
	

toad	

	

Fall	
 2012	

© 2012 C Garrod, J Aldrich, and W Scherlis

School of
Computer Science

Principles of Software Construction:
Objects, Design and Concurrency

The Perils of Concurrency, part 3
Can't live with it.
Can't live without it.

Jonathan Aldrich Charlie Garrod

15-214

toad 2 15-­‐214	
 	
 Garrod	

Administrivia

• Problems with your Homework 6 partner?
§ Email me and/or Jonathan

• Homework 6c code due tonight
§ Using a late day allows you to turn in the second part of
hw6c late, and also lab 7 late

toad 3 15-­‐214	
 	
 Garrod	

Last time: Static analysis and JSure

• Annotate design intent for concurrent programs

• Aside: redundancy and robustness

?

toad 4 15-­‐214	
 	
 Garrod	

Before that: concurrency

• Basic concurrency in Java
§  Primitive concurrency control mechanisms

• Race conditions
§  check-then-act

• Deadlock

• Livelock

java.util.concurrent.ConcurrentHashMap!

toad 5 15-­‐214	
 	
 Garrod	

Today: Concurrency, part 3

• Higher-level languages, briefly

• Potpourri of parallel algorithms

• Distributed map-reduce frameworks

toad 6 15-­‐214	
 	
 Garrod	

Recall: work, breadth, and depth

• Work: total effort required
§  area of the shape

• Breadth: extent of simultaneous activity
§ width of the shape

• Depth (or span): length of longest computation
§ height of the shape

tim
e

concurrency

toad 7 15-­‐214	
 	
 Garrod	

Concurrency at the language level

• Consider:
int sum = 0;!
Iterator i = list.iterator();!
while (i.hasNext()) {!
 sum += i.next();!
}

• In python:
sum = 0;!
for item in lst:!
 sum += item!
!

toad 8 15-­‐214	
 	
 Garrod	

Parallel quicksort in Nesl
function quicksort(a) =!
 if (#a < 2) then a!
 else!
 let pivot = a[#a/2];!
 lesser = {e in a| e < pivot}; !!
 equal = {e in a| e == pivot}; !
 greater = {e in a| e > pivot}; !
 result = {quicksort(v): v in [lesser,greater]};!
 in result[0] ++ equal ++ result[1];
• Operations in {} occur in parallel

• What is the total work? What is the depth?
§ What assumptions do you have to make?

toad 9 15-­‐214	
 	
 Garrod	

Prefix sums (a.k.a. inclusive scan)

• Goal: given array x[0…n-1], compute array of the
sum of each prefix of x!
[sum(x[0…0]), !
 sum(x[0…1]), !
 sum(x[0…2]), !
 … !
 sum(x[0…n-1])]

• e.g., x =! [13, 9, -4, 19, -6, 2, 6, 3]!

 prefix sums: [13, 22, 18, 37, 31, 33, 39, 42]!

toad 10 15-­‐214	
 	
 Garrod	

Parallel prefix sums

• Intuition: If we have already computed the partial
sums sum(x[0…3]) and sum(x[4…7]), then we can
easily compute sum(x[0…7])!

• Code:
prefix_sums(x):!
 for d in 0 to (lg n)-1: // d is depth!
 parallelfor i in 2d to n-1: !
 newx[i] = x[i-2d] + x[i]!
 x = newx!

toad 11 15-­‐214	
 	
 Garrod	

Parallel prefix sums

• Intuition: If we have already computed the partial
sums sum(x[0…3]) and sum(x[4…7]), then we can
easily compute sum(x[0…7])!

• Code:
prefix_sums(x):!
 for d in 0 to (lg n)-1: // d is depth!
 parallelfor i in 2d to n-1: !
 newx[i] = x[i-2d] + x[i]!
 x = newx

• e.g., x =! [13, 9, -4, 19, -6, 2, 6, 3]

toad 12 15-­‐214	
 	
 Garrod	

Map

• map(f, x[0…n-1])!
•  Apply the function f to each element of list x!

• E.g., in Python:
def square(x): return x*x !
map(square, [1, 2, 3, 4]) would return [1, 4, 9, 16]

• Parallel map implementation is trivial
§ What is the work? What is the depth?

toad 13 15-­‐214	
 	
 Garrod	

Reduce

• reduce(f, x[0…n-1])!
§ Repeatedly apply binary function f to pairs of items in x,
replacing the pair of items with the result until only one
item remains

§ One sequential Python implementation:
 def reduce(f, x):!
 if len(x) == 1: return x[0]!
 return reduce(f, [f(x[0],x[1])] + x[2:])!

§  e.g., in Python:
 def add(x,y): return x+y!
 reduce(add, [1,2,3,4]) !
 would return 10 as
 reduce(add, [1,2,3,4])!
 reduce(add, [3,3,4])!
 reduce(add, [6,4])!
 reduce(add, [10]) -> 10!

toad 14 15-­‐214	
 	
 Garrod	

Reduce with an associative binary function

• If the function f is associative, the order f is
applied does not affect the result

 1 + ((2+3) + 4) 1 + (2 + (3+4)) (1+2) + (3+4)

• Parallel reduce implementation is also easy
§ What is the work? What is the depth?

toad 15 15-­‐214	
 	
 Garrod	

Distributed Map / Reduce

• The distributed map-reduce idea is just:
! !reduce(f2, map(f1, x))

• Key idea: a "data-centric" architecture
§ Send function f1 directly to the data

• Execute it concurrently
§  Then merge results with reduce

• Also concurrently

toad 16 15-­‐214	
 	
 Garrod	

• E.g., for each word on the Web, count the number
of times that word occurs
§  For Map: key1 is a document name, value is the
contents of that document

§  For Reduce: key2 is a word, values is a list of the
number of counts of that word

Map and Reduce with keys (as told by Google)

Map(String key1, String value): !

 for each word w in value: !

 EmitIntermediate(w, "1"); !

!

Reduce(String key2, Iterator values):!

 int result = 0;!

 for each v in values:!

 result += ParseInt(v);!

 Emit(AsString(result));!

Map: (key1, v1) à (key2, v2)* Reduce: (key2, v2*) à v2*

MapReduce: (key1, v1)* à (key2, v2*)*

MapReduce: (docName, docText)* à (word, wordCount)*

toad 17 15-­‐214	
 	
 Garrod	

Map and Reduce with keys (as told by Google)

• Master:
§ Assigns tasks to map and reduce workers
§  Pings workers to test for failures

• Reduce workers:
§ Remote read of key/value pairs
§ Reduce for each key

toad 18 15-­‐214	
 	
 Garrod	

A map-reduce task for you

• Use map and reduce to generate an inverted
index
§ E.g., given (docName, docContents) pairs for each
document on the Web, build (word, docNameList) pairs
for each word on the web, where docNameList is a list of
all the document names containing that word

• Start by figuring out, for map and reduce: what
are the keys and what are the values? I.e., what
are the intermediate (key, value) pairs?

• Then describe pseudocode for map and reduce

toad 19 15-­‐214	
 	
 Garrod	

Next time:

• Higher-level Java tools for concurrent
programming

