
	

toad	

	

Fall	
 2012	

© 2012 C Garrod, J Aldrich, and W Scherlis

School of
Computer Science

Principles of Software Construction:
Objects, Design and Concurrency

Data consistency

Jonathan Aldrich Charlie Garrod

15-214

toad 2 15-­‐214	
 	
 Garrod	

Administrivia

• Homework 9 due Thursday
§ Commit to team repository if working as team
§ Also don't forget to turn in Lab 09

toad 3 15-­‐214	
 	
 Garrod	

Last time: Distributed systems

• Caching and partitioning for scalability
§ Consistent hashing
§ Master/tablet-based systems

toad 4 15-­‐214	
 	
 Garrod	

Today: Data consistency and concurrency control

• A formal definition of consistency

• Introduction to transactions

• Introduction to concurrency control

• Distributed concurrency control
§  Two-phase commit

toad 5 15-­‐214	
 	
 Garrod	

An aside: Double-entry bookkeeping

• A style of accounting where every event consists
of two separate entries: a credit and a debit

void transfer(Account fromAcct, Account toAcct, int val) {!
 fromAccount.debit(val);!
 toAccount.credit(val);!
}!
!
static final Account BANK_LIABILITIES = …;!
!
void deposit(Account toAcct, int val) {!
 transfer(BANK_LIABILITIES, toAcct, val);!
}!
!
boolean withdraw(Account fromAcct, int val) {!
 if (fromAcct.getBalance() < val) return false;!
 transfer(fromAcct, BANK_LIABILITIES, val);!
 return true;!
}!

toad 6 15-­‐214	
 	
 Garrod	

Some properties of double-entry bookkeeping

• Redundancy!

• Sum of all accounts is static
§ Can be 0

toad 7 15-­‐214	
 	
 Garrod	

Data consistency of an application

• Suppose D is the database for some application
and ϕ is a function from database states to {true,
false}
§ We call ϕ an integrity constraint for the application if ϕ(D)
is true if the state D is "good"

§ We say a database state D is consistent if ϕ(D) is true for
all integrity constraints ϕ

§ We say D is inconsistent if ϕ(D) is false for any integrity
constraint ϕ

toad 8 15-­‐214	
 	
 Garrod	

Data consistency of an application

• Suppose D is the database for some application
and ϕ is a function from database states to {true,
false}
§ We call ϕ an integrity constraint for the application if ϕ(D)
is true if the state D is "good"

§ We say a database state D is consistent if ϕ(D) is true for
all integrity constraints ϕ

§ We say D is inconsistent if ϕ(D) is false for any integrity
constraint ϕ	

• E.g., for a bank using double-entry bookkeeping
one possible integrity constraint is:
def IsConsistent(D):!
 If (sum(all account balances in D) == 0):!
 Return True!
 Else:!
 Return False!

toad 9 15-­‐214	
 	
 Garrod	

Database transactions

• A transaction is an atomic sequence of read and
write operations (along with any computational
steps) that takes a database from one state to
another
§  "Atomic" ~ indivisible

• Transactions always terminate with either:
§ Commit: complete transaction's changes successfully
§ Abort: undo any partial work of the transaction

toad 10 15-­‐214	
 	
 Garrod	

Database transactions

• A transaction is an atomic sequence of read and
write operations (along with any computational
steps) that takes a database from one state to
another
§  "Atomic" ~ indivisible

• Transactions always terminate with either:
§ Commit: complete transaction's changes successfully
§ Abort: undo any partial work of the transaction!

boolean withdraw(Account fromAcct, int val) {!
 begin_transaction();!
 if (fromAcct.getBalance() < val) {!
 abort_transaction();!
 return false;!
 }!
 transfer(fromAcct, BANK_LIABILITIES, val);!
 commit_transaction();!
 return true;!
}!

toad 11 15-­‐214	
 	
 Garrod	

A functional view of transactions

• A transaction T is a function that takes the
database from one state D to another state T(D)

• In a correct application, if D is consistent then
T(D) is consistent for all transactions T

toad 12 15-­‐214	
 	
 Garrod	

A functional view of transactions

• A transaction T is a function that takes the
database from one state D to another state T(D)

• In a correct application, if D is consistent then
T(D) is consistent for all transactions T	

§ E.g., in a correct application any serial execution of
multiple transactions takes the database from one
consistent state to another consistent state

toad 13 15-­‐214	
 	
 Garrod	

Database transactions in practice

• The application requests commit or abort, but the
database may arbitrarily abort any transaction
§ Application can restart an aborted transaction

• Transaction ACID properties:
§ Atomicity: All or nothing
§ Consistency: Application-dependent as before
§  Isolation: Each transaction runs as if alone
§ Durability: Database will not abort or undo work of

 a transaction after it confirms the commit

toad 14 15-­‐214	
 	
 Garrod	

Concurrent transactions and serializability

• For good performance, database interleaves
operations of concurrent transactions

toad 15 15-­‐214	
 	
 Garrod	

Concurrent transactions and serializability

• For good performance, database interleaves
operations of concurrent transactions

• Problems to avoid:
§  Lost updates

• Another transaction overwrites your update, based on
old data

§  Inconsistent retrievals
• Reading partial writes by another transaction
• Reading writes by another transaction that
subsequently aborts

• A schedule of transaction operations is serializable
if it is equivalent to some serial ordering of the
transactions
§  a.k.a. linearizable

toad 16 15-­‐214	
 	
 Garrod	

Concurrency control for a centralized database

• Two-phase locking (2PL)
§  Phase 1: acquire locks
§  Phase 2: release locks

• E.g.,
§  Lock an object before reading or writing it
§ Don't release any locks until commit or abort

toad 17 15-­‐214	
 	
 Garrod	

Concurrency control for a distributed database

• Distributed two-phase locking
§  Phase 1: acquire locks
§  Phase 2: release locks

• E.g.,
§  Lock all copies of an object before reading or writing it
§ Don't release any locks until commit or abort

• Two new problems:
§ Distributed deadlocks are possible
§ All participants must agree on whether each transaction
commits or aborts

toad 18 15-­‐214	
 	
 Garrod	

Two-phase commit (2PC)

• Two roles:
§ Coordinator: for each transaction there is a unique server

 coordinating the 2PC protocol
§  Participants: any server storing data locked by the

 transaction

• Two phases:
§  Phase 1: Voting (or Prepare) phase
§  Phase 2: Commit phase

• Failure model:
§ Unreliable network:

• Messages may be delayed or lost
§ Unreliable servers with reliable storage:

• Servers may crash or temporarily fail
• Will eventually recover persistently-stored state

toad 19 15-­‐214	
 	
 Garrod	

The 2PC voting phase

• Coordinator sends canCommit?(T) message to
each participant
§ Messages re-sent as needed

• Each participant replies yes or no!
§ May not change vote after voting

• Must log vote to persistent storage
•  If vote is yes:

• Objects must be strictly locked to prevent new conflicts
• Must log any information needed to successfully commit

•  Coordinator collects replies from participants

toad 20 15-­‐214	
 	
 Garrod	

The 2PC commit phase

• If participants unanimously voted yes!
§ Coordinator logs commit(T) message to persistent storage
§ Coordinator sends doCommit(T) message to all participants

• Participants confirm, messages re-sent as needed

• If any participant votes no!
§ Coordinator sends doAbort(T) message to all participants

• Participants confirm, messages re-sent as needed

toad 21 15-­‐214	
 	
 Garrod	

2PC time sequence of events

canCommit?!

yes!

doCommit!

confirmed!

Coordinator: Participants:

“committed”
(persistently)

“prepared”

“done”

“uncertain”
(objects still
locked)

“prepared”
(persistently)

“committed”

toad 22 15-­‐214	
 	
 Garrod	

Problems with two-phase commit?

toad 23 15-­‐214	
 	
 Garrod	

Problems with two-phase commit?

• Failure assumptions are too strong
§ Real servers can fail permanently
§  Persistent storage can fail permanently

• Temporary failures can arbitrarily delay a commit

• Poor performance
§ Many round-trip messages

toad 24 15-­‐214	
 	
 Garrod	

The CAP theorem for distributed systems

• For any distributed system you want…
§ Consistency
§ Availability
§  tolerance of network Partitions

• …but you can support at most two of the three

toad 25 15-­‐214	
 	
 Garrod	

Next time…

• Ghost of Objects Present

• Ghost of Objects Past

• Ghost of Objects Yet to Come

