
Jonathan Aldrich

Specification and
Correctness

Principles of Software Construction
© 2012 Jonathan Aldrich

2

Principles of Software Construction:
Objects, Design, and Concurrency

Specification and Correctness

Specification and
Correctness

Specifications
• Contains

• Functional behavior
• Erroneous behavior
• Quality attributes

• Desirable attributes
• Complete

• Does not leave out any desired behavior
• Minimal

• Does not require anything that the user does not care about
• Unambiguous

• Fully specifies what the system should do in every case the user
cares about

• Consistent
• Does not have internal contradictions

• Testable
• Feasible to objectively evaluate

• Correct
• Represents what the end-user(s) need

Principles of Software Construction
© 2012 Jonathan Aldrich

4

Function Specifications
• A function’s contract is a statement of the responsibilities of that

function, and the responsibilities of the code that calls it.
• Analogy: legal contracts

• If you pay me $30,000
• I will build a new room on your house

• Helps to pinpoint responsibility

• Contract structure
• Precondition: the condition the function relies on for correct operation
• Postcondition: the condition the function establishes after correctly

running

• Example: how would you specify the following:

public float sum(int array[], int len) {… }

Specification and
Correctness

Principles of Software Construction
© 2012 Jonathan Aldrich

Specification and
Correctness

Function Specifications
• A function’s contract is a statement of the responsibilities of that

function, and the responsibilities of the code that calls it.
• Analogy: legal contracts

• If you pay me $30,000
• I will build a new room on your house

• Helps to pinpoint responsibility

• Contract structure
• Precondition: the condition the function relies on for correct operation
• Postcondition: the condition the function establishes after correctly

running

• Example: how would you specify the following:

/*@ requires array != null && len >= 0 && array.length == len
@
@ ensures \result == (\sum int j; 0<=j && j<array.length; array[j])
@*/

public float sum(int array[], int len) {… }

Principles of Software Construction
© 2012 Jonathan Aldrich

Specification and
Correctness

Function Specifications
• A function’s contract is a statement of the responsibilities of that

function, and the responsibilities of the code that calls it.
• Analogy: legal contracts

• If you pay me $30,000
• I will build a new room on your house

• Helps to pinpoint responsibility

• Contract structure
• Precondition: the condition the function relies on for correct operation
• Postcondition: the condition the function establishes after correctly

running

• (Functional) correctness with respect to the specification
• If the client of a function fulfills the function’s precondition, the function

will execute to completion and when it terminates, the postcondition will
be fulfilled

• What does the implementation have to fulfill if the client violates the
precondition?

Principles of Software Construction
© 2012 Jonathan Aldrich

Specification and
Correctness

Function Specifications
• A function’s contract is a statement of the responsibilities of that

function, and the responsibilities of the code that calls it.
• Analogy: legal contracts

• If you pay me $30,000
• I will build a new room on your house

• Helps to pinpoint responsibility

• Contract structure
• Precondition: the condition the function relies on for correct operation
• Postcondition: the condition the function establishes after correctly

running

• (Functional) correctness with respect to the specification
• If the client of a function fulfills the function’s precondition, the function

will execute to completion and when it terminates, the postcondition will
be fulfilled

• What does the implementation have to fulfill if the client violates the
precondition?
• A: Nothing. It can do anything at all.

Principles of Software Construction
© 2012 Jonathan Aldrich

Specification and
Correctness

Quick Quiz
Assume the specification for sum given in the lecture slides:

requires array != null && len >= 0 && array.length == len
ensures \result == (\sum int j; 0 <= j && j < len; array[j])

Assume the following input and outputs for sum, where a 3 element array is
written as [1, 2, 3]. For which of the inputs and outputs is the call and
implementation of sum correct according to the specification given?

• Input: array = [1, 2, 3, 4], len = 4
Output: 10

• Input: array = [0, 0, 3, -7], len = 4
Output: none (the program does not terminate)

• Input: array = [1, 2, 3, 4], len = 3
Output: 7

• Input: array = [1, 2, -3, 4], len = 4
Output: 7

Principles of Software Construction
© 2012 Jonathan Aldrich

Specification and
Correctness

Quick Quiz
Assume the specification for sum given in the lecture slides:

requires array != null && len >= 0 && array.length == len
ensures \result == (\sum int j; 0 <= j && j < len; array[j])

Assume the following input and outputs for sum, where a 3 element array is
written as [1, 2, 3]. For which of the inputs and outputs is the call and
implementation of sum correct according to the specification given?

• Input: array = [1, 2, 3, 4], len = 4
Output: 10

• Input: array = [0, 0, 3, -7], len = 4
Output: none (the program does not terminate)

• Input: array = [1, 2, 3, 4], len = 3
Output: 7

• Input: array = [1, 2, -3, 4], len = 4
Output: 7

Principles of Software Construction
© 2012 Jonathan Aldrich

Implementation incorrect,
output should be 4

The call is incorrect
(len should be 4)

Implementation incorrect,
it should terminate

Call and implementation correct

Specification and
Correctness

Erroneous Behavior Specifications
• A function can do anything at all if precondition is violated, BUT…

• we may want the system to function even if one part fails
• we may want to easily identify our mistakes

• Exceptional case specifications
• Precondition: condition describing the input that leads to an error
• Postcondition: condition established by the function under that erroneous input

• Example (BitSet.toArray() in JML)
/*@ public normal_behavior

@ requires a!= null;
@ requires (\forall Object o; containsObject(o);
@ \typeof(o) <: \elemtype(\typeof(a)));
@ also
@ public exceptional_behavior
@ requires a == null;
@ signals_only NullPointerException ;
@ also
@ public exceptional_behavior
@ requires a != null;
@ requires !(\forall Object o; containsObject(o);
@ \typeof(o) <: \elemtype(\typeof(a)));
@ signals_only ArrayStoreException ;
@*/

Object[] toArray(Object[] a) throws NullPointerException, ArrayStoreException;

Principles of Software Construction
© 2012 Jonathan Aldrich

Specification and
Correctness

Example Java I/O Library Specification
(abridged)
public int read(byte[] b, int off, int len) throws IOException

• Reads up to len bytes of data from the input stream into an array of bytes. An attempt is
made to read as many as len bytes, but a smaller number may be read. The number of
bytes actually read is returned as an integer. This method blocks until input data is
available, end of file is detected, or an exception is thrown.

• If len is zero, then no bytes are read and 0 is returned; otherwise, there is an attempt to
read at least one byte. If no byte is available because the stream is at end of file, the
value -1 is returned; otherwise, at least one byte is read and stored into b.

• The first byte read is stored into element b[off], the next one into b[off+1], and so on.
The number of bytes read is, at most, equal to len. Let k be the number of bytes actually
read; these bytes will be stored in elements b[off] throughb[off+k-1], leaving
elements b[off+k] through b[off+len-1] unaffected.

• In every case, elements b[0] through b[off] and elements b[off+len] through b[b.length-
1] are unaffected.

• Throws:
• IOException - If the first byte cannot be read for any reason other than end of file, or if

the input stream has been closed, or if some other I/O error occurs.
• NullPointerException - If b is null.
• IndexOutOfBoundsException - If off is negative, len is negative, or len is greater

than b.length - off

Principles of Software Construction
© 2012 Jonathan Aldrich

Specification and
Correctness

Example Java I/O Library Specification
(abridged)
public int read(byte[] b, int off, int len) throws IOException

• Reads up to len bytes of data from the input stream into an array of bytes. An attempt is
made to read as many as len bytes, but a smaller number may be read. The number of
bytes actually read is returned as an integer. This method blocks until input data is
available, end of file is detected, or an exception is thrown.

• If len is zero, then no bytes are read and 0 is returned; otherwise, there is an attempt to
read at least one byte. If no byte is available because the stream is at end of file, the
value -1 is returned; otherwise, at least one byte is read and stored into b.

• The first byte read is stored into element b[off], the next one into b[off+1], and so on.
The number of bytes read is, at most, equal to len. Let k be the number of bytes actually
read; these bytes will be stored in elements b[off] throughb[off+k-1], leaving
elements b[off+k] through b[off+len-1] unaffected.

• In every case, elements b[0] through b[off] and elements b[off+len] through b[b.length-
1] are unaffected.

• Throws:
• IOException - If the first byte cannot be read for any reason other than end of file, or if

the input stream has been closed, or if some other I/O error occurs.
• NullPointerException - If b is null.
• IndexOutOfBoundsException - If off is negative, len is negative, or len is greater

than b.length - off

• Multiple error cases, each with a
precondition
• Includes “runtime exceptions”
not in throws clause

• Specification of return
• Timing behavior (blocks)
• Case-by-case spec

• len=0 � return 0
• len>0 && eof � return -1
• len>0 && !eof �return >0

• Exactly where the data is stored
• What parts of the array are not
affected

Principles of Software Construction
© 2012 Jonathan Aldrich

Specification and
Correctness

Quality Attribute Specifications: Discussion

• How would you specify…
• Availability?

• Modifiability?

• Performance?

• Security?

• Usability?

Principles of Software Construction
© 2012 Jonathan Aldrich

Specification and
Correctness

14Principles of Software Construction
© 2012 Jonathan Aldrich

Testing and Proofs
• Testing

• Observable properties
• Verify program for one

execution
• Manual development

with automated
regression

• Most practical approach
now

• Proofs
• Any program property
• Verify program for all

executions
• Manual development with

automated proof checkers
• Practical for small

programs, may scale up in
the future

• So why study proofs if they aren’t (yet) practical?
• Proofs tell us how to think about program correctness

• Important for development, inspection, dynamic assertions
• Foundation for static analysis tools

• These are just simple, automated theorem provers
• Many are practical today!

Specification and
Correctness

15Principles of Software Construction
© 2012 Jonathan Aldrich

/*@ requires
@
@ ensures
@
@*/

float sum(int array[], int len) {
float sum = 0.0;
int i = 0;
while (i < len) {

sum = sum + array[i];
i = i + 1;

}
return sum;

}

/*@ requires len >= 0 && array.length == len
@
@ ensures \result ==
@ (\sum int j; 0 <= j && j < len; array[j])
@*/

float sum(int array[], int len) {
float sum = 0.0;
int i = 0;
while (i < len) {

sum = sum + array[i];
i = i + 1;

}
return sum;

}

How would you argue that this program
is correct?

Notation from the Java Modeling Language (JML)

Specification and
Correctness

16Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Triples

• Formal reasoning about program correctness
using pre- and postconditions

• Syntax: {P} S {Q}
• P and Q are predicates
• S is a program

• Semantics
• If we start in a state where P is true and execute S,

then S will terminate in a state where Q is true

Specification and
Correctness

17Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Triple Examples

• { true } x := 5 { }
• { } x := x + 3 { x = y + 3 }
• { } x := x * 2 + 3 { x > 1 }
• { x=a } if (x < 0) then x := -x { }
• { false } x := 3 { }
• { x < 0 } while (x!=0) x := x-1 { }

Specification and
Correctness

18Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Triple Examples

• { true } x := 5 { }
• { } x := x + 3 { x = y + 3 }
• { } x := x * 2 + 3 { x > 1 }
• { x=a } if (x < 0) then x := -x { }
• { false } x := 3 { }
• { x < 0 } while (x!=0) x := x-1 { }

• { true } x := 5 { x=5 }
• { x = y } x := x + 3 { x = y + 3 }
• { x > -1 } x := x * 2 + 3 { x > 1 }
• { x=a } if (x < 0) then x := -x { x=|a| }
• { false } x := 3 { x = 8 }

• no such triple!

Specification and
Correctness

19Principles of Software Construction
© 2012 Jonathan Aldrich

Strongest Postconditions

• Here are a number of valid Hoare Triples:
• {x = 5} x := x * 2 { true }
• {x = 5} x := x * 2 { x > 0 }
• {x = 5} x := x * 2 { x = 10 || x = 5 }
• {x = 5} x := x * 2 { x = 10 }

Specification and
Correctness

20Principles of Software Construction
© 2012 Jonathan Aldrich

Strongest Postconditions

• Here are a number of valid Hoare Triples:
• {x = 5} x := x * 2 { true }
• {x = 5} x := x * 2 { x > 0 }
• {x = 5} x := x * 2 { x = 10 || x = 5 }
• {x = 5} x := x * 2 { x = 10 }

• All are true, but this one is the most useful
• x=10 is the strongest postcondition

• If {P} S {Q} and for all Q’ such that {P} S {Q’},
Q ⇒ Q’, then Q is the strongest postcondition
of S with respect to P
• check: x = 10 ⇒ true
• check: x = 10 ⇒ x > 0
• check: x = 10 ⇒ x = 10 || x = 5
• check: x = 10 ⇒ x = 10

Specification and
Correctness

21Principles of Software Construction
© 2012 Jonathan Aldrich

Assertion Strength
• A model is an assignment of variables to values

• E.g. [x = 5]

• A logical assertion is a formula over variables that is
true or false depending on a model
• x > 0 is true in the model [x=5]
• x > 0 is false in the model [x=0]

• An assertion A is stronger than B
if B is true in all models where A holds
• Equivalently, A is stronger than B if A implies B
• Example: x > 1 is stronger than x > 0

• What is a model where x > 0 is true but x > 1 is false?

Specification and
Correctness

22Principles of Software Construction
© 2012 Jonathan Aldrich

Assertion Strength
• A model is an assignment of variables to values

• E.g. [x = 5]

• A logical assertion is a formula over variables that is
true or false depending on a model
• x > 0 is true in the model [x=5]
• x > 0 is false in the model [x=0]

• An assertion A is stronger than B
if B is true in all models where A holds
• Equivalently, A is stronger than B if A implies B
• Example: x > 1 is stronger than x > 0

• What is a model where x > 0 is true but x > 1 is false?
• Answer: [x=1]

Specification and
Correctness

23Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Triples, Revisited

• Syntax: {P} S {Q}
• P and Q are predicates
• S is a program

• Semantics
• If we start in a state where P is true and execute S,

then S will terminate in a state where Q is true

• Note “state” just means a model in the sense
above

Specification and
Correctness

24Principles of Software Construction
© 2012 Jonathan Aldrich

Weakest Preconditions

• Here are a number of valid Hoare Triples:
• {x = 5 && y = 10} z := x / y { z < 1 }
• {x < y && y > 0} z := x / y { z < 1 }
• {y ≠ 0 && x / y < 1} z := x / y { z < 1 }

Specification and
Correctness

25Principles of Software Construction
© 2012 Jonathan Aldrich

Weakest Preconditions

• Here are a number of valid Hoare Triples:
• {x = 5 && y = 10} z := x / y { z < 1 }
• {x < y && y > 0} z := x / y { z < 1 }
• {y ≠ 0 && x / y < 1} z := x / y { z < 1 }

• All are true, but this one is the most useful because it
allows us to invoke the program in the most general
condition

• y ≠ 0 && x / y < 1 is the weakest precondition

• If {P} S {Q} and for all P’ such that {P’} S {Q},
P’ ⇒ P, then P is the weakest precondition
wp(S,Q) of S with respect to Q

Specification and
Correctness

26Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Triples and Weakest
Preconditions

• {P} S {Q} holds if and only if P ⇒ wp(S,Q)
• In other words, a Hoare Triple is still valid if the

precondition is stronger than necessary, but not if it
is too weak

• Question: Could we state a similar theorem for
a strongest postcondition function?
• e.g. {P} S {Q} holds if and only if sp(S,P) ⇒ Q

Specification and
Correctness

27Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Triples and Weakest
Preconditions

• {P} S {Q} holds if and only if P ⇒ wp(S,Q)
• In other words, a Hoare Triple is still valid if the

precondition is stronger than necessary, but not if it
is too weak

• Question: Could we state a similar theorem for
a strongest postcondition function?
• e.g. {P} S {Q} holds if and only if sp(S,P) ⇒ Q
• A: Yes, but it’s harder to compute

Specification and
Correctness

28Principles of Software Construction
© 2012 Jonathan Aldrich

Quick Quiz
Consider the following Hoare triples:

A) { z = y + 1 } x := z * 2 { x = 4 }
B) { y = 7 } x := y + 3 { x > 5 }
C) { false } x := 2 / y { true }
D) { y < 16 } x := 2 / y { x < 8 }

• Which of the Hoare triples above are invalid? What model
witnesses the invalidity?

• Considering the valid Hoare triples, for which ones can you write
a stronger postcondition? (Leave the precondition unchanged,
and ensure the resulting triple is still valid)

• Considering the valid Hoare triples, for which ones can you write
a weaker precondition? (Leave the postcondition unchanged,
and ensure the resulting triple is still valid)

Specification and
Correctness

29Principles of Software Construction
© 2012 Jonathan Aldrich

Quick Quiz
Consider the following Hoare triples:

A) { z = y + 1 } x := z * 2 { x = 4 }

Invalid. A witness is [z=1, y=0]

B) { y = 7 } x := y + 3 { x > 5 }

Valid. A weaker precondition is { y > 2 }.
A stronger postcondition is { x == 10 }

C) { false } x := 2 / y { true }

Valid (any Hoare triple with a false precondition is valid)
A weaker precondition is { y != 0 }
We can choose any postcondition; the strongest is { false }

D) { y < 16 } x := 2 / y { x < 8 }

Invalid. A witness is [y=0]

Specification and
Correctness

30Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Assignment
• { P } x := 3 { x+y > 0 }
• What is the weakest precondition P?

Specification and
Correctness

31Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Assignment
• { P } x := 3 { x+y > 0 }
• What is the weakest precondition P?

• What is most general value of y
such that 3 + y > 0?

• y > -3

Specification and
Correctness

32Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }
• What is the weakest precondition P?

Specification and
Correctness

33Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Assignment
• { P } x := 3 { x+y > 0 }
• What is the weakest precondition P?

• Assignment rule
• wp(x := E, P) = [E/x] P

• Resulting triple: { [E/x] P } x := E { P }

Specification and
Correctness

34Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Assignment
• { P } x := 3 { x+y > 0 }
• What is the weakest precondition P?

• Assignment rule
• wp(x := E, P) = [E/x] P

• Resulting triple: { [E/x] P } x := E { P }
• [3 / x] (x + y > 0)
• = (3) + y > 0
• = y > -3

Specification and
Correctness

35Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }
• What is the weakest precondition P?

• Assignment rule
• wp(x := E, P) = [E/x] P

Specification and
Correctness

36Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }
• What is the weakest precondition P?

• Assignment rule
• wp(x := E, P) = [E/x] P
• [3*y+z / x] (x * y – z > 0)

Specification and
Correctness

37Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }
• What is the weakest precondition P?

• Assignment rule
• wp(x := E, P) = [E/x] P
• [3*y+z / x] (x * y – z > 0)
• = (3*y+z) * y - z > 0

Specification and
Correctness

38Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }
• What is the weakest precondition P?

• Assignment rule
• wp(x := E, P) = [E/x] P
• [3*y+z / x] (x * y – z > 0)
• = (3*y+z) * y - z > 0
• = 3*y2 + z*y - z > 0

Specification and
Correctness

39Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }
• What is the weakest precondition P?

Specification and
Correctness

40Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }
• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))
• wp(x:=x+1; y:=x+y, y>5)

Specification and
Correctness

41Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }
• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))
• wp(x:=x+1; y:=x+y, y>5)
• = wp(x:=x+1, wp(y:=x+y, y>5))

Specification and
Correctness

42Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }
• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))
• wp(x:=x+1; y:=x+y, y>5)
• = wp(x:=x+1, wp(y:=x+y, y>5))
• = wp(x:=x+1, x+y>5)

Specification and
Correctness

43Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }
• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))
• wp(x:=x+1; y:=x+y, y>5)
• = wp(x:=x+1, wp(y:=x+y, y>5))
• = wp(x:=x+1, x+y>5)
• = x+1+y>5

Specification and
Correctness

44Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }
• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))
• wp(x:=x+1; y:=x+y, y>5)
• = wp(x:=x+1, wp(y:=x+y, y>5))
• = wp(x:=x+1, x+y>5)
• = x+1+y>5
• = x+y>4

Specification and
Correctness

45Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }
• What is the weakest precondition P?

Specification and
Correctness

46Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }
• What is the weakest precondition P?

• Conditional rule
• wp(if B then S else T, Q)

= B ⇒ wp(S,Q) && ¬B ⇒ wp(T,Q)
• wp(if x>0 then y:=z else y:=-z, y>5)

Specification and
Correctness

47Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }
• What is the weakest precondition P?

• Conditional rule
• wp(if B then S else T, Q)

= B ⇒ wp(S,Q) && ¬B ⇒ wp(T,Q)
• wp(if x>0 then y:=z else y:=-z, y>5)
• = x>0 ⇒ wp(y:=z,y>5) && x≤0 ⇒ wp(y:=-z,y>5)

Specification and
Correctness

48Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }
• What is the weakest precondition P?

• Conditional rule
• wp(if B then S else T, Q)

= B ⇒ wp(S,Q) && ¬B ⇒ wp(T,Q)
• wp(if x>0 then y:=z else y:=-z, y>5)
• = x>0 ⇒ wp(y:=z,y>5) && x≤0 ⇒ wp(y:=-z,y>5)
• = x>0 ⇒ z > 5 && x≤0 ⇒ -z > 5

Specification and
Correctness

49Principles of Software Construction
© 2012 Jonathan Aldrich

Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }
• What is the weakest precondition P?

• Conditional rule
• wp(if B then S else T, Q)

= B ⇒ wp(S,Q) && ¬B ⇒ wp(T,Q)
• wp(if x>0 then y:=z else y:=-z, y>5)
• = x>0 ⇒ wp(y:=z,y>5) && x≤0 ⇒ wp(y:=-z,y>5)
• = x>0 ⇒ z > 5 && x≤0 ⇒ -z > 5
• = x>0 ⇒ z > 5 && x≤0 ⇒ z < -5

Specification and
Correctness

50Principles of Software Construction
© 2012 Jonathan Aldrich

Reference: Hoare Logic Rules

• Assignment rule
• wp(x := E, P) = [E/x] P

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))

• Conditional rule
• wp(if B then S else T, Q)

= B ⇒ wp(S,Q) && ¬B ⇒ wp(T,Q)

Specification and
Correctness

51Principles of Software Construction
© 2012 Jonathan Aldrich

Quick Quiz

Compute the weakest precondition in each case.

(A) { } x = y * 2; { x == y * 2 }

(B) { } x = x + 3; { x == z }

(C) { } x = x + 1; y = y * x; { y == 2 * z }

(D) { } x = 0; { x == 1 }

(E) { } x = 0; { true }

(F) { } if (x > 0) then { y = x; } else { y = 0; } { y > 0 }

Specification and
Correctness

52Principles of Software Construction
© 2012 Jonathan Aldrich

Quick Quiz

Compute the weakest precondition in each case.

(A) { true } x = y * 2; { x == y * 2 }

(B) { x + 3 = z } x = x + 3; { x == z }

(C) { y * (x + 1) == 2 * z } x = x + 1; y = y * x; { y == 2 * z }

(D) { false } x = 0; { x == 1 }

(E) { true } x = 0; { true }

(F) { x > 0 } if (x > 0) then { y = x; } else { y = 0; } { y > 0 }

