} else {

if () {
}

}
if () {

if () {
if () {

for () {
}

}
}

} else {
}

}
} else {

Source:
http://thedailywtf.com/Articles/Coding-Like-the-Tour-de-France.aspx

toad 3315-214 33

Test Coverage Tooling

• Coverage assessment tools
� Track execution of code by test cases

• Count visits to statements
� Develop reports with respect to specific coverage criteria
� Instruction coverage, line coverage, branch coverage

• Example: EclEmma tool for JUnit tests

toad 3415-214 34

“Coverage” is useful but also dangerous

• Examples of what coverage analysis could miss
� Missing code

� Incorrect boundary values

� Timing problems

� Configuration issues

� Data/memory corruption bugs

� Usability problems

� Customer requirements issues

• Coverage is not a good adequacy criterion
� Instead, use to find places where testing is inadequate

Aldrich

toad 3515-214

Test coverage – Ideal and Real

• An Ideal Test Suite
� Uncovers all errors in code
� Uncovers all errors that requirements capture

•All scenarios covered
•Non-functional attributes: performance, code safety,
security, etc.

� Minimum size and complexity
� Uncovers errors early in the process

• A Real Test Suite
� Uncovers some portion of errors in code
� Has errors of its own
� Assists in exploratory testing for validation
� Does not help very much with respect to non-functional
attributes

� Includes many tests inserted after errors are repaired to
ensure they won’t reappear

35

toad 3615-214

Summary

• Unit testing is one of many testing approaches

• Unit testing to
� discover bugs (not prove correctness)
� document code
� design testable code

• JUnit details (@Test, …)

• Test coverage: The good, the bad, and the ugly

• You should be able to write unit tests for all your
code now

toad 3715-214

toad 3815-214

Extra: Mock Objects

CodeOracle Fat client
(GUI)

void buttonClicked() {
render(getFriends());

}
Pair[] getFriends() {

OracleDB database = oracle.getConnection();
List<Node> persons = database.getTable("Persons");
for (Node personA: persons) {

for (Node personB: persons) {
…

}}
return result;

}

toad 3915-214

Mock Objects

CodeOracle Fat client
(GUI)

Driver
(JUnit test)

@Test void testGetFriends() {
assert getFriends() == …;

}
Pair[] getFriends() {

OracleDB database = oracle.getConnection();
List<Node> persons = database.getTable("Persons");
for (Node personA: persons) {

for (Node personB: persons) {
…

}}
return result;

}

toad 4015-214

Mock Objects

IData
base

CodeOracle

Stub/
Mock

Fat client

Driver
(JUnit test)

IDatabase database;
@Before void init() {database = new MockDatabase(); }
@Test void testGetFriends() {

assert getFriends() == …;
}
Pair[] getFriends() {

List<Node> persons = database.getTable("Persons");
for (Node personA: persons) {

for (Node personB: persons) {
…

}}
return result;

}

class MockDatabase implements IDatabase {
void open() {}
List<Node> getTable(String n) {

if ("Persons".equals(n)) {
List<Node> result=new List();
result.add(…);
return result;

}
}

toad 4115-214

toad 4215-214

Mock Objects

toad 4315-214

• Separate business logic and data representation
from GUI for testing

• Test algorithms locally without large environment

IData
base

CodeOracle

Stub/
Mock

Fat client

Driver
(JUnit test)

toad 4415-214

Test Driven Development

toad 4515-214

Empirical Results – What works in practice?

