
GUIs with Swing

Principles of Software Construction: 

Objects, Design, and Concurrency

Jonathan Aldrich and Charlie Garrod

Fall 2012

Slides copyright 2012 by Jeffrey Eppinger, Jonathan Aldrich, 

William Scherlis.  Used and adapted by permission



What makes GUIs different?

• How do they compare to command-line I/O?

2



What makes GUIs different?

• How do they compare to command-line I/O?

• One major difference: the user is in control

– GUI has to react to the user’s actions

• Not just a response to a prompt

• Could involve entirely different functionality

– Requires structuring the GUI around reacting to events

3



Reacting to events - from framework

• Setup phase

– Describe how the GUI window should look

– Use libraries for windows, widgets, and layout

– Embed specialized code for later use

• Customization (provided during setup)

– New widgets that display themselves in custom ways

– How to react to events

• Execution

– Framework gets events from OS

• Mouse clicks, key presses, window becomes visible, etc.

– Framework triggers application code in response

• The customization described above

4

Framework

OS

Application

get
event

drawing
commands

next
event

event—
mouse, key,
redraw, … 



Pseudocode for GUIs

Application code

• Creates and sets up a window

• Asks framework to show the window

• Takes action in response to event

• May contact GUI

– E.g. consider if event was a redraw

– Call GUI to paint lines, text

GUI framework code

• Starts a GUI thread

• This thread loops:

– Asks OS for event

– Finds application window that event relates to

– Asks application window to handle event

– Draws lines/text on behalf of application

5



Example: RabbitWorld GUI

• …hw2.lib.ui.WorldUI.main()

– Creates a JFrame (i.e. a top-level window)

– Creates a WorldUI to go in it

– Sets some parameters

– Makes the JFrame (and its contents) visible

• …hw2.lib.ui.WorldPanel.paintComponent()

– Called when the OS needs to show the WorldPanel (part of WorldUI)

• Right after the window becomes visible

– super.paintComponent() draws a background

– ImageIcon.paintIcon(…) draws each item in the world

6



Cookbook Programming

• Typical mode of using a framework

– Let’s you follow a recipe for writing your programs

– All cakes are different, but there are a few basic recipes and 

everything else is a slight variation

• Add some cinnamon

• Substitute chocolate chips instead of nuts

• Tends to be most effective way to learn a framework

– Typically infeasible to read the documentation of all operations

– Instead, find a “recipe” similar to what you need to do

– Understand the recipe by reading about the ingredients

• Selective reading of the documentation

– Then you can combine the ingredients in new ways with confidence

7



Cookbook Programming

• You have a template for your program

• You change things around, but you don’t mess with the 

overall structure

• Examples:

public static void main(String[] args) { … }

for (int i=0; i<args.length; i++) { … }

• Many people consider Swing development to be cookbook 

programming 

8



A Little History

In the beginning…

• There was Java.  It was like C++, but simpler and cleaner.

• Then came HotJava, a Java-based browser

– You could run chunks of Java code called Applets

– It was cool � Netscape & then IE added Java support

• But Applets were a pain

– Browsers had out of date JVMs

– Used the AWT (lots of platform-based non-Java code)

– Didn’t have the look and feel of the rest of the platform

– Couldn’t run as a standalone program with a GUI

9



Swing

• A new user interface environment

– Implemented in Java

• More consistent across implementations

– Offers different “look and feel” options

• Windows, Unix, and other (Metal)

– Can be a main method or a Japplet

• Still uses AWT for event handling, fonts, etc.

– BTW – still issues with Swing non-native look and feel, predictable 
performance

– SWT – An alternate Standard Widget Toolkit (from Eclipse) addresses 
this by staying closer to OS windowing support

• but, not standard for Java

10



Simplest Structure

• You make a Window (a JFrame)

• Make a container (a JPanel)

– Put it in the window

• Add your Buttons, Boxes, etc to the container

– Use layouts to control positioning

– Set up listeners to receive events

– Optionally, write custom widgets with application-specific display logic

• Set up the window to display the container

• Then wait for events to arrive…

11



Components

• JLabel

• JButton

• JCheckBox

• JChoice

• JRadioButton

• JTextField

• JTextArea

• JList

• JScrollBar

• … and more

12

Swing has lots of components:



JFrame & JPanel

• JFrame is the Swing Window

• JPanel (aka a pane) is the container to which you add your 

components (or other containers)

13



Layout Managers

• The default Layout Manager is FlowLayout

– Place items in the container from left to right

– When a line is full, FlowLayout goes to the next

14



More Layout Options

• GridLayout

• GridBagLayout

• Explicit Placement

15



Example: RabbitWorld GUI

• …hw2.lib.ui.WorldUI.WorldUI()

– Sets the layout to a BorderLayout

– Adds a WorldPanel in the CENTER of the UI

– Creates a JPanel for the buttons at the bottom

– Adds 2 buttons to the JPanel (WEST and CENTER)

– Puts the button JPanel at the SOUTH side of the WorldPanel

16



Question

• How do you make a button work?

17



Events in Swing

• An event is when something changes

– Button clicked,  scrolling, mouse movement

• Swing (actually AWT) generates an event

• To do something you need to implement a Listener Interface 

and register interest

18



Event Listeners

• ActionListener

• AdjustmentListener

• FocusListener

• ItemListener

• KeyListener

• MouseListener

• TreeExpansionListener

• TextListener

• WindowListener

• …and on and on…

19

Swing has lots of event listener interfaces:



ActionListener

• Events for JButtons, JTextFields, etc

– The things we are using

• Implement ActionListener

– Provide actionPerformed method

• In actionPerformed method

– Use event.getSource() to determine which button was clicked, etc.

20



Example: RabbitWorld GUI

• …hw2.lib.ui.WorldUI.WorldUI()

– Sets ActionListeners for the run and step buttons

• Anonymous inner classes used

• A single method actionPerformed(…) is overridden

• step button: just calls step() on the WorldPanel

– Steps the world

– Requests that the window be refreshed (so the user can see the changes)

• run button

– Starts the world continuously stepping

– Disables the step button (no point!)

– Sets a toggle flag so that pressing the button again will stop the simulation

21



Organizational Tips

• Declare references to components you’ll be manipulating as 

instance variables

• Put the code that performs the actions in private “helper” 

methods.  (Keeps things neat)

22



GUI design issues

• Interfaces vs. inheritance

– Inherit from JPanel with custom drawing functionality

– Implement the ActionListener interface, register with button

– Why this difference?

• Models and views

23



GUI design issues

• Interfaces vs. inheritance

– Inherit from JPanel with custom drawing functionality

• Subclass “is a” special kind of Panel

• The subclass interacts closely with the JPanel – e.g. the subclass calls back 
with super()

• The way  you draw the subclass doesn’t change as the program executes

– Implement the ActionListener interface, register with button

• The action to perform isn’t really a special kind of button; it’s just a way of 
reacting to the button.  So it makes sense to be a separate object.

• The ActionListener is decoupled from the button.  Once the listener is 
invoked, it doesn’t call anything on the Button anymore.

• We may want to change the action performed on a button press—so once 
again it makes sense for it to be a separate object

• Models and views

24



Model-View-Controller (MVC)

http://msdn.microsoft.com/en-us/library/ff649643.aspx

Manage inputs from user: mouse, 
keyboard, menu, etc.

Manage display of 
information on the screen

Manage data related to the 
application domain



Model-View-Controller (MVC)
Passive model

Active model

http://msdn.microsoft.com/en-us/library/ff649643.aspx



Example: RabbitWorld GUI

• …hw2.lib.ui.WorldImpl

– The Model class

– Model is passive: does not have a reference to the view

• …hw2.lib.ui.WorldUI

– The Controller class

– Listener callbacks in constructor react to events

• Delegating to the view (is this design ideal?)

• …hw2.lib.ui.WorldPanel

– The View class

– Gets data from Model to find out where to draw rabbits, foxes, etc.

– Implements stepping (in step())

• Invokes model to update world

• Invokes repaint() on self to update UI

27



Find That Pattern!

• What pattern is BorderLayout a part of?

• What pattern is JPanel a part of?

• What pattern are the ActionListeners part of?

• There are classes representing the AI’s decision to Eat, Breed, 

or Move.  What pattern are these representing?

• Look at the documentation for JComponent.paint().  What 

pattern is used?

28



For More Information

• Oracle’s Swing tutorials

– http://download.oracle.com/javase/tutorial/uiswing/

• Introduction to Programming Using Java, Ch. 6

– http://math.hws.edu/javanotes/c6/index.html

29



Questions?

30


