
Frameworks

15-214: Principles of Software System
ConstructionConstruction

Some material from Ciera Jaspan,

Bill Scherlis, and Erich Gamma

Terminology: Libraries

• Library: A set of classes and methods that provide reusable

functionality

• Client calls library to do some task

• Client controls
• System structure
• Control flow

• The library executes a function and returns data• The library executes a function and returns data

Library

I/O
Collections

Swing

Math

Terminology: Frameworks

• Framework: Reusable skeleton code that can be

customized into an application

• Framework controls
• Program structure

• Control flow

• Framework calls back into client code• Framework calls back into client code
• The Hollywood principle: “Don’t call us; we’ll call you.”

Framework

SwingEclipse

Spring

But this is an

application!
Hey, wasn’t this

a library?

Applet

More terms

• API: Application Programming Interface, the
interface of a library or framework

• Client: The code that uses an API

• Plugin: Client code that customizes a framework• Plugin: Client code that customizes a framework

• Extension point: A place where a framework
supports extension with a plugin

More terms

• Protocol: The expected sequence of interactions
between the API and the client

• Callback: A plugin method that the framework will
call to access customized functionality

• Lifecycle method: A callback method of an object
that gets called in a sequence according to the
protocol and the state of the plugin

Using an API

• Like a partial design pattern

• Framework provides one part

• Client provides the other part

• Very common for plugin trees to exist

• Also common for two frameworks to work better
together

Google’s Map-Reduce

• Programming model for processing large data sets

Input

key-value

pairs

Intermediate

key-value

pairs

Output

key-value

pairs
map : (k1,v1) � list (k2,v2) reduce : (k2,list(v2)) � list (v2)

• Example: word count
• map(document, contents):

for each word w in document
emit (w, 1)

• reduce(word, listOfCounts):
for each count c in listOfCounts

result += c
emit result

Google’s Map-Reduce

• Questions

Input

key-value

pairs

Intermediate

key-value

pairs

Output

key-value

pairs
map : (k1,v1) � list (k2,v2) reduce : (k2,list(v2)) � list (v2)

• Is this a framework? How do you know?
• What are the benefits?

• Could those benefits be achieved if it were not?

Some Benefits of Map-Reduce

• Automatically parallelizes and distributes
computation

• Scales to 1000s of machines, terabytes of data

• Automatically handles failure via re-execution

• Simple programming model• Simple programming model
• Successful: hundreds of plugins
• Functional model facilitates correctness

Constraints

• Computation must fit the model
• Not everything can be phrased in terms of map and reduce

• Map and Reduce must be largely functional
• Side effects allowed but must be atomic and idempotent

• What benefits does the client get in exchange for
accepting these restrictions?

Example: An Eclipse Plugin

• A popular Java IDE

• More generally, a framework for tools that
facilitate “building, deploying and
managing software across the lifecycle.”

• Plug-in framework based on OSGI
standard

• Starting point: Manifest file
• Plugin name
• Activator class

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: MyEditor Plug-in

Bundle-SymbolicName: MyEditor; singleton:=true

Bundle-Version: 1.0.0

Bundle-Activator: myeditor.Activator

Require-Bundle: org.eclipse.ui,

org.eclipse.core.runtime,

org.eclipse.jface.text,

Patterns and Frameworks 11 Analysis of Software Artifacts

© 2009 Jonathan Aldrich

• Activator class
• Meta-data

org.eclipse.jface.text,

org.eclipse.ui.editors

Bundle-ActivationPolicy: lazy

Bundle-RequiredExecutionEnvironment:
JavaSE-1.6

Example: An Eclipse Plugin

• plugin.xml
• Main configuration file

• XML format

• Lists extension points

• Editor extension
• extension point:

org.eclipse.ui.editors

• file extension

<?xml version="1.0" encoding="UTF-8"?>

<?eclipse version="3.2"?>

<plugin>

<extension

point="org.eclipse.ui.editors">

<editor

name="Sample XML Editor"

extensions="xml"

Patterns and Frameworks 12 Analysis of Software Artifacts

© 2009 Jonathan Aldrich

• file extension

• icon used in corner of editor

• class name

• unique id
• refer to this editor
• other plugins can extend with new

menu items, etc.!

extensions="xml"
icon="icons/sample.gif“

contributorClass="org.eclipse.ui.texteditor.Basic

TextEditorActionContributor"

class="myeditor.editors.XMLEditor"

id="myeditor.editors.XMLEditor">

</editor>

</extension>

</plugin>

Example: An Eclipse Plugin

• At last, code!

• XMLEditor.java
• Inherits TextEditor behavior

• open, close, save, display, select,
cut/copy/paste, search/replace, …

• REALLY NICE not to have to
implement this

• But could have used ITextEditor
interface if we wanted to

package myeditor.editors;

import org.eclipse.ui.editors.text.TextEditor;

public class XMLEditor extends TextEditor {

private ColorManager colorManager;

public XMLEditor() {

super();

colorManager = new ColorManager();

setSourceViewerConfiguration(

Patterns and Frameworks 13 Analysis of Software Artifacts

© 2009 Jonathan Aldrich

interface if we wanted to

• Extends with syntax highlighting
• XMLDocumentProvider partitions

into tags and comments
• XMLConfiguration shows how to

color partitions

setSourceViewerConfiguration(

new XMLConfiguration(colorManager));

setDocumentProvider(

new XMLDocumentProvider());

}

public void dispose() {

colorManager.dispose();

super.dispose();

}

}

Example: a JUnit Plugin

public class SampleTest {

private List<String> emptyList;

@Before

public void setUp() {

emptyList = new ArrayList<String>();

}

@After

public void tearDown() {

Here the important plugin

mechanism is Java

annotations

Patterns and Frameworks 14 Analysis of Software Artifacts

© 2009 Jonathan Aldrich

public void tearDown() {

emptyList = null;

}

@Test

public void testEmptyList() {

assertEquals("Empty list should have 0 elements",

0, emptyList.size());

}

}

The Golden Rule of Framework Design

• Extending the framework should NOT require modifying

the framework source code!

• Discussion: how can we extend without modification?
• Client writes main(), creates a plugin, and passes it to framework

• Framework writes main(), client passes name of plugin• Framework writes main(), client passes name of plugin
• E.g. using a command line argument or environment variable

Class c = ClassLoader.getSystemClassLoader().loadClass(args[0]);
Plugin p = c.newInstance();

• Framework looks in a magic location
• Config files or JAR files there are automatically loaded and processed

OO Frameworks (credit: Erich Gamma)

• A customizable set of cooperating classes that defines a

reusable solution for a given problem
• defines key abstractions and their interfaces

• object interactions
• invariants

• flow of control
• override and be called

framework

application

16

• override and be called

• defaults

• Reuse
• reuse of design and code

• reuse of a macro architecture

• Framework provides

architectural guidance

class library

reusing a framework

Framework Challenges (credit: Erich Gamma)

• frameworks are hard to maintain

• framework enables reuse of both design and

implementation
• easy for clients to add implementation dependencies

• “what is the framework - what is just default implementation”

• therefore:• therefore:
• separation of design from implementation

“we believe that interface design and functional factoring

constitute the key intellectual content of software and that

they are far more difficult to create or re-create than code” --

Peter Deutsch

• late commitment to implementation
• but, frameworks still have to work out of the box!

Framework Layering (credit: Erich Gamma)

Drawing Figure

Defaults/Standard Package
• reuse of design and code

Framework Package
• reuse of design

• stable
→ no implementation

• specifies public interfaces m
o

re
 c

o
n

c
re

te

m
o

re
 s

ta
b

le

18

StandardDrawing AbstractFigure

LineConnection

• reuse of design and code

• less stable
→ more implementation

• specifies protected interfaces

Kit Packages
• reuse of implementation

• least stable
→ implementation only

m
o

re
 c

o
n

c
re

te

m
o

re
 s

ta
b

le

Evolution: Extract Interface from Class
(credit: Erich Gamma)

⇒JHotDraw defines framework abstractions as interfaces

• extracting interfaces is a new step in evolutionary design
• abstract classes are discovered from concrete classes
• interfaces are distilled from abstract classes

19

© 2009 Jonathan Aldrich

• interfaces are distilled from abstract classes

• start once the architecture is stable!

• remove non-public methods from class

• move default implementations into an abstract class which

implements the interface

JHotDraw: Design Patterns Summary
(credit: Erich Gamma)

DrawingView

DrawingEditor

Observer-1

20

© 2009 Jonathan Aldrich

TrackHandle

Adapter: Adaptee

Drawing Figure Handle

Adapter

Observer: Subject-1

DrawingView

DrawingEditor

Observer-1

Factory Method

Tool

State:Context-1

State-1

Factory Method: Product

JHotDraw: Design Patterns Summary
(credit: Erich Gamma)

21

© 2009 Jonathan Aldrich

TrackHandle

Adapter: Adaptee

Drawing Figure Handle

Adapter

Observer: Subject-1

DrawingView

DrawingEditor

Observer-1

Factory Method

Tool

State:Context-1

State-1

Factory Method: Product

SelectionTool

State:Context-2

JHotDraw: Design Patterns Summary
(credit: Erich Gamma)

22

© 2009 Jonathan Aldrich

TrackHandle

Adapter: Adaptee

Drawing Figure Handle

Adapter

Observer: Subject-1

State:Context-2

Tracker

State-2

DrawingView

DrawingEditor

Observer-1

Factory Method

Tool

State:Context-1

State-1

Factory Method: Product

SelectionTool

State:Context-2Strategy-3 Strategy: Context-3

JHotDraw: Design Patterns Summary
(credit: Erich Gamma)

23

© 2009 Jonathan Aldrich

TrackHandle

Adapter: Adaptee

Drawing Figure Handle

Adapter

Observer: Subject-1

State:Context-2

Tracker

State-2

Connection

Observer-2

Observer: Subject-2

Connector

Strategy-3 Strategy: Context-3

DrawingView

DrawingEditor

Observer-1

Factory Method

Tool

State:Context-1

State-1

Factory Method: Product

SelectionTool

State:Context-2Strategy-3 Strategy: Context-3

JHotDraw: Design Patterns Summary
(credit: Erich Gamma)

24

© 2009 Jonathan Aldrich

TrackHandle

Adapter: Adaptee

Drawing Figure Handle

Adapter

Observer: Subject-1

State:Context-2

Tracker

State-2

Connection

Observer-2

Observer: Subject-2

Connector

Strategy-3 Strategy: Context-3

CompositeFigure

Composite

DrawingView

DrawingEditor

Observer-1

Factory Method

Tool

State:Context-1

State-1

Factory Method: Product

SelectionTool

State:Context-2Strategy-3 Strategy: Context-3

JHotDraw: Design Patterns Summary
(credit: Erich Gamma)

25

© 2009 Jonathan Aldrich

TrackHandle

Adapter: Adaptee

Drawing Figure Handle

Adapter

Observer: Subject-1

State:Context-2

Tracker

State-2

Connection

Observer-2

Observer: Subject-2

Connector

Strategy-3 Strategy: Context-3

CompositeFigure

Composite

Decorator

Decorator

DrawingView

DrawingEditor

Observer-1

Factory Method

Tool

State:Context-1

State-1

Factory Method: Product

SelectionTool

State:Context-2Strategy-3 Strategy: Context-3

UpdateStrategy

Strategy-1

Strategy:Context-1

JHotDraw: Design Patterns Summary
(credit: Erich Gamma)

26

© 2009 Jonathan Aldrich

TrackHandle

Adapter: Adaptee

Drawing Figure Handle

Adapter

Observer: Subject-1

State:Context-2

Tracker

State-2

Connection

Observer-2

Observer: Subject-2

Connector

Strategy-3 Strategy: Context-3

CompositeFigure

Composite

Decorator

Decorator

DrawingView

DrawingEditor

Observer-1

Factory Method

Tool

State:Context-1

State-1

Factory Method: Product

SelectionTool

State:Context-2Strategy-3 Strategy: Context-3

UpdateStrategy

Strategy-1

Strategy:Context-1

CreationTool

Prototype

JHotDraw: Design Patterns Summary
(credit: Erich Gamma)

27

© 2009 Jonathan Aldrich

TrackHandle

Adapter: Adaptee

Drawing Figure Handle

Adapter

Observer: Subject-1

State:Context-2

Tracker

State-2

Connection

Observer-2

Observer: Subject-2

Connector

Strategy-3 Strategy: Context-3

CompositeFigure

Composite

Decorator

Decorator

Prototype

DrawingView

DrawingEditor

Observer-1

Factory Method

Tool

State:Context-1

State-1

Factory Method: Product

SelectionTool

State:Context-2Strategy-3 Strategy: Context-3

UpdateStrategy

Strategy-1

Strategy:Context-1

CreationTool

Prototype

JHotDraw: Design Patterns Summary
(credit: Erich Gamma)

28

© 2009 Jonathan Aldrich

TrackHandle

Adapter: Adaptee

Drawing Figure Handle

Adapter

Observer: Subject-1

State:Context-2

Tracker

State-2

Connection

Observer-2

Observer: Subject-2

Connector

Strategy-3 Strategy: Context-3

CompositeFigure

Composite

Decorator

Decorator

Prototype

Locator

Strategy-2

DrawingView

DrawingEditor

Observer-1

Factory Method

Tool

State:Context-1

State-1

Factory Method: Product

SelectionTool

State:Context-2Strategy-3 Strategy: Context-3

UpdateStrategy

Strategy-1

Strategy:Context-1

CreationTool

Prototype

JHotDraw: Design Patterns Summary
(credit: Erich Gamma)

29

© 2009 Jonathan Aldrich

TrackHandle

Adapter: Adaptee

Drawing Figure Handle

Adapter

Observer: Subject-1

State:Context-2

Tracker

State-2

Connection

Observer-2

Observer: Subject-2

Connector

Strategy-3 Strategy: Context-3

CompositeFigure

Composite

Decorator

Decorator

Prototype

Locator

Strategy-2

NullHandle

Null Object

JHotDraw Pattern Experiences
(credit: Erich Gamma)

• Increased design velocity
• patterns helped us generate the architecture

• It wasn’t always clear which pattern to apply
• patterns can be competitors
• implementing the patterns is easy
• difficulty is knowing when and why to use them!

• Framework development remains iterative

30

© 2009 Jonathan Aldrich

• Framework development remains iterative
• design patterns are targets for refinements and refactoring

• JavaDoc can be used to document the applied patterns
• javadoc comments may include URLs
• URLs refer to a pattern description or patlet

• JHotDraw: http://sourceforge.net/projects/jhotdraw

• 10 simple Page callbacks

Callback challenges

• Simple ASP.NET Page with a

drop down list
• Derive from Page

• Add the controls

• Handle any user actions on controls

• PreInit

• Init

• InitComplete

• PreLoad

• Load

• Control events…• 10 simple Page callbacks
• Many more complex ones

• Where do we add the controls?

• When can I access data?

• Where does the framework
expect it to happen?

• Control events…

• LoadComplete

• PreRender

• SaveStateComplete

• Render

• Close

Dynamically add a control to the page

private void Page_Load(object sender, EventArgs e) {

DropDownList ddl = new DropDownList();

ddl.DataSource = F; //accesses another control

ddl.DataBind();

addControl(ddl);

}

Whoops! Resets the initial data every time, so we
lose the user’s selection.

Dynamically add a control to the page, attempt 2

private void Page_Load(object sender, EventArgs e) {

if (!IsPostBack()) {

DropDownList ddl = new DropDownList();

ddl.DataSource = F; //accesses another control

ddl.DataBind();

addControl(ddl);

}}

}

Ok, now the control entirely disappears when the
page refreshes after an action (the postback)….

Dynamically add a control to the page, attempt 3

private void Page_Load(object sender, EventArgs e) {

DropDownList ddl = new DropDownList();

if (!IsPostBack()) {

ddl.DataSource = F;

ddl.DataBind();

}

addControl(ddl);addControl(ddl);

}

Ok, the control is there, but there’s no data in it
after an update/refresh….

Dynamically add a control to the page, attempt 4

private void Page_PreInit(object sender, EventArgs e) {

DropDownList ddl = new DropDownList();

if (!IsPostBack()) {

ddl.DataSource = F; //accesses another control

ddl.DataBind();

}

addControl(ddl);addControl(ddl);

}

Now we get a null reference exception when
accessing that other control’s data…

Dynamically add a control to the page, attempt 5

DropDownList ddl;

private void Page_PreInit(object sender, EventArgs e) {

ddl = new DropDownList();

addControl(ddl);

}

private void Page_Load(object sender, EventArgs e) {private void Page_Load(object sender, EventArgs e) {

if (!IsPostBack()) {

ddl.DataSource = F; //accesses another control

ddl.DataBind();

}

}

Finally it works!

Couldn’t they design it better?

• Could have fewer callbacks
• But it would make it less extensible

• In some cases, could give better errors and
warnings
• But it would give up performance• But it would give up performance

• Some design choices could map to the developer’s
mind more easily
• But we might lose other quality attributes, like security

Interaction is not limited to your primary code!

• Many methods of interacting with a framework

• Declarative files, such as XML or properties files

• Annotations within code

• If the functionality is supported by all, which do I
choose?

• And what happens if they are conflicting?

Choosing an interaction

• Example 1: Internationalization
• Properties files or directly in code?

• Example 2: Transactions
• XML file, annotations, or in code?

• Example 3: Database URL• Example 3: Database URL
• XML file, properties file, annotation, or in code?

• Notice that the choice affects how easy the code is
to read, how difficult it is to change later, and who
can do the change!

Putting controls in a LoginView

• Can specify different controls to be shown when a
user is logged in
• Ex: username and password fields v. “Welcome,
Username!”

<asp:LoginView ID=“LoginScreen” runat=“server”>

<AnonymousTemplate><AnonymousTemplate>

You can only setup accounts when you are logged in.

</AnonymousTemplate>

<LoggedInTemplate>

<h4>Location</h4>

<asp:DropDownList ID=“LocationList” runat=“server”/>

<asp:Button ID=“ChangeButton” runat=“server” Text=“Change”/>

</LoggedInTemplate>

</asp:LoginView>

Retrieve controls and set them up

LoginView LoginScreen;

private void Page_Load(object sender, EventArgs e) {

DropDownList list = (DropDownList)

LoginScreen.FindControl(“LocationList”);

list.DataSource = F;list.DataSource = F;

list.DataBind();

}

NullReferenceException at list.DataSource = …;

Correct code

LoginView LoginScreen;

private void Page_Load(object sender, EventArgs e) {

if (this.getRequest().IsAuthenticated()) {

DropDownList list = (DropDownList)

LoginScreen.FindControl(“LocationList”);

list.DataSource = F;

list.DataBind();list.DataBind();

}

}

These sound tough to useFwhy bother?

• Code reuse
• Eclipse framework: ~2,000,000 LoC
• Eclipse plugin: 12 LoC
• … of course you need to know which 12 lines to write

• Maintainability

• Existing knowledge of employees

• External community support

• Large-scale (architectural) reuse

• Built-in quality attributes

Frameworks and Quality Attributes

• Quality attributes
• Performance

• Security

• Scalability

• *-ility

• All QA’s have tradeoffs with each other

• Old way: hack quality attributes in after development

• New way: Embed quality attributes into the framework
• More cost effective, less refactoring

• Handled at high level, not scattered in program

• Works if you know your QA tradeoffs up front
• This is why those requirements are so important…

Getting up a framework’s learning curve

• Tips on using frameworks
• Tutorials, Wizards, and Examples

• SourceForge, Google Code Search
• Communities – email lists and forums

• Eclipse.org
• Group knowledge dispersal

• Wiki of resources, Problem/solution log

• Common client trick: Follow the leader
• Appropriate code from examples –

find an “imputed pattern”

r
e
w
a
r
d

Library

Framework

Patterns and Frameworks 45 Analysis of Software Artifacts

© 2009 Jonathan Aldrich

find an “imputed pattern”
• Search source code
• Infer compatible intent
• Identify scope (not too much, not too little)

• Copy it
• Tear out the app-specific logic, keep the bureaucracy
• Insert your own logic into the reused bureaucracy

• But there’s a problem
• Classic copy-and-paste problem – looks just like my own code
• Design intent is lost – “my intention is to use the framework this way”

• Framework designer’s conundrum: complexity vs. capability

effort

Choosing a framework

• Business objectives

• Existing software lock-in

• Ability to match quality attributes and tradeoff
decisions

• Costs of learning• Costs of learning

• Costs of purchase (or maintenance for
homegrown)

Do we build it ourselves?

• Outsourcing the framework
• Examples: Eclipse, J2EE, ASP.Net, etc
• Benefits: lower risk, high reuse, community support
• Costs/risks: compromise of control

• Insourcing the framework • Insourcing the framework
• Examples: product-line frameworks
• Benefits: economy of scale, control over system
• Costs/risks: building and maintenance, requires experts

