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Specifications
• Contains

• Functional behavior
• Erroneous behavior
• Quality attributes

• Desirable attributes
• Complete

• Does not leave out any desired behavior
• Minimal

• Does not require anything that the user does not care about
• Unambiguous

• Fully specifies what the system should do in every case the user 
cares about

• Consistent
• Does not have internal contradictions

• Testable
• Feasible to objectively evaluate

• Correct
• Represents what the end-user(s) need
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Function Specifications
• A function’s contract is a statement of the responsibilities of that 

function, and the responsibilities of the code that calls it.
• Analogy: legal contracts

• If you pay me $30,000
• I will build a new room on your house

• Helps to pinpoint responsibility

• Contract structure
• Precondition: the condition the function relies on for correct operation
• Postcondition: the condition the function establishes after correctly 

running

• Example: how would you specify the following:

public float sum(int array[], int len) {… }
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Function Specifications
• A function’s contract is a statement of the responsibilities of that 

function, and the responsibilities of the code that calls it.
• Analogy: legal contracts

• If you pay me $30,000
• I will build a new room on your house

• Helps to pinpoint responsibility

• Contract structure
• Precondition: the condition the function relies on for correct operation
• Postcondition: the condition the function establishes after correctly 

running

• Example: how would you specify the following:

/*@ requires array != null && len >= 0 && array.length == len
@
@ ensures \result == (\sum int j; 0<=j && j<array.length;  array[j])
@*/

public float sum(int array[], int len) {… }
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Function Specifications
• A function’s contract is a statement of the responsibilities of that 

function, and the responsibilities of the code that calls it.
• Analogy: legal contracts

• If you pay me $30,000
• I will build a new room on your house

• Helps to pinpoint responsibility

• Contract structure
• Precondition: the condition the function relies on for correct operation
• Postcondition: the condition the function establishes after correctly 

running

• (Functional) correctness with respect to the specification
• If the client of a function fulfills the function’s precondition, the function 

will execute to completion and when it terminates, the postcondition will 
be fulfilled

• What does the implementation have to fulfill if the client violates the 
precondition?
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Function Specifications
• A function’s contract is a statement of the responsibilities of that 

function, and the responsibilities of the code that calls it.
• Analogy: legal contracts

• If you pay me $30,000
• I will build a new room on your house

• Helps to pinpoint responsibility

• Contract structure
• Precondition: the condition the function relies on for correct operation
• Postcondition: the condition the function establishes after correctly 

running

• (Functional) correctness with respect to the specification
• If the client of a function fulfills the function’s precondition, the function 

will execute to completion and when it terminates, the postcondition will 
be fulfilled

• What does the implementation have to fulfill if the client violates the 
precondition?
• A: Nothing.  It can do anything at all.
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Quick Quiz
Assume the specification for sum given in the lecture slides:

requires array != null && len >= 0 && array.length == len
ensures \result == (\sum int j;  0 <= j && j < len;  array[j])

Assume the following input and outputs for sum, where a 3 element array is 
written as [1, 2, 3].  For which of the inputs and outputs is the call and 
implementation of sum correct according to the specification given?

• Input: array = [1, 2, 3, 4], len = 4
Output: 10

• Input: array = [0, 0, 3, -7], len = 4
Output: none (the program does not terminate)

• Input: array = [1, 2, 3, 4], len = 3
Output: 7

• Input: array = [1, 2, -3, 4], len = 4
Output: 7
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Assume the specification for sum given in the lecture slides:

requires array != null && len >= 0 && array.length == len
ensures \result == (\sum int j;  0 <= j && j < len;  array[j])

Assume the following input and outputs for sum, where a 3 element array is 
written as [1, 2, 3].  For which of the inputs and outputs is the call and 
implementation of sum correct according to the specification given?

• Input: array = [1, 2, 3, 4], len = 4
Output: 10

• Input: array = [0, 0, 3, -7], len = 4
Output: none (the program does not terminate)

• Input: array = [1, 2, 3, 4], len = 3
Output: 7

• Input: array = [1, 2, -3, 4], len = 4
Output: 7
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Implementation incorrect,
output should be 4

The call is incorrect
(len should be 4)

Implementation incorrect,
it should terminate

Call and implementation correct
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Erroneous Behavior Specifications
• A function can do anything at all if precondition is violated, BUT…

• we may want the system to function even if one part fails
• we may want to easily identify our mistakes

• Exceptional case specifications
• Precondition: condition describing the input that leads to an error
• Postcondition: condition established by the function under that erroneous input

• Example (BitSet.toArray() in JML)
/*@ public normal_behavior

@   requires a!= null;
@   requires (\forall Object o; containsObject(o);
@                                \typeof(o) <: \elemtype(\typeof(a)));
@ also
@ public exceptional_behavior
@   requires a == null;
@   signals_only NullPointerException ;
@ also
@ public exceptional_behavior
@   requires a != null;
@   requires !(\forall Object o; containsObject(o);
@                                \typeof(o) <: \elemtype(\typeof(a)));
@   signals_only ArrayStoreException ;
@*/

Object[] toArray(Object[] a) throws NullPointerException, ArrayStoreException;
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Example Java I/O Library Specification 
(abridged)
public int read(byte[] b, int off, int len) throws IOException

• Reads up to len bytes of data from the input stream into an array of bytes. An attempt is 
made to read as many as len bytes, but a smaller number may be read. The number of 
bytes actually read is returned as an integer. This method blocks until input data is 
available, end of file is detected, or an exception is thrown.

• If len is zero, then no bytes are read and 0 is returned; otherwise, there is an attempt to 
read at least one byte. If no byte is available because the stream is at end of file, the 
value -1 is returned; otherwise, at least one byte is read and stored into b.

• The first byte read is stored into element b[off], the next one into b[off+1], and so on. 
The number of bytes read is, at most, equal to len. Let k be the number of bytes actually 
read; these bytes will be stored in elements b[off] throughb[off+k-1], leaving 
elements b[off+k] through b[off+len-1] unaffected.

• In every case, elements b[0] through b[off] and elements b[off+len] through b[b.length-
1] are unaffected.

• Throws:
• IOException - If the first byte cannot be read for any reason other than end of file, or if 

the input stream has been closed, or if some other I/O error occurs.
• NullPointerException - If b is null.
• IndexOutOfBoundsException - If off is negative, len is negative, or len is greater 

than b.length - off
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Example Java I/O Library Specification 
(abridged)
public int read(byte[] b, int off, int len) throws IOException

• Reads up to len bytes of data from the input stream into an array of bytes. An attempt is 
made to read as many as len bytes, but a smaller number may be read. The number of 
bytes actually read is returned as an integer. This method blocks until input data is 
available, end of file is detected, or an exception is thrown.

• If len is zero, then no bytes are read and 0 is returned; otherwise, there is an attempt to 
read at least one byte. If no byte is available because the stream is at end of file, the 
value -1 is returned; otherwise, at least one byte is read and stored into b.

• The first byte read is stored into element b[off], the next one into b[off+1], and so on. 
The number of bytes read is, at most, equal to len. Let k be the number of bytes actually 
read; these bytes will be stored in elements b[off] throughb[off+k-1], leaving 
elements b[off+k] through b[off+len-1] unaffected.

• In every case, elements b[0] through b[off] and elements b[off+len] through b[b.length-
1] are unaffected.

• Throws:
• IOException - If the first byte cannot be read for any reason other than end of file, or if 

the input stream has been closed, or if some other I/O error occurs.
• NullPointerException - If b is null.
• IndexOutOfBoundsException - If off is negative, len is negative, or len is greater 

than b.length - off

• Multiple error cases, each with a 
precondition
• Includes “runtime exceptions”
not in throws clause

• Specification of return
• Timing behavior (blocks)
• Case-by-case spec

• len=0 � return 0
• len>0 && eof � return -1
• len>0 && !eof �return >0

• Exactly where the data is stored
• What parts of the array are not 
affected
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Quality Attribute Specifications: Discussion

• How would you specify…
• Availability?

• Modifiability?

• Performance?

• Security?

• Usability?
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Testing and Proofs
• Testing

• Observable properties
• Verify program for one 

execution
• Manual development 

with automated 
regression

• Most practical approach 
now

• Proofs
• Any program property
• Verify program for all 

executions
• Manual development with 

automated proof checkers
• Practical for small 

programs, may scale up in 
the future

• So why study proofs if they aren’t (yet) practical?
• Proofs tell us how to think about program correctness

• Important for development, inspection, dynamic assertions
• Foundation for static analysis tools

• These are just simple, automated theorem provers
• Many are practical today!
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/*@ requires
@
@ ensures
@
@*/

float sum(int array[], int len) {
float sum = 0.0;
int i = 0;
while (i < len) {

sum = sum + array[i];
i = i + 1;

}
return sum;

}

/*@ requires len >= 0 && array.length == len
@
@ ensures \result ==
@               (\sum int j;  0 <= j && j < len;  array[j])
@*/

float sum(int array[], int len) {
float sum = 0.0;
int i = 0;
while (i < len) {

sum = sum + array[i];
i = i + 1;

}
return sum;

}

How would you argue that this program 
is correct?

Notation from the Java Modeling Language (JML)
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Hoare Triples

• Formal reasoning about program correctness 
using pre- and postconditions

• Syntax: {P} S {Q}
• P and Q are predicates
• S is a program

• Semantics
• If we start in a state where P is true and execute S, 

then S will terminate in a state where Q is true
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Hoare Triple Examples

• { true } x := 5 { }
• { } x := x + 3 { x = y + 3 }
• { } x := x * 2 + 3 { x > 1 }
• { x=a } if (x < 0) then x := -x { }
• { false } x := 3 { }
• { x < 0 } while (x!=0) x := x-1 { }



Specification and 
Correctness

18Principles of Software Construction        
© 2012 Jonathan Aldrich

Hoare Triple Examples

• { true } x := 5 { }
• { } x := x + 3 { x = y + 3 }
• { } x := x * 2 + 3 { x > 1 }
• { x=a } if (x < 0) then x := -x { }
• { false } x := 3 { }
• { x < 0 } while (x!=0) x := x-1 { }

• { true } x := 5 { x=5 }
• { x = y } x := x + 3 { x = y + 3 }
• { x > -1 } x := x * 2 + 3 { x > 1 }
• { x=a } if (x < 0) then x := -x { x=|a| }
• { false } x := 3 { x = 8 }

• no such triple!
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Strongest Postconditions

• Here are a number of valid Hoare Triples:
• {x = 5} x := x * 2 { true }
• {x = 5} x := x * 2 { x > 0 }
• {x = 5} x := x * 2 { x = 10 || x = 5 }
• {x = 5} x := x * 2 { x = 10 }
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Strongest Postconditions

• Here are a number of valid Hoare Triples:
• {x = 5} x := x * 2 { true }
• {x = 5} x := x * 2 { x > 0 }
• {x = 5} x := x * 2 { x = 10 || x = 5 }
• {x = 5} x := x * 2 { x = 10 }

• All are true, but this one is the most useful
• x=10 is the strongest postcondition

• If {P} S {Q} and for all Q’ such that {P} S {Q’}, 
Q ⇒ Q’, then Q is the strongest postcondition 
of S with respect to P
• check: x = 10 ⇒ true
• check: x = 10 ⇒ x > 0
• check: x = 10 ⇒ x = 10 || x = 5
• check: x = 10 ⇒ x = 10
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Assertion Strength
• A model is an assignment of variables to values

• E.g. [x = 5]

• A logical assertion is a formula over variables that is 
true or false depending on a model
• x > 0 is true in the model [x=5]
• x > 0 is false in the model [x=0]

• An assertion A is stronger than B
if B is true in all models where A holds
• Equivalently, A is stronger than B if A implies B
• Example: x > 1 is stronger than x > 0

• What is a model where x > 0 is true but x > 1 is false?
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Assertion Strength
• A model is an assignment of variables to values

• E.g. [x = 5]

• A logical assertion is a formula over variables that is 
true or false depending on a model
• x > 0 is true in the model [x=5]
• x > 0 is false in the model [x=0]

• An assertion A is stronger than B
if B is true in all models where A holds
• Equivalently, A is stronger than B if A implies B
• Example: x > 1 is stronger than x > 0

• What is a model where x > 0 is true but x > 1 is false?
• Answer: [x=1]
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Hoare Triples, Revisited

• Syntax: {P} S {Q}
• P and Q are predicates
• S is a program

• Semantics
• If we start in a state where P is true and execute S, 

then S will terminate in a state where Q is true

• Note “state” just means a model in the sense 
above
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Weakest Preconditions

• Here are a number of valid Hoare Triples:
• {x = 5 && y = 10} z := x / y { z < 1 }
• {x < y && y > 0} z := x / y { z < 1 }
• {y ≠ 0 && x / y < 1} z := x / y { z < 1 }
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Weakest Preconditions

• Here are a number of valid Hoare Triples:
• {x = 5 && y = 10} z := x / y { z < 1 }
• {x < y && y > 0} z := x / y { z < 1 }
• {y ≠ 0 && x / y < 1} z := x / y { z < 1 }

• All are true, but this one is the most useful because it 
allows us to invoke the program in the most general 
condition

• y ≠ 0 && x / y < 1 is the weakest precondition

• If {P} S {Q} and for all P’ such that {P’} S {Q}, 
P’ ⇒ P, then P is the weakest precondition 
wp(S,Q) of S with respect to Q
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Hoare Triples and Weakest 
Preconditions

• {P} S {Q} holds if and only if P ⇒ wp(S,Q)
• In other words, a Hoare Triple is still valid if the 

precondition is stronger than necessary, but not if it 
is too weak

• Question: Could we state a similar theorem for 
a strongest postcondition function?
• e.g. {P} S {Q} holds if and only if sp(S,P) ⇒ Q
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Hoare Triples and Weakest 
Preconditions

• {P} S {Q} holds if and only if P ⇒ wp(S,Q)
• In other words, a Hoare Triple is still valid if the 

precondition is stronger than necessary, but not if it 
is too weak

• Question: Could we state a similar theorem for 
a strongest postcondition function?
• e.g. {P} S {Q} holds if and only if sp(S,P) ⇒ Q
• A: Yes, but it’s harder to compute
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Quick Quiz
Consider the following Hoare triples:

A) { z = y + 1 } x := z * 2 { x = 4 }
B) { y = 7 } x := y + 3 { x > 5 }
C) { false } x := 2 / y { true }
D) { y < 16 } x := 2 / y { x < 8 }

• Which of the Hoare triples above are invalid?  What model 
witnesses the invalidity?

• Considering the valid Hoare triples, for which ones can you write 
a stronger postcondition?  (Leave the precondition unchanged, 
and ensure the resulting triple is still valid)

• Considering the valid Hoare triples, for which ones can you write 
a weaker precondition?  (Leave the postcondition unchanged, 
and ensure the resulting triple is still valid)
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Quick Quiz
Consider the following Hoare triples:

A) { z = y + 1 } x := z * 2 { x = 4 }

Invalid.  A witness is [z=1, y=0]

B) { y = 7 } x := y + 3 { x > 5 }

Valid.  A weaker precondition is { y > 2 }.
A stronger postcondition is { x == 10 }

C) { false } x := 2 / y { true }

Valid (any Hoare triple with a false precondition is valid)
A weaker precondition is { y != 0 }
We can choose any postcondition; the strongest is { false }

D) { y < 16 } x := 2 / y { x < 8 }

Invalid.  A witness is [y=0]
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Hoare Logic Rules

• Assignment
• { P } x := 3 { x+y > 0 }
• What is the weakest precondition P?
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Hoare Logic Rules

• Assignment
• { P } x := 3 { x+y > 0 }
• What is the weakest precondition P?

• What is most general value of y
such that 3 + y > 0?

• y > -3
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Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }
• What is the weakest precondition P?
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Hoare Logic Rules

• Assignment
• { P } x := 3 { x+y > 0 }
• What is the weakest precondition P?

• Assignment rule
• wp(x := E, P) = [E/x] P

• Resulting triple: { [E/x] P } x := E { P }
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Hoare Logic Rules

• Assignment
• { P } x := 3 { x+y > 0 }
• What is the weakest precondition P?

• Assignment rule
• wp(x := E, P) = [E/x] P

• Resulting triple: { [E/x] P } x := E { P }
• [3 / x] (x + y > 0)
• = (3) + y > 0
• = y > -3
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Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }
• What is the weakest precondition P?

• Assignment rule
• wp(x := E, P) = [E/x] P
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Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }
• What is the weakest precondition P?

• Assignment rule
• wp(x := E, P) = [E/x] P
• [3*y+z / x] (x * y – z > 0)
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Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }
• What is the weakest precondition P?

• Assignment rule
• wp(x := E, P) = [E/x] P
• [3*y+z / x] (x * y – z > 0)
• = (3*y+z) * y - z > 0
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Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }
• What is the weakest precondition P?

• Assignment rule
• wp(x := E, P) = [E/x] P
• [3*y+z / x] (x * y – z > 0)
• = (3*y+z) * y - z > 0
• = 3*y2 + z*y - z > 0
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Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }
• What is the weakest precondition P?
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Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }
• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))
• wp(x:=x+1; y:=x+y, y>5)
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Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }
• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))
• wp(x:=x+1; y:=x+y, y>5)
• = wp(x:=x+1, wp(y:=x+y, y>5))



Specification and 
Correctness

42Principles of Software Construction        
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }
• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))
• wp(x:=x+1; y:=x+y, y>5)
• = wp(x:=x+1, wp(y:=x+y, y>5))
• = wp(x:=x+1, x+y>5)
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Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }
• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))
• wp(x:=x+1; y:=x+y, y>5)
• = wp(x:=x+1, wp(y:=x+y, y>5))
• = wp(x:=x+1, x+y>5)
• = x+1+y>5
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Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }
• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))
• wp(x:=x+1; y:=x+y, y>5)
• = wp(x:=x+1, wp(y:=x+y, y>5))
• = wp(x:=x+1, x+y>5)
• = x+1+y>5
• = x+y>4
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Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }
• What is the weakest precondition P?
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Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }
• What is the weakest precondition P?

• Conditional rule
• wp(if B then S else T, Q)

= B ⇒ wp(S,Q) && ¬B ⇒ wp(T,Q)
• wp(if x>0 then y:=z else y:=-z, y>5)
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Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }
• What is the weakest precondition P?

• Conditional rule
• wp(if B then S else T, Q)

= B ⇒ wp(S,Q) && ¬B ⇒ wp(T,Q)
• wp(if x>0 then y:=z else y:=-z, y>5)
• = x>0 ⇒ wp(y:=z,y>5) && x≤0 ⇒ wp(y:=-z,y>5)
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Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }
• What is the weakest precondition P?

• Conditional rule
• wp(if B then S else T, Q)

= B ⇒ wp(S,Q) && ¬B ⇒ wp(T,Q)
• wp(if x>0 then y:=z else y:=-z, y>5)
• = x>0 ⇒ wp(y:=z,y>5) && x≤0 ⇒ wp(y:=-z,y>5)
• = x>0 ⇒ z > 5 && x≤0 ⇒ -z > 5
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Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }
• What is the weakest precondition P?

• Conditional rule
• wp(if B then S else T, Q)

= B ⇒ wp(S,Q) && ¬B ⇒ wp(T,Q)
• wp(if x>0 then y:=z else y:=-z, y>5)
• = x>0 ⇒ wp(y:=z,y>5) && x≤0 ⇒ wp(y:=-z,y>5)
• = x>0 ⇒ z > 5 && x≤0 ⇒ -z > 5
• = x>0 ⇒ z > 5 && x≤0 ⇒ z < -5
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Reference: Hoare Logic Rules

• Assignment rule
• wp(x := E, P) = [E/x] P

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))

• Conditional rule
• wp(if B then S else T, Q)

= B ⇒ wp(S,Q) && ¬B ⇒ wp(T,Q)
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Quick Quiz

Compute the weakest precondition in each case.

(A) {                     } x = y * 2; { x == y * 2 }

(B) {                     } x = x + 3; { x == z }

(C) {                     } x = x + 1; y = y * x; { y == 2 * z }

(D) {                     } x = 0; { x == 1 }

(E) {                     } x = 0; { true }

(F) {                     } if (x > 0) then { y = x; } else { y = 0; } { y > 0 }
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Quick Quiz

Compute the weakest precondition in each case.

(A) {  true } x = y * 2; { x == y * 2 }

(B) {  x + 3 = z } x = x + 3; { x == z }

(C) { y * (x + 1) == 2 * z } x = x + 1; y = y * x; { y == 2 * z }

(D) {  false } x = 0; { x == 1 }

(E) {  true } x = 0; { true }

(F) {  x > 0 } if (x > 0) then { y = x; } else { y = 0; } { y > 0 }


