Objects Analysis

MarReer = S,

borg? u>i§k_g ooy

PR
v

Th rea_ds

toad

Fall 2013

School of
- Computer Science

institute for

SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Objects

Charlie Garrod Jonathan Aldrich

© 2012-2013 by J Aldrich, C Garrod, C Kastner, and W Scherlis

Recap of Tuesday

e 214: managing complexity, from programs to systems =
= Threads and concurrency
= Object-oriented programming
= Analysis and modeling
= Design

e Object-oriented programming organizes code around
concepts
= Objects contain state and behavior
= Methods capture behavior, fields capture state
= Classes as template for objects

= As we will see, this organization allows
e Greater reuse of concepts
e Better support for change when concepts vary

te for

15-214 toad 2 sorTva

An Object-Oriented Set Library

e We communicate with objects by sending them messages
= Or, equivalently, invoking their methods

e What messages should we be able to send to a set?
= Hint: think about mathematical set operations

15-214 toad 3 o

An Object-Oriented Set Library

e We communicate with objects by sending them messages
= Or, equivalently, invoking their methods

e What messages should we be able to send to a set?
= Hint: think about mathematical set operations

e Let’s design an interface to a (functional) set object
= Equivalent to header files in C

= But now we are listing the messages understood by an object
e Java interfaces may not have (instance) fields

interface IntSet {
/** does the IntSet contain element? */
boolean contains(int element);
/** is the IntSet a subset of otherSet? */
boolean isSubsetOf(IntSet otherSet);

= institute for
15-214 toad a sormios:

Implementing Set

e An implementation of an interface is defined using a class

= Provides method bodies for all the messages in the interface
e It is an error if we forget one, or change its signature

= May also define additional methods and/or data fields
= The class is a subtype of the interfaces it implements

o implements keyword
e Trivial example: an empty set specifies implemented
interfaces

class EmptySet implements IntSet {
/** does the IntSet contain element? */

boolean contains(int element) { b

ste for

15-214 toad 5 SOTTARE

Implementing Set

interface IntSet { ed using a class
boolean contains(int element); s in the interface
boolean isSubsetOf(IntSet otherSet); Rt

¥ data fields
class EmptySet implements IntSet { ... } plEnENS

implements keyword
e Trivial example: an empty set specifies implemented
interfaces

class EmptySet implements IntSet {
/** does the IntSet contain element? */

boolean contains(int element) { return false; }

error: method isSubsetOf

from interface IntSet is
3 not implemented

= institute for
15-214 toad 6 SOFTWARE

RESEARCH

Implementing Set

e An implementation of an interface is defined using a class

= Provides method bodies for all the messages in the interface
e It is an error if we forget one, or change its signature

= May also define additional methods and/or data fields
= The class is a subtype of the interfaces it implements

o implements keyword
e Trivial example: an empty set specifies implemented
interfaces

class EmptySet implements IntSet {
/** does the IntSet contain element? */
boolean contains(int element) { return false; }
/** is the IntSet a subset of otherSet? */
boolean isSubsetOf(IntSet otherSet) { return true; }

15-214 toad 7 o

Using an EmptySet

class EmptySet implements IntSet {

/** does the IntSet contain element? */

boolean contains(int element) { return false; }

/** is the IntSet a subset of otherSet? */

boolean isSubsetOf(IntSet otherSet) { return true; }

s

IntSet s = new EmptySet();

boolean f = s.contains(0); // false
boolean t = s.isSubsetOf(s); // true

e

N

The receiver,

an implicit argument,
called this inside the

-

method Y

15-214

N

The method name.
Identifies which method to
use, of all the methods the

receiver’s class defines

Allocates
memory for the
EmptySet

\ i

arguments,
just like function
arguments

~

/

toad

institute for
| S B
RESEARCH

Typechecking client code

interface IntSet {
boolean contains(int element);

boolean isSubsetOf(IntSet otherSet);

g

class EmptySet implements IntSet { ...

2. OK to assign an EmptySet to
an IntSet, because EmptySet
implements IntSet

IntSet s = new EmptySet();

boolean f = s.contains(0); // false

C 5. contains()
returns a boolean,
which we can

\ assign safely to f D

15-214

_

3. s has type IntSet. A

We check that IntSet
defines a contains
method.

/

toad

>

1. The new
expression has
type EmptySet

4. The contains
method in IntSet
accepts an int

~

argument so the actual

argument is OK

/

= institute for
9 I S r SOF TWARE
RESEARCH

Typechecking: What Could Go Wrong?

interface IntSet {
boolean contains(int element);
boolean isSubsetOf(IntSet otherSet);

g

class EmptySet implements IntSet { ... }

2. Can't assign an IntSet to an EmptySet
because IntSet is not a subtype of (i.e. 1. Can't instantiate
does not implement) EmptySet an interface; its
methods are

EmptySet s = new IntSet(); undefined.

int f = s.contans(“hello”); // false

4. Even if we spell
5. contains() contains correctly,
returns a boolean, the method takes an

wibiel 18 me & 3. s has type EmptySet. int argument, and

subtype of int dBlI:'I't EmptyStet does tTthd String is no_t 3
(unlike in C) Slitlpise sl I dnle subtype of int

= mnsttute Fi:r
15-214 toad 10 sorTva

Executing client code

S . EmptySet

Method Stack

main() interface IntSet {
S / boolean contains(int element);
~
What method do we call?
s has type IntSet, which
IntSet s = new EmptySet(); does not define contains
J

boolean f = s.contains(0);
boolean t = s.isSubsetOf(s); // true

= mnsttute {i.ﬂ’
15-214 toad 11 SOTTARE

Executing client code

-
Look at the object s W
points to. It keeps track

. of its class: EmptySet /IS . EmptySet

Method Stack

main()
S -
class EmptySet implements IntSet {
boolean contains(int element) { return false; }

IntSet s = new EmptySet(); EmptySet defines
: contains(); we call this
boolean f = s.contains(0); method implementation

boolean t = s.isSubsetOf(s); // true

= mnsttute Fi:r
15-214 toad 12 sorTva

Executing client code

Method Stack

EmptySet.contains()
element=0

S . EmptySet

main()
S /

f=false class EmptySet implements IntSet {
boolean contains(int element) { return false; }

t=true

IntSet s = new EmptySet();
boolean f = s.contains(0);
boolean t = s.isSubsetOf(s); // true

= mnsttute Fi.ﬂ’
15-214 toad 13 SOTTARE

Implementing a Singleton Set

e Several classes can implement the same interface
= Instances of these classes can all work together
= A key strength of objects compared to alternatives such as ADTs

class SingletonSet implements IntSet {

int member; A field stores the
member of the set
SingletonSet(int element) { member = element; }
A constructor method

initializes the fields
boolean contains(int e) { return member == ¢; }
boolean isSubsetOf(IntSet otherSet) {

return otherSet.contains(member);

¥
¥

= institute for
15-214 toad 14 SOFTWARE

RESEARCH

Implicit Constructors

e If you don't define a constructor, Java generates one for you

« It has no return type and is named after the class
e Just like all constructors

= It has no arguments

= Fields (if any) are initialized to default values
e 0 for numeric values
o false for boolean variables
e null for reference (pointer) variables

class EmptySet implements IntSet {
/** This is equivalent to the auto-generated constructor */
public EmptySet() {}
public boolean contains(int element) { return false; }

public boolean isSubsetOf(IntSet otherSet) {

return true; }

¥ ; }

15-214 toad 15 sor

Calling Constructors, Accessing Fields

class SingletonSet implements IntSet {
int member;

SingletonSet(int element) { member = element; }
boolean contains(int e) { return member == ¢; }
boolean isSubsetOf(IntSet otherSet) {

return otherSet.contains(member); }

¥

// client code
SingletonSet s = new SingletonSet(5);

iIf (s.member <= 5) -
s.member++; Using the new operator
invokes the constructor

e Client code can read and write the member field
= This can make it difficult to change our code later

= It also risks unexpected changes to the data in a functional
object

= nstitute F b
15-214 toad 16 sorTva

Hiding Fields

class SingletonSet implements IntSel LA EL=NpEsleleRelaleNjlE el
private int member; can only be accessed from

within the class.

public SingletonSet(int element) { member = element; }

public boolean contains(int e) { return member == e; }
public boolean isSubsetOf(IntSet otherSet) {

return otherSet.contains(member); }

public methods and fields
can be accessed from

. anywhere : error: cannot access
SingletonSet s = new SingletonSet(5); private field member

if (s.membe from outside class
s.member++; SingletonSet

Note: all methods in Discussion: when is

it useful to have a
private method?

an interface are
implicitly public

= institute for
15-214 toad 17 o

Using Sets Together

IntSet s1
IntSet s2

new EmptySet();
new SingletonSet(5);

IntSet temp = s1;

sl = s2;

s2 = temp;

System.out.printin(sl.contains(5));
System.out.printin(s2.contains(5));

15-214

toad

What does this
program print?

|

18

institute tor
SOFTWARE
RESEARCH

Using Sets Together

e : EmptySet
Method Stack
main()
s1 —|s: SingletonSet
S2 member = 5
temp
IntSet s1 = new EmptySet();
IntSet s2 = new SingletonSet(5);
IntSet temp = s1; What does this
s1 = s2: program print?
s2 = temp;

System.out.printin(sl.contains(5));
System.out.printin(s2.contains(5));

15-214 toad 19 sor s

Using Sets Together

Method Stack

main()

=

sl
52%
temp

IntSet s1 = new EmptySet();
IntSet s2 = new SingletonSet(5);

IntSet temp = s1;
sl = s2;
s2 = temp;

System.out.printin(sl.contains(5));
System.out.printin(s2.contains(5));

15-214

toad

e : EmptySet

s : SingletonSet

member = 5

What does this
program print?

|

20 [Hi:

stitute {)
OF TWARE
SEARCH

Using Sets Together

Dynamic Dispatch:
determine which method

Polymorphism (*many forms”):
Sets can take two forms, and the

to call based on the run-
time class of the object

Method Stack

behavior of a set depends on
which form it takes.

main()
sl ~|s : SingletonSet
oh member = 5
temp

4 sl points to s. A

s is of class SingletonSet.
SingletonSet.contains() is

IntSet s1 = new EmptySet();
IntSet s2 = new SingletonSet(5);

IntSet temp = s1i; called, printing true
sl = s2;

s2 =temp; _ s2 points to e. h
System.out.printin(sl.contains(5)); e is of class EmptySet.
System.out.println(s2.contains(5)); EmptySet.contains() is

15-214 toad called, printing false)

Adding Unions

interface IntSet {
boolean contains(int element);
boolean isSubsetOf(IntSet otherSet);
IntSet union(IntSet otherSet);

¥

class UnionSet implements IntSet {
private IntSet setl;
private IntSet set2;
public UnionSet(IntSet s1, IntSet s2) {

setl = sl1; set2 =s2; }

public boolean contains(int elem) {

return b
public boolean isSubsetOf(IntSet otherSet) {

return
public IntSet union(IntSet otherSet) {

return b

15-214 toad 22 ggmﬁg

Adding Unions

interface IntSet {
boolean contains(int element);
boolean isSubsetOf(IntSet otherSet);
IntSet union(IntSet otherSet);
b
class UnionSet implements IntSet {
private IntSet setl;
private IntSet set2;
public UnionSet(IntSet s1, IntSet s2) {
setl = sl1; set2 =s2; }
public boolean contains(int elem) {
return setl.contains(elem) || set2.contains(elem); }
public boolean isSubsetOf(IntSet otherSet) {
return setl.isSubsetOf(elem) && set2.isSubsetOf(elem); }
public IntSet union(IntSet otherSet) {
return new UnionSet(this, otherSet); }

g The this keyword refers to

the current object
15-214 toad 23 corrvns

_ _ class UnionSet is a
Adding Unions Composite—an object
that groups other objects,

- while behaving just like
IR ERED INESEE | the objects it groups. For

boolean contains(int element);
boolean .isSubsetOf(IntSet otherSet Uerﬁzr:géi’oﬁuoginnin;r?ls(zt:
IntSet union(IntSet otherSet);
3 WhHELRWYE r_efer to a locally-
class UnionSet implements IntSet { declaned iield or method;
private IntSet set2;
public UnionSet(IntSet s
this.setl = s1; this.set2 =s2; }
public boolean contains(int elem) {
return setl.contains(elem) || this.set2.contains(elem); }
public boolean isSubsetOf(IntSet otherSet) {
return setl.isSubsetOf(elem) && set2.isSubsetOf(elem);}
public IntSet union(IntSet otherSet) {
return new UnionSet(this, otherSet); }

g The this keyword refers to

the current object
o toad 20 [

Another Look
at Interfaces

15-214 toad 25 [EJJ sorvs

Contracts and Clients

e Contract of service provider and client
» Interface specification
« Functionality and correctness expectations
» Performance expectations
» Hiding of respective implementation details
» “Focus on concepts rather than operations”

Hidden from
service client

Hidden from
service provider

Service
implementation

Client
environment

= nstitute {)
26 [sorivnse
RESEARCH

Interfaces state Expectations

interface IntSet {
/** @return true if element is in this set */
boolean contains(int element);

/** @return true if otherSet is a subset of this set */
boolean isSubsetOf(IntSet otherSet);

/** @return a new set representing the union of this set
* and otherSet
*/
IntSet union(IntSet otherSet);
b

15-214 toad 27 ;g’;g,:";:‘i",f

Java Interfaces and classes

Object-orientation
1. Organize program functionality around kinds of
abstract “objects”

e For each object kind, offer a specific set of operations on
the objects

e Objects are otherwise opaque
e Details of representation are hidden

e "“Messages to the receiving object”
2. Distinguish interface from class

e Interface: expectations

e Class: delivery on expectations (the implementation)
3. Explicitly represent the taxonomy of object types

e This is the “inheritance hierarchy”
e A square is a shape

15-214 toad 28 sorTinse

Implementation of interfaces

e Classes can implement one or more interfaces.

public class SingletonSet implements IntSet, Cloneable {...}

= Semantics
= Must provide code for all methods in the interface(s)

= Best practices

= Define an interface whenever there may be multiple
implementations of a concept

= Variables should have interface type, not class type

int sum(UnionSet set) { ... // preferably no
int sum(IntSet set) { ... // yes!

= institute for
15-214 toad 29 SO

Classes and Interfaces

interface IntSet {
boolean contains(int element);
boolean isSubsetOf(IntSet otherSet);

}

class SingletonSet implements IntSet {
private int member;

public SingletonSet(int element) { member = element; }
public boolean contains(int e) { return member == ¢e; }

public boolean isSubsetOf(IntSet otherSet) {
return otherSet.contains(member);
by

// OK to define additional public methods in the class
public int getMember() { return member; }

}

15-214 toad 30 sorTinse

Interfaces, Types, Classes

e Two ways to put a new empty list into a variable

IntSet s = new SingletonSet(4); /Class }
SingletonSet ss= new SingletonSet(3); L

int i = ss.getMember(); // OK
int j = s.getMember(); // error: no method getMember in IntSet

[Interface=J

4

[class | EmptySet

Singletonéet]

= nstitute F b
15-214 toad 31 sorTva

Object Identity &
Object Equality

Obiject identity vs. equality

e There are two notions of equality in OO
= The same object. References are the same.

= Possibly different objects, but equivalent content
e From the client perspective!! The actual internals might be different

new String ((abc”);
new String ((abc”);

String s1
String s2

= There are two string objects, s1 and s2.
e The strings are are equivalent, but the references are different

if (s1 == s2) { same object } else { different objects }

if (sl.equals(s2)) { equivalent content } else { not}

= An interesting wrinkle: /iterals Defined in the class String]

String s3 = “abc”;
String s4 = “abc”/;

= These are true: s3==s4. s3.equals(s2). s2 != s3.
15-214 toad 33 [o

Encore:
Polymorphism
Example 2

15-214 toad 34 Isr SOFTWARE

RRRRRRRR

Functional Lists of Integers

e Some operations we expect to see:
= create a new list
e empty, or by adding an integer to an existing list
» return the size of the list
« get the /" integer in the list
= concatenate two lists into a new list

e Key questions
« How to implement the lists?
e Many options
e Arrays, linked lists, etc
e How to hide the details of this choice from client code?
e Why do this?
= How to state expectations?
e A variable v can reference a list of integers

15-214 toad 35

nstitute {)
SOFTWARE
RESEARCH

Interfaces — stating expectations

e The IntList interface

public interface IntList {
int size();
int get(int n);
IntList concatenate(IntList otherList);
String toString();

}

e The declaration for v ensures that any object referenced by
v will have implementations of the methods size, get,
concatenate, and toString

Intlist v = ...
int len = v.size();

int third = v.get(2);
System.out.println (v.toString());

= nstitute F |
15-214 toad 36 :E;Fgﬁ“,;}“:

Implementing lists

e Two options (among many):
= Arrays

113 |7 |5 |11 | 13| 6 |42

= Linked lists
)
D— @) — D — emon
e Operations: Array List

= create a new empty list const const
= return the size of the list const linear
= return the it" integer in the list ? ?

= create a list by adding to the front ? ?

= concatenate two lists into a new list ? ?

15-214 toad 37 sorTinse

An inductive definition

e The size of a list L is
= 0 if L is the empty list
= 1 + size of the tail of L otherwise

ste for

15-214 toad 38 SOFTWARE

Implementing Size

public class EnmptylntList inplenents IntList {
public int size() {

return O; } —

Base case

public class IntListCell i1nplenents IntList {
public int size() {
return 1 + next.size(); }

} - v\Inductive case

= institute for
15-214 toad 39 sorminse

List Representation (BROKEN!)

public class EnptylntList
public int size() {
return O;

}

| npl enents | ntList {

Base case

public class IntListCell
private i nt val ue;
private |IntListCell

public int size() {

return 1 + next.size();

}

next ;

| npl enents I ntList {

Type is wrong!
May be a cell or
an empty list!

15-214 toad

Inductive case

institute for
| S r SOFTWARE
RESEARCH

40

List Representation (FIXED!)

public class EnmptylntList inplenents IntList {
public int size() {
return O;

}

Base case —

public class IntListCell inplenents IntList {
private i nt val ue;
private | ntList next;

Interface type
public int size() { provides needed

return 1 + next.size(); flexibility.
}

) Inductive case —
15-214 toad a1 [oo

List Constructors

public class EnptylntList inplenents IntList {
public EnptylntList() {
/[l nothing to initialize

} Java gives us this
Co. . default constructor
} for free if we don't
define any constructors.

public class IntListCell inplenents IntList {
public IntListCell (int val, IntList next) {

t his.value = val;

t hi s. next = next;

}

private i nt val ue;
private | ntList next;

tute for

15-214 toad 42 sormase

Some Client Code

fiveList : IntListCell ‘emptyList : EmptylIntList

= new EmptylntList();
IntList fiveList = new IntListCell(5, emptyList);

= nstitute {] |
15-214 toad 43 sorTva

Some Client Code

fiveList : IntListCell /l emptyList : EmptyIntList

next

public IntListCell (int value, IntList next) {
[/ value is 5, next is enptyLi st
this.value = value; // this is fivelLi st
t hi s. next = next;

IntList emptyList = new EmptyIntList();
IntList fiveList = new IntListCell(5, emptyList);

15-214 toad 44 Sorr

RESEARCH

Some Client Code

fiveList : IntListCell

valu
next

7' emptyList : EmptylIntList
e/ |

fourList : IntListCell

valu
next

7

new EmptylntList();

IntList fiveList = new IntListCell(5, emptyList);

IntList fourList = new IntListCell(4, emptyList);

IntList fourFive = fourList.concatenate(fivelist); // what happens?

15-214

toad a5 [2

Implementing Concatenate

public class EnmptylntList

| npl enents | ntList {

public IntList concatenate(lntList other) {

return ot her:

} <

Base case

public class | ntListCell

| npl enents | ntList {

public IntList concatenate(lntList other) {

| nt Li st newNext
return new I ntListCell (val ue,

next . concat enat e(ot her) ;
newNext); }

Inductive case

Two concatenate methods — which do we use?

15-214 toad

= nstitute {)
1S EShaT
RESEARCH

46

Some Client Code

fiveList : IntListCell 7' emptyList : EmptylntList
value/ |
next

—
{ fourList : IntListCell

value74./
next

nevw EmptylntList();
IntList fiveList = new [IntListCell(5, emptyList);
IntList fourList = new IntListCell(4, emptyList);

IntList fourFive % fourList.concatenate(fivelist); // what happens?

= institute for
15-214 toad a7 sormse

Method dispatch (simplified)

Example:

IntList fourList = new IntListCell(4, emptyList);
IntList fourFive = fourList.concatenate(fivelist);

e Step 1 (compile time): determine what type to look in
« Look at the static type (IntList) of the receiver (fourList)

e Step 2 (compile time): find the method in that type

= Find the method in the class with the right name
e Later: there may be more than one such method

IntList concatenate(IntList otherList);
« Keep the method only if it is accessible

e e.g. remove private methods
= Error if there is no such method

= institute for
15-214 toad a8 SO

Method dispatch (simplified)

Example:

List fourList = new IntListCell(4, emptyList);
List fourFive = fourList.concatenate(fivelist);

e Step 3 (run time): Determine the run-time type of the
receiver
= Look at the object in the heap and get its class

e Step 4 (run time): Locate the method implementation to
invoke

= Look in the class for an implementation of the method we found
statically (step 2)

public IntList concatenate(lntList other) {
| nt Li st newNext = next.concat enat e(ot her);
return new IntListCell (val ue, newNext); }

= Invoke the method

= institute for
15-214 toad a9 SO

Some Client Code

fiveList : IntListCell emptyList : EmptylntList
vaIue/ ‘
next

fourList : IntListCell

vaIue74/
next

class | ntLi stCel |l {
public IntList concatenate(lntList other) {
/] this is fourList, other is fivelList

| nt Li st newNext = next.concat enate(other);
return new I ntListCell (val ue, newNext);

}
List rourList = new IntListCell(4, emptyLis

4

List fourFive = fourList.concatenate(fivelist); // what happens?

= mnsttute Fi)f
15-214 toad 50 :?;F:Ji“,aﬁ

A Question for You!

fiveList : IntListCell 7' emptyList : EmptylntList

next

fourList : IntListCell 1. What concatenate
| method is called next?
xz;te/(2. What does the final

heap look like?

I class IntListCell {
public IntList concatenate(lntList other) {
/] this is fourList, other is fivelList

| nt Li st newNext = next.concat enate(other);
return new I ntListCell (val ue, newNext);

}
List tourList = new IntListCell(4, emptyLis

4

List fourFive = fourList.concatenate(fivelist); // what happens?

= institute for
15-214 toad 51 SOFTWARE

RESEARCH

Answers
v

fiveList : IntListCell

next

mptyList : EmptylIntList |
SmptyList : EmptyIntList

fourList.next points to an
object of class EmptylIntList.

Therefore
EmptylIntList.concatenate()
is called

fourFive : IntListCell

value = 4
next =

List fourList = IntListCell(4, emptyList);

List fourFive = fourList.concatenate(fivelList); // what happens?

= institute for
15-214 toad 52 SOFTWARE

RESEARCH

Toad’s Take-Home Messages

e OOP - code is organized code around kinds of things =5
=« Objects correspond to things/concepts of interest

= Objects embody:
e State - held in fields, which hold or reference data
e Actions - represented by methods, which describe operations on
state
e Constructors - how objects are created

= A class is a family of similar objects
« An interface states expectations for classes and their objects

= Polymorphism and Encapsulation as key concepts
e Allow different implementations behind a common interface

e Objects reside in the heap
= They are accessed by reference, which gives the objects
identity
= Dispatch is used to choose a method implementation based on
the class of the receiver
= Equivalence (equals) does not mean the same object (==

= nstitute F)
15-214 toad 53 sorTva

