GUIs with Swing

Objects Analysis

Threads

Principles of Software Construction:
Objects, Design, and Concurrency

Jonathan Aldrich and Charlie Garrod
Fall 2012

Slides copyright 2012 by Jeffrey Eppinger, Jonathan Aldrich,
William Scherlis. Used and adapted by permission

What makes GUIs different?

. How do they compare to command-line I/0?

What makes GUIs different?

e How do they compare to command-line |/O?

e One major difference: the user is in control

— GUI has to react to the user’s actions
* Not just a response to a prompt
e Could involve entirely different functionality

— Requires structuring the GUI around reacting to events

Reacting to events - from framework

. Setup phase
— Describe how the GUI window should look

Application

— Use libraries for windows, widgets, and layout

— Embed specialized code for later use event— |
L . . mouse, key, | D
e Customization (provided during setup) redraw, ... |°
— New widgets that display themselves in custom ways
— How to react to events Framework

* Execution
— Framework gets events from OS event
* Mouse clicks, key presses, window becomes visible, etc.

— Framework triggers application code in response
e The customization described above

Pseudocode for GUIs

Application code GUI framework code
 Creates and sets up a window

e Asks framework to show the window

Starts a GUI thread

This thread loops:
— Asks OS for event
— Finds application window that event relates to

— Asks application window to handle event
 Takes action in response to event

* May contact GUI
— E.g. consider if event was a redraw
— Call GUI to paint lines, text

— Draws lines/text on behalf of application

e
S 2
- e
3 il
V4
" B

v
[]

Example: RabbitWorld GUI

...hw2.lib.ui.WorldUIl.main()

— Creates a JFrame (i.e. a top-level window)
— Creates a WorldUl to go in it

— Sets some parameters

— Makes the JFrame (and its contents) visible

...hw2.lib.ui.WorldPanel.paintComponent()

— Called when the OS needs to show the WorldPanel (part of WorldUI)
* Right after the window becomes visible

— super.paintComponent() draws a background
— Imagelcon.paintlcon(...) draws each item in the world

Cookbook Programming

e Typical mode of using a framework

— Let’s you follow a recipe for writing your programs

— All cakes are different, but there are a few basic recipes and
everything else is a slight variation

e Add some cinnamon
» Substitute chocolate chips instead of nuts

e Tends to be most effective way to learn a framework
— Typically infeasible to read the documentation of all operations
— Instead, find a “recipe” similar to what you need to do

— Understand the recipe by reading about the ingredients
» Selective reading of the documentation

— Then you can combine the ingredients in new ways with confidence

Cookbook Programming

e You have a template for your program

* You change things around, but you don’t mess with the
overall structure

e Examples:
public static void main(String[] args) { ... }
for (int i1=0; i<args.length; i++) { ... }
e Many people consider Swing development to be cookbook
programming

A Little History

= :'f_"-'
In the beginning...

e There was Java. It was like C++, but simpler and cleaner.

e Then came Hotlava, a Java-based browser
— You could run chunks of Java code called Applets
— |t was cool — Netscape & then IE added Java support

e But Applets were a pain
— Browsers had out of date JVMs
— Used the AWT (lots of platform-based non-Java code)
— Didn’t have the look and feel of the rest of the platform
— Couldn’t run as a standalone program with a GUI

Swing

'\I ﬁ; .'
e A new user interface environment

— Implemented in Java
* More consistent across implementations

— Offers different “look and feel” options
 Windows, Unix, and other (Metal)

— Can be a main method or a Japplet

e Still uses AWT for event handling, fonts, etc.

— BTW —still issues with Swing non-native look and feel, predictable
performance

— SWT — An alternate Standard Widget Toolkit (from Eclipse) addresses
this by staying closer to OS windowing support

e but, not standard for Java

10

Simplest Structure

. You make a Window (a JFrame)
Make a container (a JPanel)

— Putitin the window

Add your Buttons, Boxes, etc to the container

— Use layouts to control positioning
— Set up listeners to receive events
— Optionally, write custom widgets with application-specific display logic

Set up the window to display the container

Then wait for events to arrive...

11

3 AR e
ol = P et
& # i
.
= L}

Components

| Swing has lots of components:

JLabel
JButton
JCheckBox
JChoice
JRadioButton

JTextField
JTextArea
JList
JScrollBar

... and more

12

JFrame & JPanel

. JFrame is the Swing Window

e JPanel (aka a pane) is the container to which you add your
components (or other containers)

13

Layout Managers

e The default Layout Manager is FlowlLayout
— Place items in the container from left to right
— When a line is full, FlowLayout goes to the next

14

2
=

v
[]

More Layout Options

GridLayout
GridBaglLayout
Explicit Placement

15

Example: RabbitWorld GUI

b i
o L el
g 1) N
b i .
V4
= L

e ...hw2.lib.ui.WorldUI.WorldUI()

Sets the layout to a BorderLayout

Adds a WorldPanel in the CENTER of the Ul

Creates a JPanel for the buttons at the bottom

Adds 2 buttons to the JPanel (WEST and CENTER)

Puts the button JPanel at the SOUTH side of the WorldPanel

16

Question

e How do you make a button work?

| L&

Click to drive!

Click to turn! Direction: 0.0

=

17

Events in Swing

e An event is when something changes

— Button clicked, scrolling, mouse movement
e Swing (actually AWT) generates an event

e To do something you need to implement a Listener Interface
and register interest

18

Event Listeners

Swing has lots of event listener interfaces:

 ActionListener * Mouselistener

e AdjustmentListener * TreeExpansionlListener
* FocuslListener * TextListener

* [temlListener e WindowlListener

e Keylistener ...and on and on...

19

ActionListener

Events for JButtons, JTextFields, etc
— The things we are using

Implement ActionListener
— Provide actionPerformed method

In actionPerformed method
— Use event.getSource() to determine which button was clicked, etc.

20

Example: RabbitWorld GUI

e ...hw2.lib.ui.WorldUI.WorldUI()

— Sets ActionListeners for the run and step buttons
* Anonymous inner classes used
e Asingle method actionPerformed(...) is overridden
e step button: just calls step() on the WorldPanel

— Steps the world

— Requests that the window be refreshed (so the user can see the changes)
* run button

— Starts the world continuously stepping

— Disables the step button (no point!)

— Sets a toggle flag so that pressing the button again will stop the simulation

21

Organizational Tips

Declare references to components you’ll be manipulating as
instance variables

Put the code that performs the actions in private “helper”
methods. (Keeps things neat)

22

GUI design issues

Interfaces vs. inheritance
— Inherit from JPanel with custom drawing functionality

— Implement the ActionListener interface, register with button
— Why this difference?

Models and views

23

GUI design issues

Interfaces vs. inheritance

— Inherit from JPanel with custom drawing functionality
e Subclass “is a” special kind of Panel

* The subclass interacts closely with the JPanel — e.g. the subclass calls back
with super()

 The way you draw the subclass doesn’t change as the program executes
— Implement the ActionListener interface, register with button

* The action to perform isn’t really a special kind of button; it’s just a way of
reacting to the button. So it makes sense to be a separate object.

 The ActionListener is decoupled from the button. Once the listener is
invoked, it doesn’t call anything on the Button anymore.

* We may want to change the action performed on a button press—so once
again it makes sense for it to be a separate object

Models and views

24

Model-View-Controller (MVC)

Manage inputs from user: mouse
keyboard, menu, etc.
———————————— Controller
—
Manage display of
information on the scree

Manage data related to the }

]

]

Model :
A Y
s saessssas View

application domain

http://msdn.microsoft.com/-us/library/ff649643.ast

:Controller :Model View
T T T
handleEvent ' ! !
" Tcemecscscce Controller ! !
1 1
| service | '
Y : :
1
Model ! .
]
1
\'4 | '
A update 1
I P — View T >
1
etData
D‘ |
|
| 1 1
L]] 1]
Active model
:Model View
1 handieEvent ' .
\'4 : ' 1 '
v [Notify)
.| <<interface>> I - J .
_ Observer
Model > I update '
A +update() : >
| getData
' & v
----------------- —_ - o AE M s
http://msdn.microsoft.com/-us/library/ff649643.ast g '

Example: RabbitWorld GUI

e ...hw2.lib.ui.Worldimpl
— The Model class

— Model is passive: does not have a reference to the view

e ..hw2.lib.ui.WorldUI

— The Controller class
— Listener callbacks in constructor react to events

e Delegating to the view (is this design ideal?)

e ..hw2.lib.ui.WorldPanel

— The View class
— Gets data from Model to find out where to draw rabbits, foxes, etc.

— Implements stepping (in step())
* |Invokes model to update world
* |nvokes repaint() on self to update Ul

27

Find That Pattern!

" What pattern is BorderLayout a part of?
What pattern is JPanel a part of?
What pattern are the ActionListeners part of?

There are classes representing the Al’s decision to Eat, Breed,
or Move. What pattern are these representing?

Look at the documentation for JComponent.paint(). What
pattern is used?

28

For More Information

e Oracle’s Swing tutorials

— http://download.oracle.com/javase/tutorial/uiswing/

* Introduction to Programming Using Java, Ch. 6
— http://math.hws.edu/javanotes/c6/index.html

29

Questions?

30

