Object§ Analysis

B i
3 / o
LR BN, e
) - T

Principles of Software Construction:
Objects, Design and Concurrency

Threa_ds

The Perils of Concurrency, part 3

Can't live with it.
Can't live without it.

15-214
toad

Fall 2012
Jonathan Aldrich Charlie Garrod

School of
Computer Science

L
institute for
I S SOFTWARE
RESEARCH

© 2012 C Garrod, J Aldrich, and W Scherlis

Administrivia
e Problems with your Homework 6 partner?

= Email me and/or Jonathan

e Homework 6c¢c code due tonight

= Using a late day allows you to turn in the second part of
hwoc late, and also lab 7 late

. institute for
15-214 Garrod toad 2 e

Last time: Static analysis and JSure

e Annotate design intent for concurrent programs

e Aside: redundancy and robustness

Pap—— it FOV
15-214 Garrod toad 3 sorTuA

Before that: concurrency

e Basic concurrency in Java
= Primitive concurrency control mechanisms

e Race conditions
= check-then-act

e Deadlock :
e Livelock ‘:;Si\
\\\\Q::;::\\\ .

U=
Locks \

Hashtable

java.util.concurrent.ConcurrentHashMap

. institute for
15-214 Garrod toad PR | S [Eu

Today: Concurrency, part 3

e Higher-level languages, briefly
e Potpourri of parallel algorithms

e Distributed map-reduce frameworks

= institute for
15-214 Garrod toad s [Hf s

Recall: work, breadth, and depth

A A A A

> > >
concurrency

time

e Work: total effort required
= area of the shape

e Breadth: extent of simultaneous activity
= width of the shape

e Depth (or span): length of longest computation
« height of the shape

= P institute for
15-214 Garrod toad e [Hf o

Concurrency at the language level

e Consider:
int sum = 0;
Iterator i = list.iterator();
while (i.hasNext()) {
sum += i.next();

}
e In python:
sum = 0;

for item in 1lst:
sum += item

15-214 Garrod toad

7

institute for
SOFTWARE
RESEARCH

Parallel quicksort in Nesl|

function quicksort(a) =
if (#a < 2) then a

else
let pivot = a[#a/2];
lesser = {e in a| e < pivot};
equal = {e in a| e == pivot};
greater = {e in a| e > pivot};
result = {quicksort(v): v 1in [lesser,greater]};

in result[0] ++ equal ++ result[l];

e Operations in {} occur in parallel

e What is the total work? What is the depth?
« What assumptions do you have to make?

15-214 Garrod toad 8 Sortints

RESEARCH

Prefix sums (a.k.a. inclusive scan)

e Goal: given array x[0..n-1], compute array of the

sum of each prefix of x
[sum(x[0..0]),
sum(x[0..1]),
sum(x[0..2]),

;um(x[Omn-l])]
ee.g., x = [13, 9, -4, 19, -6, 2, 6, 3]
prefix sums: [13, 22, 18, 37, 31, 33, 39, 42]

. institute for
15-214 Garrod toad o [H i

Parallel prefix sums

e Intuition: If we have already computed the partial
sums sum(x[0..3]) and sum(x[4..7]), then we can
easily compute sum(x[0..7])

e Code:
prefix sums(x):
for d in 0 to (lgn)-1: // d is depth
parallelfor i in 29 to n-1:
newx[i] = x[1-29] + x[i]
X = newx

Pap—— it FOV
15-214 Garrod toad 10 SEITEARE

Parallel prefix sums

e Intuition: If we have already computed the partial
sums sum(x[0..3]) and sum(x[4..7]), then we can
easily compute sum(x[0..7])

e Code:
prefix sums(x):
for d in 0 to (lgn)-1: // d is depth
parallelfor i in 29 to n-1:
newx[i] = x[1-29] + x[i]
X = newx
ec.d., X = .3, 9, -4, 19, -6, 2, 6, 3]

Pap—— it FOV
15-214 Garrod toad 11 sorTuA

Map

emap(f, x[0..n-11])

e Apply the function £ to each element of list x

Input list \\ J

Mapping function
Sl - - - - - -~ - - -~ - 7_‘

A |

Output list

e E.g., in Python:
def square(x): return x*x
map (square, [1l, 2, 3, 4]) would return [1, 4, 9, 16]

e Parallel map implementation is trivial
= What is the work? What is the depth?

- institute for
15-214 Garrod toad 12 e

Reduce

e reduce(f, x[0..n-11])
= Repeatedly apply binary function £ to pairs of items in x,
replacing the pair of items with the result until only one
item remains
= One sequential Python implementation:
def reduce(f, Xx):
if len(x) == 1l: return x[0]
return reduce(f, [£(x[0],x[1])] + xX[2:])

= e.g., in Python: Input list

def add(x,y): return x+y
reduce(add, [1,2,3,4])
would return 10 as Reducing function
reduce(add, [1,2,3,4])
reduce(add, [3,3,4])
reduce(add, [6,4])

Output value

reduce(add, [10]) -> 10

ite for

15-214 Garrod toad 13 ﬁ?ﬁ,&’}":

Reduce with an associative binary function

e If the function £ is associative, the order £ is
applied does not affect the result

/\ /"N /\/\/\
/\ 1 /0\ 1
/\ AN

3 4

1 +((2+3)+4) 1+ ((2+(3+4)) (1+2) + (3+4)

e Parallel reduce implementation is also easy
« What is the work? What is the depth?

institute for

15-214 Garrod toad 14 sorTuA

Distributed Map / Reduce

e The distributed map-reduce idea is just:
reduce(f2, map(fl, X))

e Key idea: a "data-centric" architecture
= Send function £1 directly to the data
e Execute it concurrently
« Then merge results with reduce
e Also concurrently

. institute for
15-214 Garrod toad 15 e

Map and Reduce with keys (as told by Google)

e E.g., for each word on the Web, count the number

of times that word occurs

= For Map: keyl is a document name, value is the
contents of that document

= For Reduce: key2 is a word, values is a list of the
number of counts of that word

Map(String keyl, String value): Reduce(String key2, Iterator values):
for each word w in value: int result = 0;
EmitIntermediate(w, "1"); for each v in values:

result += ParselInt(v);

Emit (AsString(result));

Map: (keyl, vl1) > (key2, v2)* Reduce: (key2, v2*) - v2*
MapReduce: (keyl, v1)* > (key2, v2*)*

MapReduce: (docName, docText)* - (word, wordCount)*
nstitute for

15-214 Garrod toad 16 é?ﬁ,&’}":

Map and Reduce with keys (as told by Google)

e Master:
= Assigns tasks to map and reduce workers
= Pings workers to test for failures

e Reduce workers:
- Remote read of key/value pairs

= Reduce for each key Mok
S o e
: as(s?;;n ;S;‘tlgcg

split1 |——

split0 |

(6) write
-

output
file O

(5) emote read__

split 2 M,O (4) local write
worker =
split3 |

2 file 1

split 4 ,
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

institute for
15-214 Garrod toad 17 e

A map-reduce task for you

e Use map and reduce to generate an inverted

index

« E.g., given (docName, docContents) pairs for each
document on the Web, build (word, docNameList) pairs
for each word on the web, where docNamelList is a list of
all the document names containing that word

e Start by figuring out, for map and reduce: what
are the keys and what are the values? I.e., what
are the intermediate (key, value) pairs?

e Then describe pseudocode for map and reduce

Pap—— it FOV
15-214 Garrod toad 18 sorTuA

Next time:

e Higher-level Java tools for concurrent
programming

= institute for
15-214 Garrod toad 19 [H] o

