
C:\plaid\courses\15-214\2013-2fall\lectures\07-design-patterns\07-design-pattern-notes.txt Tuesday, September 17, 2013 1:44 PM

2013 15-214 INTRODUCTION TO DESIGN LECTURE NOTES

==

In this lecture we will take a first look at the so ftware design process, and consider the

concept of design patterns that come up again and a gain in software designs.

A BASIC APPROACH TO DESIGNING A DRAWING EDITOR

--

Let us explore design through a design exercize. I n this exercize, we will sketch the design

of an application for editing drawings, providing f unctionality similar to that seen in

applications such as PowerPoint or Visio (our actua l design reflects ideas in the JHotDraw

application). A real drawing application would lik ely have many features, but here we will

consider a simplified version. Consider the follow ing set of sketched requirements:

R1: create a drawing and figures to go in it

R2: each figure should have a movable position with in the drawing

R3: display the drawing on the screen

R4: support multiple kinds of figures, including li nes and rectangles

R5: the kinds of figures should be extensible

While these requirements are simplified, they will be sufficient for now. We will ignore the

user interface, except for the ability to display d rawings on the screen.

Let's start by creating a _domain model_, represent ing the concepts in the requirements. We

want to give each concept in the requirements a nam e, define it, and describe its properties.

Some things in the domain model will turn into inte rfaces and classes in the software

design--but for now let's think in the problem doma in.

It's often helpful to examine the requirements spec ification and look for nouns and verbs. The

nouns are often concepts that belong in our domain model. The verbs are often operations that

will become methods when we translate the domain mo del into a concrete software design. In

this case, we have the following nouns and verbs:

Nouns: drawing, figure, position, screen, line, rec tangle

Verbs: create, move, display

Let us sketch the relationships between these. Whi ch are concepts, and which are attributes of

some other concept? A design guideline is that if we think of something as text or a number in

the real world, it is likely an attribute, whereas if it has more complex structure or

properties, it is likely to be a concept. In the d omain model, we will draw the concepts as

classes and the attributes as fields.

The domain model may also have specialization/gener alization, analogous to inheritance in class

diagrams. Is there a specialization/generalization among some of the concepts we found above?

Finally there may be relationships among elements i n the model. For example, one concept may

refer to another. Are there examples of relationsh ips in the example above?

Let us now consider the concrete design of the soft ware. We should ask whether the concepts we

identified need to be represented as classes in the design. If the program needs to store

-1-

C:\plaid\courses\15-214\2013-2fall\lectures\07-design-patterns\07-design-pattern-notes.txt Tuesday, September 17, 2013 1:44 PM

information about the concepts, we will typically n eed them; that is true for most of the

concepts in our example.

If we need a concept, we should think about represe nting its attributes as fields and think

about what operations it should define as methods. Here we can take the verbs we identified

before and find appropriate classes to add them to. Some verbs, such as create, may become

constructors.

How do we decide where to add methods? A common so lution is known as responsibility-driven

design. Each class should have a set of responsibi lities: typically the responsibility to know

certain things and to carry out certain tasks. For example, a figure should be responsible for

knowing its position, and for drawing itself on the screen.

Extending a domain model to a software design somet imes involves adding new classes and making

design decisions. One design decision concerns the figure concept: do we need a figure class

or interface that is separate from particular figur es such as lines and rectangles?

To answer this question, consider the fifth require ment (R5) above. This requirement is not

like the others. It does not describe functionalit y in the application. Instead, it is a

quality attribute of the design. It implies that the design (and corresponding

implementation) should be easily extensible to supp ort new figures in the future. How can we

provide this extensibility in our design? Could th e figure concept help with this?

If so, how should we represent figure? Should it b e an interface or an abstract class? Might

it be useful to have both?

From this example we can gain some initial insight into the design process. Our first goal is

to represent the problem that is expressed in the r equirements and domain model within the

software system, so that it can be solved. However , there are multiple solutions to the design

problem, and some are better than others. We have seen three considerations already:

extensibility, flexibility, reuse, and complexity. We can provide extensibility by providing

an interface that multiple implementations can impl ement. An interface also provides

flexibility to implement a concept in completely in dependent ways. An abstract class decreases

flexibility by fixing some design decisions, but pr ovides code that can be reused across

multiple classes. Having both an interface and an abstract class gives us both flexibility and

reuse, but increases the complexity of the design, thus making it (marginally) more difficult

to understand and implement.

EXTENDING THE DESIGN TO SUPPORT GROUPED FIGURES

Let us consider a design problem that comes up natu rally in the domain of drawing editors.

Many drawing editors, such as PowerPoint, allow fig ures to be grouped into a larger composite

figure. Once grouped, the composite figure can be manipulated (moved, resized, etc.) as if it

were an atomic figure itself. Moving the composite automatically moves all of the parts.

R6: group small figures into large ones, and manipu late larger group as if it were a figure

We want to keep our user interface code simple, and to accomplish that, we want to make sure

that most of the design code doesn't have to know t he difference between composite figures and

primitive figures. In other words, even at the cod e level, we want to be able to manipulate a

-2-

C:\plaid\courses\15-214\2013-2fall\lectures\07-design-patterns\07-design-pattern-notes.txt Tuesday, September 17, 2013 1:44 PM

group of figures as if it were just a figure itself . How can we solve this problem?

After a class discussion of this design problem, st udents carry out a related in-class design

exercize.

We then look at the lecture slides for today, consi dering the composite design pattern on

slides 3-4, and studying the concept of design patt erns and their benefits in slides 5-17.

Where have we seen the composite design pattern bef ore?

EXTENDING THE DESIGN TO UPDATE LAYOUT AND REDRAW AFTER A RESIZE

--- ------------

Let us examine another design problem, this one mot ivated by the interaction between displaying

figures on the screen and functionality such as res izing a figure. We expect that different

figures will need to implement resize in different ways. For example, a circle will simply

change its radius, while a rectangle will change it length and width. A composite figure will

have to change its size and then lay out its compon ents within it again.

One thing all figures have to do, however, is re-dr aw themselves on the screen after the resize

operation. We could include a call to updateScreen () in all implementations of the resize

method. However, this duplicates one line of code in every method; is there a way we can reuse

the method call so we only have to write it once? Furthermore, if we include a call to

updateScreen() in each implementation, there is alw ays the danger that when we add a new figure

(which R5 suggests we will do a lot), we might forg et to make the call, introducing a quite

subtle bug into the implementation.

After a class discussion of this design problem, we look at the Template Method design pattern

in lecture slides 30-31. Where have we seen this d esign pattern before?

The template method design pattern is very often ne cessary to achieving good code reuse.

Remember that geting as much code reuse as possible is one of the most critical elements of the

Virtual World assignment you are currently completi ng.

-3-

