
toad

Fall 2013

© 2012-2013 by J Aldrich, C Garrod, C Kästner, and W Scherlis

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Objects

Charlie Garrod Jonathan Aldrich

toad 215-214

Recap of Tuesday

• 214: managing complexity, from programs to systems
� Threads and concurrency
� Object-oriented programming
� Analysis and modeling
� Design

• Object-oriented programming organizes code around
concepts
� Objects contain state and behavior
� Methods capture behavior, fields capture state
� Classes as template for objects
� As we will see, this organization allows

• Greater reuse of concepts
• Better support for change when concepts vary

toad 315-214

An Object-Oriented Set Library

• We communicate with objects by sending them messages
� Or, equivalently, invoking their methods

• What messages should we be able to send to a set?
� Hint: think about mathematical set operations

toad 415-214

An Object-Oriented Set Library

• We communicate with objects by sending them messages
� Or, equivalently, invoking their methods

• What messages should we be able to send to a set?
� Hint: think about mathematical set operations

• Let’s design an interface to a (functional) set object
� Equivalent to header files in C
� But now we are listing the messages understood by an object

• Java interfaces may not have (instance) fields

interface IntSet {

/** does the IntSet contain element? */

boolean contains(int element);

/** is the IntSet a subset of otherSet? */

boolean isSubsetOf(IntSet otherSet);

}

toad 515-214

Implementing Set

• An implementation of an interface is defined using a class
� Provides method bodies for all the messages in the interface

• It is an error if we forget one, or change its signature

� May also define additional methods and/or data fields
� The class is a subtype of the interfaces it implements

• Trivial example: an empty set

class EmptySet implements IntSet {

/** does the IntSet contain element? */

boolean contains(int element) { }

}

implements keyword
specifies implemented

interfaces

toad 615-214

Implementing Set

• An implementation of an interface is defined using a class
� Provides method bodies for all the messages in the interface

• It is an error if we forget one, or change its signature

� May also define additional methods and/or data fields
� The class is a subtype of the interfaces it implements

• Trivial example: an empty set

class EmptySet implements IntSet {

/** does the IntSet contain element? */

boolean contains(int element) { return false; }

}

implements keyword
specifies implemented

interfaces

error: method isSubsetOf
from interface IntSet is

not implemented

interface IntSet {
boolean contains(int element);
boolean isSubsetOf(IntSet otherSet);

}
class EmptySet implements IntSet { … }

toad 715-214

Implementing Set

• An implementation of an interface is defined using a class
� Provides method bodies for all the messages in the interface

• It is an error if we forget one, or change its signature

� May also define additional methods and/or data fields
� The class is a subtype of the interfaces it implements

• Trivial example: an empty set

class EmptySet implements IntSet {

/** does the IntSet contain element? */

boolean contains(int element) { return false; }

/** is the IntSet a subset of otherSet? */

boolean isSubsetOf(IntSet otherSet) { return true; }

}

implements keyword
specifies implemented

interfaces

toad 815-214

Using an EmptySet

IntSet s = new EmptySet();

boolean f = s.contains(0); // false

boolean t = s.isSubsetOf(s); // true

class EmptySet implements IntSet {
/** does the IntSet contain element? */
boolean contains(int element) { return false; }
/** is the IntSet a subset of otherSet? */
boolean isSubsetOf(IntSet otherSet) { return true; }

}

The receiver,
an implicit argument,
called this inside the

method

The method name.
Identifies which method to
use, of all the methods the

receiver’s class defines

Method
arguments,

just like function
arguments

Allocates
memory for the

EmptySet

toad 915-214

Typechecking client code

IntSet s = new EmptySet();

boolean f = s.contains(0); // false

interface IntSet {
boolean contains(int element);
boolean isSubsetOf(IntSet otherSet);

}
class EmptySet implements IntSet { … }

4. The contains
method in IntSet
accepts an int

argument so the actual
argument is OK

3. s has type IntSet.
We check that IntSet

defines a contains
method.

1. The new
expression has
type EmptySet

2. OK to assign an EmptySet to
an IntSet, because EmptySet

implements IntSet

5. contains()
returns a boolean,

which we can
assign safely to f

toad 1015-214

Typechecking: What Could Go Wrong?

EmptySet s = new IntSet();

int f = s.contans(“hello”); // false

interface IntSet {
boolean contains(int element);
boolean isSubsetOf(IntSet otherSet);

}
class EmptySet implements IntSet { … }

4. Even if we spell
contains correctly,

the method takes an
int argument, and

String is not a
subtype of int

3. s has type EmptySet.
But EmptySet does not

define a contans method

1. Can’t instantiate
an interface; its
methods are
undefined.

2. Can’t assign an IntSet to an EmptySet
because IntSet is not a subtype of (i.e.

does not implement) EmptySet

5. contains()
returns a boolean,

which is not a
subtype of int
(unlike in C)

toad 1115-214

Executing client code

IntSet s = new EmptySet();

boolean f = s.contains(0);

boolean t = s.isSubsetOf(s); // true

interface IntSet {
boolean contains(int element);
...

}

main()
s

Method Stack

s : EmptySet

What method do we call?
s has type IntSet, which
does not define contains

toad 1215-214

Executing client code

IntSet s = new EmptySet();

boolean f = s.contains(0);

boolean t = s.isSubsetOf(s); // true

main()
s

Method Stack

s : EmptySet

Look at the object s
points to. It keeps track

of its class: EmptySet

class EmptySet implements IntSet {
boolean contains(int element) { return false; }
...

}

EmptySet defines
contains(); we call this
method implementation

toad 1315-214

Executing client code

IntSet s = new EmptySet();

boolean f = s.contains(0);

boolean t = s.isSubsetOf(s); // true

main()
s
f=false
t=true

Method Stack
s : EmptySet

class EmptySet implements IntSet {
boolean contains(int element) { return false; }
...

}

EmptySet.contains()

element=0

toad 1415-214

Implementing a Singleton Set

• Several classes can implement the same interface
� Instances of these classes can all work together
� A key strength of objects compared to alternatives such as ADTs

class SingletonSet implements IntSet {
int member;

SingletonSet(int element) { member = element; }

boolean contains(int e) { return member == e; }
boolean isSubsetOf(IntSet otherSet) {

return otherSet.contains(member);
}

}

A constructor method
initializes the fields

A field stores the
member of the set

toad 1515-214

Implicit Constructors

• If you don’t define a constructor, Java generates one for you
� It has no return type and is named after the class

• Just like all constructors

� It has no arguments
� Fields (if any) are initialized to default values

• 0 for numeric values
• false for boolean variables
• null for reference (pointer) variables

class EmptySet implements IntSet {

/** This is equivalent to the auto-generated constructor */

public EmptySet() {}

public boolean contains(int element) { return false; }

public boolean isSubsetOf(IntSet otherSet) {

return true; }

}

toad 1615-214

Calling Constructors, Accessing Fields

class SingletonSet implements IntSet {
int member;

SingletonSet(int element) { member = element; }
boolean contains(int e) { return member == e; }
boolean isSubsetOf(IntSet otherSet) {

return otherSet.contains(member); }
}

// client code
SingletonSet s = new SingletonSet(5);
if (s.member <= 5)

s.member++;

• Client code can read and write the member field
� This can make it difficult to change our code later
� It also risks unexpected changes to the data in a functional

object

Using the new operator
invokes the constructor

toad 1715-214

Hiding Fields

class SingletonSet implements IntSet {
private int member;

public SingletonSet(int element) { member = element; }
public boolean contains(int e) { return member == e; }
public boolean isSubsetOf(IntSet otherSet) {

return otherSet.contains(member); }
}

// client code
SingletonSet s = new SingletonSet(5);
if (s.member <= 5)

s.member++;

error: cannot access
private field member

from outside class
SingletonSet

private methods and fields
can only be accessed from

within the class.

public methods and fields
can be accessed from

anywhere

Note: all methods in
an interface are
implicitly public

Discussion: when is
it useful to have a
private method?

toad 1815-214

Using Sets Together

IntSet s1 = new EmptySet();
IntSet s2 = new SingletonSet(5);
IntSet temp = s1;
s1 = s2;
s2 = temp;
System.out.println(s1.contains(5));
System.out.println(s2.contains(5));

What does this
program print?

toad 1915-214

Using Sets Together

IntSet s1 = new EmptySet();
IntSet s2 = new SingletonSet(5);
IntSet temp = s1;
s1 = s2;
s2 = temp;
System.out.println(s1.contains(5));
System.out.println(s2.contains(5));

main()
s1
s2
temp

Method Stack

e : EmptySet

What does this
program print?

s : SingletonSet

member = 5

toad 2015-214

Using Sets Together

IntSet s1 = new EmptySet();
IntSet s2 = new SingletonSet(5);
IntSet temp = s1;
s1 = s2;
s2 = temp;
System.out.println(s1.contains(5));
System.out.println(s2.contains(5));

main()
s1
s2
temp

Method Stack

e : EmptySet

What does this
program print?

s : SingletonSet

member = 5

toad 2115-214

Using Sets Together

IntSet s1 = new EmptySet();
IntSet s2 = new SingletonSet(5);
IntSet temp = s1;
s1 = s2;
s2 = temp;
System.out.println(s1.contains(5));
System.out.println(s2.contains(5));

main()
s1
s2
temp

Method Stack

e : EmptySet

s1 points to s.
s is of class SingletonSet.
SingletonSet.contains() is

called, printing true

s : SingletonSet

member = 5

s2 points to e.
e is of class EmptySet.
EmptySet.contains() is
called, printing false

Dynamic Dispatch:
determine which method
to call based on the run-
time class of the object

Polymorphism (“many forms”):
Sets can take two forms, and the

behavior of a set depends on
which form it takes.

toad 2215-214

Adding Unions

interface IntSet {
boolean contains(int element);
boolean isSubsetOf(IntSet otherSet);
IntSet union(IntSet otherSet);

}
class UnionSet implements IntSet {

private IntSet set1;
private IntSet set2;
public UnionSet(IntSet s1, IntSet s2) {

set1 = s1; set2 = s2; }
public boolean contains(int elem) {

return }
public boolean isSubsetOf(IntSet otherSet) {

return }
public IntSet union(IntSet otherSet) {

return }
}

toad 2315-214

Adding Unions

interface IntSet {
boolean contains(int element);
boolean isSubsetOf(IntSet otherSet);
IntSet union(IntSet otherSet);

}
class UnionSet implements IntSet {

private IntSet set1;
private IntSet set2;
public UnionSet(IntSet s1, IntSet s2) {

set1 = s1; set2 = s2; }
public boolean contains(int elem) {

return set1.contains(elem) || set2.contains(elem); }
public boolean isSubsetOf(IntSet otherSet) {

return set1.isSubsetOf(elem) && set2.isSubsetOf(elem);}
public IntSet union(IntSet otherSet) {

return new UnionSet(this, otherSet); }
} The this keyword refers to

the current object

toad 2415-214

When we refer to a locally-
declared field or method,

we are implicitly looking in
the receiver object this

Adding Unions

interface IntSet {
boolean contains(int element);
boolean isSubsetOf(IntSet otherSet);
IntSet union(IntSet otherSet);

}
class UnionSet implements IntSet {

private IntSet set1;
private IntSet set2;
public UnionSet(IntSet s1, IntSet s2) {

this.set1 = s1; this.set2 = s2; }
public boolean contains(int elem) {

return set1.contains(elem) || this.set2.contains(elem); }
public boolean isSubsetOf(IntSet otherSet) {

return set1.isSubsetOf(elem) && set2.isSubsetOf(elem);}
public IntSet union(IntSet otherSet) {

return new UnionSet(this, otherSet); }
} The this keyword refers to

the current object

When we refer to a locally-
declared field or method,

we are implicitly looking in
the receiver object this

class UnionSet is a
Composite—an object

that groups other objects,
while behaving just like

the objects it groups. For
example, you can make a

UnionSet out of UnionSets.

toad 2515-214

Another Look
at Interfaces

toad 2615-214

Contracts and Clients

• Contract of service provider and client
� Interface specification
� Functionality and correctness expectations
� Performance expectations
� Hiding of respective implementation details
� “Focus on concepts rather than operations”

Service
implementation

Service interface

Client
environment

Hidden from
service provider

Hidden from
service client

toad 2715-214

Interfaces state Expectations

interface IntSet {
/** @return true if element is in this set */
boolean contains(int element);

/** @return true if otherSet is a subset of this set */
boolean isSubsetOf(IntSet otherSet);

/** @return a new set representing the union of this set
* and otherSet
*/

IntSet union(IntSet otherSet);
}

toad 2815-214

Java interfaces and classes

Object-orientation
1. Organize program functionality around kinds of

abstract “objects”
• For each object kind, offer a specific set of operations on

the objects

• Objects are otherwise opaque
• Details of representation are hidden

• “Messages to the receiving object”

2. Distinguish interface from class
• Interface: expectations

• Class: delivery on expectations (the implementation)

3. Explicitly represent the taxonomy of object types
• This is the “inheritance hierarchy”

• A square is a shape

toad 2915-214

Implementation of interfaces

• Classes can implement one or more interfaces.

� Semantics

� Must provide code for all methods in the interface(s)

� Best practices

� Define an interface whenever there may be multiple
implementations of a concept

� Variables should have interface type, not class type

int sum(UnionSet set) { … // preferably no
int sum(IntSet set) { … // yes!

public class SingletonSet implements IntSet, Cloneable {…}

toad 3015-214

Classes and Interfaces

interface IntSet {
boolean contains(int element);
boolean isSubsetOf(IntSet otherSet);

}
class SingletonSet implements IntSet {

private int member;

public SingletonSet(int element) { member = element; }

public boolean contains(int e) { return member == e; }
public boolean isSubsetOf(IntSet otherSet) {

return otherSet.contains(member);
}

// OK to define additional public methods in the class
public int getMember() { return member; }

}

toad 3115-214

Interfaces, Types, Classes

• Two ways to put a new empty list into a variable
IntSet s = new SingletonSet(4);
SingletonSet ss= new SingletonSet(3);
int i = ss.getMember(); // OK
int j = s.getMember(); // error: no method getMember in IntSet

IntSet

EmptySet

SingletonSet

Clonable

Type

Class

InterfaceInterface

ClassClass

toad 3215-214

Object Identity &
Object Equality

toad 3315-214

Object identity vs. equality

• There are two notions of equality in OO
� The same object. References are the same.
� Possibly different objects, but equivalent content

• From the client perspective!! The actual internals might be different

String s1 = new String (“abc”);
String s2 = new String (“abc”);

� There are two string objects, s1 and s2.
• The strings are are equivalent, but the references are different

if (s1 == s2) { same object } else { different objects }

if (s1.equals(s2)) { equivalent content } else { not}

� An interesting wrinkle: literals

String s3 = “abc”;
String s4 = “abc”;

� These are true: s3==s4. s3.equals(s2). s2 != s3.

Defined in the class String

toad 3415-214

Encore:
Polymorphism

Example 2

toad 3515-214

Functional Lists of Integers

• Some operations we expect to see:
� create a new list

• empty, or by adding an integer to an existing list

� return the size of the list
� get the ith integer in the list
� concatenate two lists into a new list

• Key questions
� How to implement the lists?

• Many options
• Arrays, linked lists, etc

• How to hide the details of this choice from client code?
• Why do this?

� How to state expectations?
• A variable v can reference a list of integers

toad 3615-214

Interfaces – stating expectations

• The IntList interface

public interface IntList {
int size();
int get(int n);
IntList concatenate(IntList otherList);
String toString();

}

• The declaration for v ensures that any object referenced by
v will have implementations of the methods size, get,
concatenate, and toString

Intlist v = …

int len = v.size();
int third = v.get(2);
System.out.println (v.toString());

toad 3715-214

Implementing lists

• Two options (among many):
� Arrays

1 3 7 5 11 13 6 42

� Linked lists

• Operations: Array List
� create a new empty list const const
� return the size of the list const linear
� return the ith integer in the list ? ?
� create a list by adding to the front ? ?
� concatenate two lists into a new list ? ?

1 3 9 4 empty

toad 3815-214

An inductive definition

• The size of a list L is
� 0 if L is the empty list
� 1 + size of the tail of L otherwise

toad 3915-214

Implementing Size

public class EmptyIntList implements IntList {
public int size() {

return 0; }
. . .

}

public class IntListCell implements IntList {
public int size() {

return 1 + next.size(); }
. . .

}

Base case

Inductive case

toad 4015-214

List Representation (BROKEN!)

public class EmptyIntList implements IntList {
public int size() {

return 0;
}
. . .

}

public class IntListCell implements IntList {
private int value;
private IntListCell next;

public int size() {
return 1 + next.size();

}
. . .

}

Base case

Inductive case

Type is wrong!
May be a cell or
an empty list!

toad 4115-214

List Representation (FIXED!)

public class EmptyIntList implements IntList {
public int size() {

return 0;
}
. . .

}

public class IntListCell implements IntList {
private int value;
private IntList next;

public int size() {
return 1 + next.size();

}
. . .

}

Base case

Inductive case

Interface type
provides needed
flexibility.

toad 4215-214

List Constructors

public class EmptyIntList implements IntList {
public EmptyIntList() {

// nothing to initialize
}
. . .

}

public class IntListCell implements IntList {
public IntListCell(int val, IntList next) {

this.value = val;
this.next = next;

}

private int value;
private IntList next;
. . .

}

Base case

Java gives us this
default constructor
for free if we don’t
define any constructors.

toad 4315-214

Some Client Code

In main(…)

IntList emptyList = new EmptyIntList();

IntList fiveList = new IntListCell(5, emptyList);

emptyList : EmptyIntListfiveList : IntListCell

toad 4415-214

Some Client Code

In main(…)

IntList emptyList = new EmptyIntList();

IntList fiveList = new IntListCell(5, emptyList);

emptyList : EmptyIntListfiveList : IntListCell

value = 5
next

public IntListCell(int value, IntList next) {
// value is 5, next is emptyList
this.value = value; // this is fiveList
this.next = next;

}

toad 4515-214

Some Client Code

In main(…)

IntList emptyList = new EmptyIntList();

IntList fiveList = new IntListCell(5, emptyList);

IntList fourList = new IntListCell(4, emptyList);

IntList fourFive = fourList.concatenate(fiveList); // what happens?

emptyList : EmptyIntListfiveList : IntListCell

value = 5
next

fourList : IntListCell

value = 4
next

toad 4615-214

Implementing Concatenate

public class EmptyIntList implements IntList {
public IntList concatenate(IntList other) {

return other; }
. . .

}

public class IntListCell implements IntList {
public IntList concatenate(IntList other) {

IntList newNext = next.concatenate(other);
return new IntListCell(value, newNext); }

. . .
}

Base case

Inductive case

Two concatenate methods – which do we use?

toad 4715-214

Some Client Code

In main(…)

IntList emptyList = new EmptyIntList();

IntList fiveList = new IntListCell(5, emptyList);

IntList fourList = new IntListCell(4, emptyList);

IntList fourFive = fourList.concatenate(fiveList); // what happens?

emptyList : EmptyIntListfiveList : IntListCell

value = 5
next

fourList : IntListCell

value = 4
next

toad 4815-214

Method dispatch (simplified)

Example:

IntList fourList = new IntListCell(4, emptyList);

IntList fourFive = fourList.concatenate(fiveList);

• Step 1 (compile time): determine what type to look in
� Look at the static type (IntList) of the receiver (fourList)

• Step 2 (compile time): find the method in that type
� Find the method in the class with the right name

• Later: there may be more than one such method

IntList concatenate(IntList otherList);

� Keep the method only if it is accessible
• e.g. remove private methods

� Error if there is no such method

toad 4915-214

Method dispatch (simplified)

Example:

List fourList = new IntListCell(4, emptyList);

List fourFive = fourList.concatenate(fiveList);

• Step 3 (run time): Determine the run-time type of the
receiver
� Look at the object in the heap and get its class

• Step 4 (run time): Locate the method implementation to
invoke
� Look in the class for an implementation of the method we found

statically (step 2)

� Invoke the method

public IntList concatenate(IntList other) {
IntList newNext = next.concatenate(other);
return new IntListCell(value, newNext); }

toad 5015-214

Some Client Code

In main(…)

List emptyList = new EmptyIntList();

List fiveList = new IntListCell(5, emptyList);

List fourList = new IntListCell(4, emptyList);

List fourFive = fourList.concatenate(fiveList); // what happens?

emptyList : EmptyIntListfiveList : IntListCell

value = 5
next

fourList : IntListCell

value = 4
next

class IntListCell {
public IntList concatenate(IntList other) {

// this is fourList, other is fiveList
IntList newNext = next.concatenate(other);
return new IntListCell(value, newNext);

}

toad 5115-214

A Question for You!

In main(…)

List emptyList = new EmptyIntList();

List fiveList = new IntListCell(5, emptyList);

List fourList = new IntListCell(4, emptyList);

List fourFive = fourList.concatenate(fiveList); // what happens?

emptyList : EmptyIntListfiveList : IntListCell

value = 5
next

fourList : IntListCell

value = 4
next

class IntListCell {
public IntList concatenate(IntList other) {

// this is fourList, other is fiveList
IntList newNext = next.concatenate(other);
return new IntListCell(value, newNext);

}

1. What concatenate
method is called next?

2. What does the final
heap look like?

toad 5215-214

fourList.next points to an
object of class EmptyIntList.

Therefore
EmptyIntList.concatenate()
is called

Answers

In main(…)

List emptyList = new EmptyIntList();

List fiveList = new IntListCell(5, emptyList);

List fourList = new IntListCell(4, emptyList);

List fourFive = fourList.concatenate(fiveList); // what happens?

emptyList : EmptyIntListfiveList : IntListCell

value = 5
next

fourList : IntListCell

value = 4
next

fourFive : IntListCell

value = 4
next

toad 5315-214

Toad’s Take-Home Messages

• OOP – code is organized code around kinds of things
� Objects correspond to things/concepts of interest
� Objects embody:

• State – held in fields, which hold or reference data
• Actions – represented by methods, which describe operations on

state
• Constructors – how objects are created

� A class is a family of similar objects
� An interface states expectations for classes and their objects
� Polymorphism and Encapsulation as key concepts

• Allow different implementations behind a common interface

• Objects reside in the heap
� They are accessed by reference, which gives the objects

identity
� Dispatch is used to choose a method implementation based on

the class of the receiver
� Equivalence (equals) does not mean the same object (==)

