
	

toad	

	

Fall	
 2012	

© 2012 C Garrod, J Aldrich, and W Scherlis

School of
Computer Science

Principles of Software Construction:
Objects, Design and Concurrency

Exceptions and Classes (cont.),
Packages, and Inheritance

Jonathan Aldrich Charlie Garrod

15-214

toad 2 15-­‐214	
 	
 Garrod	

Administrivia

• Homework 0 – due tonight
§  To confirm your homework submission, svn checkout in a
new location

• Homework 1 coming soon

toad 3 15-­‐214	
 	
 Garrod	

Key object concepts from last Thursday

• Inside an object
§ Kinds of members: Fields, Methods, Constructors
§ Visibility from the outside: hiding the members
§  The keyword this

• Interfaces and the management of expectations
§  Java interfaces
§  Introduction to types

• Objects and the heap
§ Method dispatch

• Objects and identity
§ Equals vs. ==

• Exceptions

toad 4 15-­‐214	
 	
 Garrod	

Key object concepts for today

• Exceptions (continued)

• Classes, revisited
§ Objects vs. classes
§ Null references
§ Mutability

• Abstract vs. implementation
§ Static fields and methods

• Packages
§ Name and visibility management
§ Qualified names

• Inheritance
§ Reuse
§ Visibility: protected and default
§ Method dispatch, revisited

toad 5 15-­‐214	
 	
 Garrod	

A glimpse ahead: Inheritance, class hierarchy

Dog

AbstractDog

Chiuaua GermanShepherd …

“parent”
or

“superclass”

“child”
or

“subclass”

toad 6 15-­‐214	
 	
 Garrod	

Exceptions

• Exceptions notify the caller of an exceptional
circumstance (usually operation failure)

• Semantics
§ An exception propagates up the function-call stack until
main() is reached or until the exception is caught

• Sources of exceptions:
§  Programmatically throwing an exception
§ Exceptions thrown by the Java runtime

toad 7 15-­‐214	
 	
 Garrod	

Benefits of exceptions

• Provide high-level summary of error and stack
trace
§ Compare: core dumped in C

• Can’t forget to handle common failure modes
§ Compare: using a flag or special return value

• Can optionally recover from failure
§ Compare: calling System.exit()!

• Improve code structure
§ Separate routine operations from error-handling

• Allow consistent clean-up in both normal and
exceptional operation

toad 8 15-­‐214	
 	
 Garrod	

Exceptions improve code structure

• Compare to this (fake) code fragment:
FileInputStream fIn = new FileInputStream(filename);!
if (fIN == null) {!
 switch (errno) {!
 case _ENOFILE:!
 System.err.println(“File not found: “ + …);!
 return -1;!
 default:!
 System.err.println(“Something else bad happened: “ + …);!
 return -1;!
 }!
}!
DataInput dataInput = new DataInputStream(fIn);!
if (dataInput == null) {!
 System.err.println(“Unknown internal error.”);!
 return -1; // errno > 0 set by new DataInputStream!
}!
int i = dataInput.readInt();!
if (errno > 0) {!
 System.err.println(“Error reading binary data from file”);!
 return -1;!
} // I didn’t have enough room to close the file. Oh well.!
return i;!

toad 9 15-­‐214	
 	
 Garrod	

Catching exceptions, control flow with finally!

try {!

! dangerousOperation();!

! System.out.println(“All is well!”);!

} catch (MildException e) {!

! recover();!

} catch (DeadlyException e) {!

! System.err.println(“Whoops! Don’t die.”);!

! revive();!

} finally {!

! // put code here that we always want to run!

! // at the end of the try/catch block!

}!

! !

toad 10 15-­‐214	
 	
 Garrod	

Throwing exceptions

• Exceptions are classes that extend the
java.lang.Exception class

• Basic use:
if (someErrorBlahBlahBlah) {!
 throw new MyCustomException(“Blah blah blah”);!
}!

• See IllegalBowlingScoreException and
ReadBowlingScore for an example
!

toad 11 15-­‐214	
 	
 Garrod	

The exception hierarchy

Object

Exception

RuntimeException IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException … …

. . .

toad 12 15-­‐214	
 	
 Garrod	

Checked and unchecked exceptions

• Unchecked exception: any subclass of
RuntimeException!
§  Indicates an error which is highly unlikely and/or typically
unrecoverable

• Checked exception: any subclass of Exception
but not RuntimeException!
§  Indicates an error that every caller should be aware of
and explicitly decide to handle or pass on

toad 13 15-­‐214	
 	
 Garrod	

Guidelines for using exceptions

• Catch and handle all checked exceptions
§ Unless there is no good way to do so, in which case you
should pass them on to your caller or throw a
RuntimeException!

• Use runtime exceptions for programming errors
§  If you receive bad input, throw a subclass of
RuntimeException!

• Other good practices
§ Do not catch an exception without (at least somewhat)
handling the error

§ When you throw an exception, describe the error
§  If you re-throw an exception, always include the original
exception as the cause

toad 14 15-­‐214	
 	
 Garrod	

Key object concepts for today

• Exceptions (continued)

• Classes, revisited
§ Objects vs. classes
§ Null references
§ Mutability

• Abstract vs. implementation
§ Static fields and methods

• Packages
§ Name and visibility management
§ Qualified names

• Inheritance
§ Reuse
§ Visibility: protected and default
§ Method dispatch, revisited

toad 15 15-­‐214	
 	
 Garrod	
 15

Relating objects and classes

• A class: a category of entities

• An instance: an object within the category

Class
Instance

Class name

Fields
(attributes)

Methods
(operations)

instance name: Class

toad 16 15-­‐214	
 	
 Garrod	

Null object references

• An object data field can be null
§ Uninitialized or explicitly set to null
§ Refers to no heap data

• An attempt to dereference a null reference is an
error
§  NullPointerException

• Advice:
§ Avoid relying upon null references when possible

• e.g., see the EmptyIntList!

String alice = “Alice”;!
String bob = null;!
if (bob.equals(alice)) {!
 …!
}!

toad 17 15-­‐214	
 	
 Garrod	

Static members

• The idea of static
§ State and actions associated with an entire class (as
opposed to being associated with individual objects

• Examples
§ A simple Counter example
§  The main method – why is this static?
§ Some String examples (coming up!)

• valueOf!

toad 18 15-­‐214	
 	
 Garrod	

Mutability and immutability

• Data is mutable if it can change over time.
Otherwise it is immutable.

• Data is abstract immutable if its private internal
representation is mutable but the data is
immutable from an external client’s perspective
§  e.g., a Java String!

Confusion alert: “static” and “immutable” are
unrelated concepts here!

toad 19 15-­‐214	
 	
 Garrod	

Java Strings, an (approximate) look inside

• Fields
char[] !value!
int !len!
int !offset!
int! !hash!

• Quick tour:
§ Representation of a string
§ Static .valueOf!
§ String objects are abstract immutable

• Internal representation is mutable: hash!
• How .equals is implemented

§ Why a private constructor?
• How .subString is implemented

§  The many shapes of new String(…)!
• Method dispatch

toad 20 15-­‐214	
 	
 Garrod	

Key object concepts for today

• Exceptions (continued)

• Classes, revisited
§ Objects vs. classes
§ Null references
§ Mutability

• Abstract vs. implementation
§ Static fields and methods

• Packages
§ Name and visibility management
§ Qualified names

• Inheritance
§ Reuse
§ Visibility: protected and default
§ Method dispatch, revisited

Coming Thursday

