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Abstract

In this thesis we investigate distinct techniques to avoid the impact of miscellaneous fail-
ures derived from hostile attacks in a message-passing distributed computing environment.
Our failure palette assumes more benign faults as an appetizer and then moves on to more
malign ones. To start with, we revisit the classical k-set agreement problem, where dif-
ferent distributed processors must all agree on up to k values previously proposed by
them. We develop an optimal crash-resilient k-set agreement protocol, which tolerates
the best possible number of crashes given (exact or close to) minimal synchrony features
provided by limited-scope failure detectors in asynchronous systems. Tight bounds on the
maximum number of crashes are achieved through combinatorial topology, and relation of
failure detectors to timing assumptions, in settings such as stabilizing ones, is unfolded.

In the sequence, we broaden our failure repertoire to include message omissions per-
formed by coprocessor hosts with high incentives to cheating. Here, coprocessors are
tamper-proof and receive and send encrypted messages. This prevents arbitrary behavior
of hosts, which may just omit incoming or outgoing messages or crash their own coproces-
sor. In this context, making use of secret shared coins, we derive randomized consensus
(that is, 1-set agreement) protocols, optimal both in terms of time and resilience, and of
very practical use for e-business. Deterministic versions and automatic transformations
for failure detectors are also discussed.

Finally, we show how to boost threshold protocols in adversarial structure models where
failures may be dependent and processors may behave badly in an arbitrary, byzantine way.
In particular, we look at the problem of running any protocol that has an upper bound of
n > c t, for any positive integer constant c, where n is the total number of processors and
t is the maximum number of faults. We introduce an optimal byzantine-resilient protocol
that enables simulation with less than n processors of any such threshold protocol in
adversarial structure models. We also define equivalence classes using a particular set of
key hierarchy properties.
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Chapter 1

Introductory Overview

1.1 Motivation

In distributed systems all safety, liveness and security aspects of an application play a
crucial role. Safety guarantees that execution is correctly performed. Liveness determines
what at some point must come to an end. Security prevents leak of private information and
misusage by non-authenticated users [16, 87, 105]. Moreover, as the size of a distributed
system grows, so does the number of its components and the probability that some might
fail or be manipulated — for instance, due to ambition (that is, advantage search for
oneself) or envy (that is, simple pleasure of damaging others) [34, 69, 86]. Depending on
the nature of such a fault or attack, it may happen in either independent or correlated
fashions — for example, when there is a collusion of interests, sabotage devised by a
group may in fact be coordinated to maximize individual profit of its elements [5, 70, 77,
73]. Therefore, designers must always incorporate from the very start fault-tolerance and
security mechanisms into distributed protocols when developing a new reliable distributed
system, given the spectrum of possible failures and moves from an adversary [22, 62, 81,
97, 98, 107, 110, 116].

In this thesis we mainly focus on the feasibility of solving agreement problems [31] effi-
ciently and securely in the presence of faults which vary from crash to byzantine [80] (that
is, arbitrary or malicious behavior) in distributed systems. Furthermore, for message omis-
sion failures, randomized protocols here derived [54]have direct application in electronic
commerce. In fact, such agreement problems are essencial for a number of purposes, in-
cluding plane and robot control [106, 26], group-communication [13], data replication [63],
and e-voting [57] - or more generally, secure multi-party computation [17, 53].

More precisely, in the k-set agreement problem, introduced by Chaudhuri [31, 32, 64,
93], each process in a group starts with a private input value, communicates with the
others, and then halts after choosing a private output value. Each process is required to
choose some process’s input, and at most k distinct values may be chosen. Note that,
depending on the failure model, such a definition might become slightly changed. In
particular, 1-set agreement is simply named consensus. As said, solving k-set agreement
is key to many other problems.

Moreover, all protocols and automatic transformations considered here involve at least
one out of three types of faults: process crash [82], (send or/and receive) message omission
[102], or byzantine (arbitrary) [80]. In special, message omission models are justified by
the presence of processes equipped with trusted coprocessors such as smartcards, which
may be used to relate security problems to safety problems and conversely [17, 53]. Note
that arbitrary failures comprise message omission failures which comprise crash failures.
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Faults may be derived from attackers, which is very likely given that practically every
system is today not only distributed but in fact connected to wide area networks or the
Internet.

Hence, despite such a scenario these distributed networks must be protected from
faulty behavior in order to guarantee user reliability and dependability. In short, whenever
necessary, there should be a way to guarantee the authenticity of code lines, authentication
of communicating parties, and protection of messages against tampering and deletion, in
order to provide both protocol confidentiality and correct functioning.

Thus, to ensure correct execution of a protocol and to inhibit a potential adversary
to corrupt or destroy its output or to obtain information, here we incorporate (safety,
liveness and security) mechanisms into a protocol (or an automatic transformation on it)
which can prevent adversaries of performing a successful attack. In the following chapters,
given specific problems in a distributed environment, we first identify security issues and
potential vulnerabilities of the distributed system which could have an impact during a
distributed protocol execution, so that we can develop strategies to overcome the possible
different types of attacks.

1.2 Contributions

Here, we collect a series of correlated papers published in some of the most competitive
and respectable conferences and journals in the area, following an american tradition at
computer science departments of focusing on publication acceptance at prestigious venues
rather than practice of storytelling skills. More precisely, in this thesis:

• We give a new optimal (in terms of resilience) deterministic consensus protocol and
its related lower bounds in an asynchronous environment with a special cluster-based
failure detection. Joint work with Maurice Herlihy, ”Tight Bounds for k-Set Agree-
ment with Limited-Scope Failure Detectors”, published in Distributed Computing,
18(2), pages 157—166, July 2005 [64].

• We show, through protocol automatic transformations, that distinct computational
models with stabilizing properties in the crash model are equivalent regarding solv-
ability, and analyze efficiency issues. Such models include e.g. the partially syn-
chronous model [48], where eventually the distributed system obeys bounds on com-
puting speeds and message delays, or the asynchronous distributed system model
augmented with unreliable failure detectors [28], where eventually failure detectors
do not make mistakes. Joint work with Martin Biely, Martin Hutle and Josef Widder,
”Relating Stabilizing Timing Assumptions to Stabilizing Failure Detectors Regard-
ing Solvability and Efficiency”, published in Proceedings of the Ninth International
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2007),
pages 4—20, November 2007, Paris, France, [18].

• We give a novel optimal (in terms of resilience and time) randomized consensus
protocol in a message omission synchronous setting with trusted coprocessors, use-
ful for e-business. Joint work with Felix Freiling and Maurice Herlihy, ”Optimal
Randomized Fair Exchange with Secret Shared Coins”, published in Proceedings of
the Ninth International Conference on Principles of Distributed Systems (OPODIS
2005), pages 61—72, December 2005, Pisa, Italy [54].
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• We investigate the feasibility of providing a deterministic, efficient and secure solu-
tion to consensus in the presence of partial synchrony with a certain failure detection
in a message omission asynchronous setting with trusted coprocessors. Joint work
with Roberto Cortiñas, Felix Freiling, Marjan Ghajar-Azadanlou, Alberto Lafuente,
Mikel Larrea and Iratxe Arriola Soraluze, ”Secure Failure Detection in TrustedPals”,
published in Proceedings of the Ninth International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS 2007), pages 173—188, Novem-
ber 2007, Paris, France, [36].

• We give a new failure detection automatic transformation from the crash model to the
message omission model, which is weakest failure detection preserving. Joint work
with Carole Deporte-Gallet, Hugues Fauconnier, Felix Freiling and Andreas Tiel-
mann, ”From Crash-Stop to Permanent Omission: Automatic Transformation and
Weak Failure Detectors”, published in Proceedings of the Twenty-First International
Symposium on Distributed Computing (DISC 2007), pages 165—178, September,
2007, Lemesos, Cyprus, [41].

• We give a novel protocol automatic transformation that enables simulation with less
processors for a class of threshold protocols which also comprises problems other than
agreement ones, and which is resilient to byzantine failures. Equivalence classes in
terms of solvability are also defined. Joint (unpublished) work with Maurice Herlihy,
Flávio Junqueira and Keith Marzullo.

Other work done on the way to the Ph.D. degree which is not comprised in this thesis
can be found in the following publications:

• ”Efficient Reduction for Wait-Free Termination Detection in a Crash-Prone Dis-
tributed System”, joint work with Neeraj Mittal, Felix Freiling and Subbarayan
Venkatesan, published in Proceedings of the Nineteenth International Conference
on Distributed Computing (DISC 2005), pages 93—107, September, 2005, Cracow,
Poland, [90].

• ”TrustedPals: Secure Multiparty Computation Implemented with Smartcards”, joint
work with Milan Fort, Felix Freiling, Zinaida Benenson and Dogan Kesdogan, pub-
lished in 11th European Symposium on Research in Computer Security (ESORICS
2006), pages 306—314, September, 2006, Hamburg, Germany, [53].

• ”Safety, Liveness, and Information Flow: Dependability Revisited”, joint work with
Zinaida Benenson, Felix Freiling, Dogan Kesdogan and Thorsten Holz, published
in Proceedings of the 4th ARCS International Workshop on Information Security
Applications, pages 56—65, March, 2006, Frankfurt am Main, Germany, [16].

3



1.3 Thesis Outline

The upcoming chapters are organized as follows. Chapter 2 presents an overview of the
basic concepts in distributed computing and related areas relevant to this thesis. However,
due to the large variety of scenarios, note that each distinct chapter precisely describes
the system model to be considered within it. For clarity purposes, the same happens with
the related work.

Chapter 3 introduces an optimal crash robust protocol for the k-set agreement problem
and its related lower bounds in a message-passing asynchronous distributed system under
special assumptions [64]. Another paper by us, which plays a role in the crash model but
is not included in this thesis, presents a crash robust protocol for wait-free termination
detection [90]. Chapter 4 presents relation between different computational models re-
garding solvability, still in the crash model, and analyzes efficiency issues [18].

In Chapter 5, optimal randomized consensus protocols in a message omission syn-
chronous setting with trusted coprocessors are shown [54]. Another paper by us, not
included in this thesis, which implements synchronous deterministic solutions prior to
ones in Chapter 5, in a system environment called TrustedPals to be used in Chapter 6
under an asynchronous perspective, can be found in [53]. Moreover, related discussions
by us on dependability issues can be found in [16]. Chapter 6 investigates the feasibility
of providing a deterministic, efficient and secure solution to consensus in the presence
of partial synchrony with a certain failure detection in a message omission asynchronous
setting with trusted coprocessors provided by TrustedPals [36]. In Chapter 7, a weakest
failure detection preserving automatic transformation from the crash model to the message
omission model is given [41].

In Chapter 8, a novel byzantine resilient protocol automatic transformation that en-
ables simulation with less processors for a class of threshold protocols is displayed. Finally,
Chapter 9 concludes with a summary and a handful of suggestions for future work.
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Chapter 2

Distributed System Models

Before presenting the main results which comprise this thesis, we quickly review some
of the basic concepts and issues related to distributed computing [82, 60]. Hence, this
chapter gives an overview of the formal models used in the following chapters. Nonetheless,
note that each chapter precisely describes model(s) there assumed. In Section 2.1 a brief
description of a distributed system components is given. Then, in Section 2.2 a list of
possible failures is shown, while in Section some general timing models are introduced.
Finally, a short overview, on important components of distributed systems in Section 2.5
and possible considerations of adversaries in Section2.6, is given.

2.1 Distributed Computing

A distributed system [82] is modeled as a directed graph of n vertices, which denote pro-
cessors, while channels are denoted by directed edges. Each processor contains at least
one process, but may contain several. Moreover, each process has an outgoing message
buffer and an incoming message buffer to/from every other processor.

I/O automata are used to model processes and channels. Formally, an I/O automaton
consists of: a set of start states, a set of states, final states, actions, and a transition
function. Besides, each automaton has external actions, internal actions, input actions
and output actions. Note that while internal and output actions depend on the automaton,
external and input actions depend on the environment. For instance, an internal action
may be querying an oracle, such as querying a failure detector, a device explained later
in one of the next sections, and an external action may be another automaton crash.
Furthermore, outputs may be of the form sendi,j(m), where m is a message sent from
automaton i to another automaton j, and inputs may be of the form receivei,j(m), where
m is a message received at automaton i from another automaton j. Note that when
automaton ai sends a message m to automaton aj , ai inserts m into its outgoing message
buffer. From there m is transported over the channel to aj ’s incoming message buffer,
from where it is then removed and received by aj .

A run of an I/O automaton is either a finite sequence of steps, s0, c1, s1, . . . , cr, sr, or
an infinite sequence s0, c1, s1, . . . , cr, sr, ... of alternating states and actions, where s0 is
an initial state, ci is an action, si is a state, and each triple (si−1, ci, si) is a transition of
for every i ≥ 1. Each transition is only modified by, and only modifies, the local state of
a single automaton. ci is said to be enabled in si−1 when (si−1, ci, si) is a possible step.
Automata are input-enabled if every input action is enabled in every state.

An execution is a sequence of global states of the system, where each global state
comprises the state of each automaton and the collection of messages in transit. In this
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scenario, the events of an automaton are the local transitions. A behavior of an execution
is the consists of external actions.

A problem to be solved by an automaton is a set of sequences of external actions. In
a distributed system, a distributed protocol for a collection of processes is a collection of
local protocols, one for each process, each process represented by an automaton.

A problem specification is a set of possible behaviors and an automaton solves the
specification if each of its behaviors is contained in this set. A property is a subset of a
problem specification. There are three main types of properties in distributed computing:

• Safety : A safety property states that something will never happen. An example
of a safety property would be value agreement, i.e. no two processes can decide on
different values.

• Liveness: A liveness property states that eventually something will happen. An
example of a liveness property would be value decision, i.e. at some point a decision
on a value is taken.

• Information flow : An information flow property states which information is can be
learned and who is authorized to learn it. A property here is a set of set of executions.
An example is that of confidential channels, i.e. the fact that the content of a message
m sent remains confidential to other processes [87].

2.2 Failures

Failure models characterize the possible scope of faults within a distributed computing
environment [82, 60]. Here, a component in a distributed system such as a process or a
channel is said to be correct if it does not perform any failures at all or it does not operate
maliciously, otherwise it is faulty.

Failures can be classified as transient or permanent. A transient fault will eventually
vanish, whereas a permanent one will remain. A protocol coping with t failures is said to
be t-resilient, and if t = n− 1, it is said to be wait− free.

2.2.1 Failure Models for Processors or Automata

Now we introduce various forms of processor or automaton failures [82]. Note that if a
processor is contaminated by a kind of failure, so are its automata.

Crash

A crash failure occurs when a processors’ automaton halts its protocol and all its external
communication, never recovering again. A typical reason for a crash is an operating system
that comes to a halt.

Message Omission

In a message omission failure, a processor’s automaton may crash or experience a send or
receive omission, i.e. it does not send a message it is supposed send to its outgoing buffer
or does not receive a message it is supposed to receive in its incoming buffer, according to
its protocol.
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Byzantine

A byzantine failure is an arbitrary fault that occurs during the execution of a proces-
sor’s automaton protocol, be it by purpose or a random event, representing unexpected
hardware failures, network congestions and disconnections, and malicious attacks.

2.2.2 Failure Models for Communication Channels

Here we present distinct channels, which are supposed to carry and deliver messages from
outgoing buffers to incoming buffers. Each type of channel is subject to different faults,
and are listed in the following from the weakest to the strongest in terms of reliability [60].

Fair-loss Channels

A fair-loss channel does not ensure a reliable connection, since messages can be lost in
transit. Fair-loss channels pass on an infinite number of messages if they received an
infinite number of messages. Fair-loss channels satisfy the following properties:

• Fair-Loss: If a process p sends an infinite number of messages m to process q, then
q receives an infinite number of messages from p.

• Finite Duplication: If a message m is sent a finite number of times by a process p to
a process q, then m cannot be delivered an infinite number of times by q.

• No Creation: If a message m is delivered by some process q, then m was previously
sent by some process p, and p and q are both correct.

Best-effort Channels

Best-effort channels, do not provide any guarantees that the message is delivered if the
sender fails. A best-effort channel satisfies the following properties:

• Best-effort : If a process p sends a message m to process q, and none of the both
processes p and q has failed, then q eventually receives m.

• No Duplication: No message is delivered by a process more than once.

• No Creation: If a message m is delivered by some process q, then m was previously
sent by some process p, and p and q are both correct.

Stubborn Channels

Stubborn channels establish a bridge between best-effort channels and reliable channels
which are introduced in the next subsection. A stubborn channel satisfies the following
properties:

• Stubborn: If a process p sends a message m to a process q and p does not fail, then
q eventually delivers m an infinite number of times.

• No Creation: If a message m is delivered by some process q, then m was previously
sent by some process p, and p and q are both correct.

7



Reliable Channels

A reliable channel can be characterized as a channel where all messages which are sent are
received, even if the sending process crashes after having sent the message, but provided
that the receiver process does not crash. It is a useful abstraction when designing and
proving the correctness of distributed algorithms and it has stronger semantics than best-
effort channels and stubborn channels. A reliable channel can be defined as a channel that
satisfies the following properties:

• No Loss: If a process p sends a message m to process q, and p and q do not fail,
then q eventually receives m.

• No Duplication: No message is delivered by a process more than once.

• No Creation: If a message m is delivered by some process q, then m was previously
sent by some process p, and p and q are both correct.

Secure Channels

A secure channel is a reliable channel from which an adversary does not have the ability
to delete, modify, insert, or read a message. Protecting messages against eavesdropping is
done by ensuring confidentiality. Protecting against modification and insertion is done by
protocols for mutual authentication and message integrity. Thus, a secure channel satisfies
the following properties:

• No Loss: If a process p sends a message m to process q, and p and q do not fail,
then q eventually receives m.

• No Duplication: No message is delivered by a process more than once.

• No Creation: If a message m is delivered by some process q, then m was previously
sent by some process p, and p and q are both correct.

• Confidentality : If a process p sends a message m to process q, and p and q do not
fail, then the content of the message m is not accessible to unauthorized parties.

2.3 Timing Models

An essential aspect of defining a distributed systems model is the automata and channel
behavior in respect to time, which in the context of this thesis may happen in three distinct
ways.

2.3.1 Synchronous Systems

In a synchronous system one has exact upper bounds on processing and communication
delays. Clearly, if bounds exist and are known, it is easier for an automaton to detect the
failure of others. A system is synchronous if it satisfies the following properties:

• There exists a known upper bound on message delay.

• There exist known upper bounds on the time necessary to execute a protocol step.
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2.3.2 Partially Synchronous Systems

An alternative on weakening the assumptions on explicit timing bounds is the partial
synchrony model. Here, there are three possibilities of partial synchrony:

• message delay and processing speeds may be bounded, but the bound may be un-
known, or

• bound may be known but holds only eventually, or

• bound may be unknown and holds eventually.

2.3.3 Asynchronous Systems

Last, in an asynchronous system there are no assumptions about the relative speeds of
the automata or their channels. It is assumed that components take steps in an arbitrary
order, at arbitrary relative speeds, in a way similar to real distributed systems such as the
Internet.

2.4 K-Set Agreement

Agreement problems represent an essential building block of the whole distributed com-
puting area, as noted in our first chapter. The most general is the k-set agreement problem
[31], where each process in a group starts with a private input value, communicates with
the others, and then halts after choosing a private output value. Each automaton is
required to satisfy the following properties:

• Termination: Every correct automaton eventually decides on some value.

• Validity : The decided value must have been proposed by some automaton.

• Agreement : The decided value differs from at most k − 1 distinct values decided by
other automata.

This definition may be modified according to the failure model. Besides, when k = 1,
this problem is more commonly named by consensus.

2.5 Failure Detectors

To circumvent asynchronicity issues such as problem solving impossibilities, an asyn-
chronous distributed system component called failure detector is used [74]. More precisely,
a failure detector is an abstract device provided to a system to enable automata to know
more about its external distributed environment. In short, each automaton in the system
is associated with a local failure detector, which it can query at any time, in order to get
a list of automata or channels that the failure detector suspects to have failed at that
moment.

Usually a failure detector can be specified by a completeness and an accuracy property.
Common completeness properties used to define failure detectors in environments prone
to crash failures:

• Strong completeness: Eventually every automaton that crashes is permanently sus-
pected by every correct automaton.
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• Weak completeness: Eventually every automaton that crashes is permanently sus-
pected by some correct automaton.

Besides, four common accuracy properties also used to define failure detectors are:

• Strong accuracy : No automaton is suspected before it crashes.

• Weak accuracy : Some correct automaton is never suspected.

• Eventual strong accuracy : There is a time after which correct automata are not
suspected by any correct automaton.

• Eventual weak accuracy : There is a time after which some correct automaton is
never suspected by any correct automaton.

Miscellaneous failure detectors are defined within this thesis, including ones which deal
with more challenging types of failures. Note that each chapter provides its own definition
of failure detection according to its failure model and requirements stemming from problem
under investigation.

2.6 Adversary Model

We say a processor or automaton is malicious if any protocol running inside is not executed
as it is supposed to. Otherwise the processor or automaton is correct.

There are two different assumptions about the computational power of an adversary, i.e.
the quantity of resources the adversary can afford in order to succeed [70]. We distinguish
between:

• Bounded Adversary : A bounded adversary can only use a restricted amount of time
and space.

• Unbounded Adversary : An unbounded adversary can use as much time and space as
it needs.

In this thesis, it is assumed that adversaries are computationally bounded. Further-
more, it is assumed that adversaries may be defined using fail-prone systems [74], which
define maximal sets of automatons that can fail at the same time, a way to define the
scope and power of an adversary’s influence. A more precise description of which type of
adversary we are dealing with is given in each chapter, respectively.

2.7 Summary

In this chapter, we briefly introduced a variety of basic notions and assumptions from the
distributed computing area to be used in the next chapters.
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Chapter 3

A Crash Robust Protocol and Its
Lower Bound

We now start with our presentation of fault-resilient distributed protocols, by considering
more simple failures such as crash ones. Here, we introduce a new optimal crash robust
protocol for the k-set agreement problem in a message-passing asynchronous distributed
system under special assumptions [64]. Furthermore, we prove lower bounds related to it,
that is, the one which proves its optimality and another one which proves the optimality of
a very close related crash-resilient distributed protocol. Note that the concept of optimal
refers to the maximum number of faults which may be tolerated under the considered
model. In the following sections, we clarify the contributions (Section 3.1), describe the
related work (Section 3.2), give details on the assumed topological and computation models
(Section 3.3 and Section 3.4), prove a lower bound for a related model (Section 3.5), and
finally introduce our novel optimal crash robust protocol and prove its lower bound (Section
3.6).

3.1 Motivation

As a reminder, in the k-set agreement problem [31], each process in a group starts with a
private input value, communicates with the others, and then halts after choosing a private
output value. Each process is required to choose some process’s input, and at most k
distinct values may be chosen.

We consider this problem in an asynchronous message-passing system of n+1 processes,
of which at most f may fail by halting. 1 Each process is equipped with a failure detector
[27, 28], an unreliable oracle that continually provides the process with a list of processes
suspected of having failed. As said before, a failure detector is a mathematical abstraction
that models time-out, heartbeat, and related techniques used by real systems to detect
failures. A process that is not suspected is trusted. A correct process is one that never
fails, and a non-faulty process at a particular time (sometimes implicit) is one that has
not failed yet.

Limited-scope failure detectors [94, 117] formally capture the idea that a process can
typically detect some failures more accurately than others. For example, if processes send
one another periodic heartbeat messages, then a process may detect failures reliably on
the same local-area network, but less reliably over a wide-area network.

1When comparing our formulas to those of Moustéfaoui and Raynal [94], be aware that they assume n
processes in the system, while we assume n + 1, which simplifies topological calculations.
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Mostéfaoui and Raynal [94] propose a model in which there is a single cluster of pro-
cesses, containing at least one correct (that is, not failed) process that is never erroneously
suspected by any process in that cluster. Here, we extend that model in a natural way to
admit multiple clusters. Each cluster includes at least one correct process that is never
suspected by any process in that cluster, either from the very beginning or eventually, i.e.,
after some point in time. A model with q clusters corresponds to a network composed of
q local area networks.

As we will show, the circumstances under which k-set agreement can be solved in this
model are determined by the values of k, of q (the number of clusters), and x, the combined
size of the min{k, q} largest clusters (the k, if q ≥ k, or the q largest, if q < k).

As described in Chapter 2, a failure detector class is characterized by a completeness
property and an accuracy property. The limited-scope failure detectors considered here
satisfy

• Strong Completeness: Any process that crashes is eventually permanently sus-
pected by every correct process.

Informally, if a process really crashes, then sooner or later, every failure detector will de-
tect that something is wrong.

We consider two alternative accuracy properties.

• Perpetual Weak (x, q)-Accuracy: Some correct process in each cluster is never
suspected by any process in that cluster.

• Eventual Weak (x, q)-Accuracy: Eventually, there is a time after which some
correct process in each cluster is never suspected by any process in that cluster.

We focus on two failure detector classes in this paper:

• Sx,q satisfies strong completeness and perpetual weak (x, q)-accuracy.

• �Sx,q satisfies strong completeness and eventual weak (x, q)-accuracy.

In a system of n + 1 processes, the well-known failure detector S introduced by Chan-
dra and Toueg [28] is just Sn+1,1, and �S is �Sn+1,1. The limited-scope failure detectors
considered by Mostéfaoui and Raynal [94], Sx and �Sx are Sx,1 and �Sx,1. Note that, by
definition, both Sx,q and �S are at least as strong as �Sx,q.

We make the following contributions.
Lower Bounds We give the first lower bounds for k-set agreement protocols employing
failure detector classes Sx,q and �Sx,q. For the perpetually-accurate class Sx,q, we show
that no k-set agreement protocol is possible if

f ≥

{
k + x− q q ≤ k
x otherwise.

In the special case where there is only one cluster, our lower bound implies that the elegant
TWA-based protocol of Mostéfaoui and Raynal [94] is optimal, confirming their conjecture.

For the eventually-accurate class �Sx,q, we show that no (n+1)-process k-set agreement
protocol is possible if

f ≥

{
min(n+1

2 , k + x− q) q ≤ k
min(n+1

2 , x) otherwise.
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In the special case where there is only one cluster, there is a gap between our lower bound
and the algorithm proposed by Mostéfaoui and Raynal. We close this gap with a new
algorithm, described below.

Our proof employs concepts and methods adapted from elementary Combinatorial
Topology [66, 68]. These methods have been successful in other models, but this is the
first time such methods have been applied to failure detectors.

Note that, our proof implies that given t, Sx∗,q∗ is weakest failure detector for k =
t− x∗ + q∗ + 1 among class of Sx,q failure detectors, for all possible x and q.
Upper Bounds For perpetually-accurate failure detectors (class Sx,q), we give a simple but
non-trivial generalization of the Mostéfaoui and Raynal algorithm. The new algorithm
encompasses multiple clusters, and it is optimal because it matches our lower bound.

For eventually-accurate failure detectors (class �Sx,q), we give a novel protocol that
matches our lower bound. In the special case where there is only one cluster, our pro-
tocol improves on the corresponding protocol of Mostéfaoui and Raynal, disproving their
conjecture that their protocol is optimal.

Our protocol has an unexpectedly simple structure: It alternates the perpetually-
accurate protocol with a novel convergence detection protocol that halts when it detects
that an earlier iteration of the perpetually-accurate protocol has succeeded.

3.2 Related Work

We build on pioneering work of Mostéfaoui and Raynal [94]. We show that their TWA-
based protocol for Sx is optimal if there is only one cluster, and we improve their protocol
for �Sx from

f < max(k,max1≤α≤k(min(n+ 1− α
⌊
n+ 1
α+1

⌋
, α+x− 1)))

to an optimal

f < min(
n+ 1

2
, k + x− 1).

Moreover, we generalize their protocol to q clusters, instead of one, and show that this
generalized protocol is optimal for Sx,q. We also show that our new protocol is optimal
for �Sx,q.

Anceaume et al. [6] give a non-optimal multi-module k-set agreement protocol for �Sx,1
that, besides tolerating f < n+k−1

2 failures when x > f , also becomes communication-
efficient if at least one of k − 1 pre-determined processes does not fail.

Borowsky and Gafni [21], Herlihy and Shavit [68], and Saks and Zaharoglou [108]
showed there is no wait-free protocol for k-set agreement in asynchronous message-passing
or read/write memory models. Chaudhuri, Herlihy, Lynch, and Tuttle [32], Herlihy, Ra-
jsbaum, and Tuttle [66, 67] derive lower bounds on round complexity for the synchronous
fail-stop message-passing mode. Many of these proofs rely, directly or indirectly on mech-
anisms and techniques adapted from Combinatorial Topology.

Failure detectors [27, 28] have received an enormous amount of attention, most of
which has focused on solving the consensus problem. Yang, Neiger, and Gafni [117],
and Mostéfaoui and Raynal [94] have proposed k-set agreement protocols for models that
encompass limited-scope failure detectors, but we are unaware of any prior lower bounds
for these models.

Gafni [56] introduces the notion of round-by-round failure detectors to give a number
of novel reductions between models.
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Attiya and Avidor [8] and Mostéfaoui et al. [91] have investigated the related problem
of solving k-set agreement when inputs are restricted.

Our new algorithm for eventual weak accuracy failure detectors has a style similar to
the k-converge algorithm of Yang, Neiger, and Gafni [117]: it alternates an eventually-
successful agreement protocol with an eventually-successful termination-detection proto-
col. The protocols and underlying models, however, are quite different.

3.3 Topological Model

In our model, a set of n+ 1 processes communicate by message-passing. An initial or final
state of a process is modeled as a vertex, 〈Pi, v〉, a pair consisting of a process id Pi and a
value v (either input or output). (Sometimes a vertex is labeled only with a process id.)

Definition 3.1. A d-dimensional simplex Sd = (s0, . . . , sd), called d− simplex, is a set
of d + 1 vertexes that model mutually compatible initial or final process states. We say
that s0, . . . , sd span Sd. Simplex T is a (proper) face of Sd if the vertexes of T form a
(proper) subset of the vertexes of Sd.

We use dim(S) for the dimension of S, and ids(S) for the set of process ids labeling
vertexes of S.

If X is a subset of the process ids labeling a simplex S, then S\X is the face of S
labeled with simplexes not in X.

Definition 3.2. A simplicial complex (or complex) is a set of simplexes closed under
containment and intersection. The dimension of a complex is the highest dimension of
any of its simplexes. L is a subcomplex of K if every simplex of L is a simplex of K.

We sometimes indicate the dimension of a simplex or complex as a superscript.
A key idea is the concept of a pseudosphere [66], a simple combinatorial structure in

which each process from a set of processes is independently assigned a value from a set
of values. Pseudospheres have a number of nice combinatorial properties (for example,
they are closed under intersection), but their principal interest lies in the observation that
the behavior of the protocols we consider can be characterized as simple compositions of
pseudospheres.

Definition 3.3. Let Pn be the simplex in which each vertex is labeled with a process
id. and U0, . . . , Un a sequence of finite sets. The pseudosphere ψ(Pn;U0, . . . , Un) is the
following complex. Each vertex is a pair 〈Pi, ui〉, where Pi is a process id (a vertex of Pn)
and ui ∈ Ui. Vertexes 〈Pi0 , ui0〉 , . . . , 〈Pi` , ui`〉 span a simplex of ψ(Pn;U0, . . . , Un) if and
only if the Pi are distinct. A pseudosphere in which all Ui are equal to U is simply written
ψ(Pn;U).

Definition 3.4. A protocol is a program in which each process starts with a private input
value, communicates with the other processes via message-passing, and eventually halts
with a private output value. Processes may crash, halting in the middle of the protocol,
and messages in transit may be delayed for arbitrary finite durations. Processes may use
failure detectors to decide when to stop waiting for messages. Without loss of generality,
we restrict attention to full-information protocols in which each process sends its entire
state in each message.
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Definition 3.5. Any protocol has an associated protocol complex P, defined as follows.
Each vertex is labeled with a process id and a possible local state for that process. Ver-
texes 〈P0, v0〉 , . . . , 〈Pd, vd〉 span a simplex of P if and only if there is some protocol exe-
cution in which P0, . . . , Pd finish the protocol with respective local states v0, . . . , vd. Each
simplex thus corresponds to an equivalence class of executions that “look the same” to the
processes at its vertexes. The protocol complex P depends both on the protocol and on the
timing and failure characteristics of the model.

It is convenient to treat a protocol complex as an operator carrying input simplexes or
complexes to protocol complexes.

Informally, a complex is k-connected if it has no holes in dimensions k or less. More
precisely:

Definition 3.6. A complex K is k-connected if every continuous map of the `-sphere to K

can be extended to a continuous map of the (`+ 1)-disk [112, p. 51], for all 0 ≤ ` ≤ k. By
convention, a complex is (−1)-connected if it is non-empty, and any complex is vacuously
`-connected for ` < −1.

This definition of k-connectivity may seem cumbersome, but fortunately we can do all
our reasoning in a combinatorial way, using the following elementary consequence of the
Mayer-Vietoris sequence [95, p. 142].

Theorem 3.7. If K and L are complexes such that K and L are k-connected, and K∩L

is (k − 1)-connected, then K ∪ L is k-connected.

As a base case for all such inductions, any simplex Sn is n-connected.

Theorem 3.8 ([66]). If U0, . . . , Um are non-empty, then ψ(Sm;U0, . . . , Um) is (m − 1)-
connected.

Finally, the notion of k-connectivity lies at the heart of all known lower bounds for k-set
agreement. We now give a general theorem linking (k− 1)-connectivity with impossibility
of k-set agreement, originally stated in [65]. Note that this theorem is model-independent
in the sense that it depends on the connectivity properties of protocol complexes, not on
explicit timing or failure properties of the model.

Theorem 3.9. Let I be the standard input complex ψ(Pn, V ), where |V | > k. If the
complex P(I) is (k − 1)-connected, then P cannot solve k-set agreement in the presence of
f failures.
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3.4 Models of Computation

Without loss of generality, we assume that processes execute in asynchronous rounds: at
round r, a process broadcasts a message containing its state to all of the others, and
then waits until it receives round-r messages from all unsuspected processes (including
itself). Messages are full-information, containing each process’s complete state, including
a history of all messages sent and received up to that point. Failure detectors satisfy strong
completeness: if after some point Q never sends a message to P , then P will eventually
suspect Q and stop waiting for that message.

The basic model of computation guarantees only that each non-faulty process at round
r will eventually receive round-r messages from at least n− f + 1 processes.

Definition 3.10. A message-passing model satisfies causality if it satisfies the following
condition. If

1. process P sends a message p to all processes,

2. Q receives p and later sends q to all processes, and

3. R receives q at round r,

then R receives p at a round less than or equal to r.

We claim that causality adds nothing to the computational power of the basic model.

Lemma 3.11. If a protocol solves k-set agreement for a given x, q, and f in the basic
model with causality, then the same is true for the basic model (without causality).

Proof. Let P , Q, and R be processes as described in Definition 3.10. Suppose R receives
message q at round r without receiving p at a round less than or equal to r. Because
messages are full-information, R can extract p from r, and act as if it had also received
p.

It follows that if there is no k-consensus protocol for given x, q, and f in the basic
model, then there is no such protocol in the basic model with causality.

A message-passing model satisfies eventual delivery if every message is eventually de-
livered to every non-faulty process.

Definition 3.12. The standard model is the basic model with causality and eventual
delivery.

We claim that eventual delivery adds nothing to the computational power of the basic
model with causality.

Lemma 3.13. If a protocol solves k-set agreement for a given x, q, and f in the standard
model, then the same is true for the basic model with causality.

Proof. Suppose we have a protocol P that always terminates in the standard model, but has
an infinite execution in the basic model with causality (caused by undelivered messages).
Define a lost message to be one that is never delivered to some non-faulty process. Let L
be the set of processes that send a lost message, M the set of those that don’t, and F the
set of those that fail. (L and M are disjoint, but may overlap F .)

Once a process P in L sends a lost message, it can never send another message to any
process in M , because the later message would be forwarded to every non-faulty process,
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and causality would force delivery of the earlier “lost” message to every non-faulty process.
Once P falls silent to M , strong completeness implies it will eventually be suspected by
every process in M .

We claim that |L ∪ F | ≤ f . Wait until every process in L has sent a lost message and
fallen silent to M , and every process in F has failed and fallen silent to M . The model
ensures that messages from at least n − f + 1 processes continue to be delivered to each
process in M , so the missing processes can only come from L ∪ F .

The infinite execution of P in the basic model with causality is thus indistinguishable,
to the processes in M , from an infinite execution in the standard model where processes
in L fail instead of sending the first lost message. Since the protocol terminates in the
second model, it terminates in the first.

It is convenient to prove our lower bounds in the basic model.

Corollary 3.14. If there is no protocol that solves k-set agreement for a given x, q, and
f in the basic model, then the same is true for the standard model.

3.5 Perpetual Weak (x, q)-Accuracy

Without loss of generality, assume that each process’s input value is an integer from a set
V of size greater than k. Let X0, . . . , Xq be the clusters, where each Xi has size xi, and
clusters are indexed by decreasing size (xi ≥ xi+1). Let x be the combined size of the k
largest clusters (or the q largest, if q < k). More precisely, let κ = min(k, q).

x =
κ−1∑
i=0

xi

Let In be the input complex in which each process is independently given an input value
from V . This complex is a pseudosphere: In = ψ(Pn;V ).

Lower bounds apply even if we restrict the behavior of the adversary, so we will restrict
our attention to executions in which processes run in (asynchronous) rounds: each process
repeatedly broadcasts its message and waits for n− f + 1 messages to arrive.

3.5.1 No Clusters

Let D be the operator that corresponds to a one-round execution in the basic model in
which all failure detectors satisfy only strong completeness. Operationally, each process
receives messages containing full state information from at least n− f − 1 processes. (For
simplicity, we assume a process may or may not receive a message from itself.) Combina-
torially, after one round each process’s vertex is labeled with a face of In of dimension at
least n− f . The result of the the one-round operator is thus a pseudosphere:

D(In) = ψ(In;Un−f ),

where Un−f = {T |T ⊂ In and dim(T ) ≥ n− f}, the set of faces of In of dimension at
least n− f . It follows that D(In) is (f − 1)-connected.

Let Dr(In) denote the r-round protocol complex on input simplex In. Recall that
Pn is an n-simplex where vertex i is labeled with process id i, ψ(Pn; {u0} , . . . , {un}) is a
simplex where vertex i is labeled with process id i and value ui.

Theorem 3.15. Let In = ψ(Pn; {u0} , . . . , {un}). If Dr(In) is (f − 1)-connected, so is
Dr(ψ(Pn;U0, . . . , Un)) for non-empty sets U0, . . . , Un.
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Proof. By induction on f . For base case, let f = 0. Dr(ψ(Pn;U0, . . . , Un)) is non-empty,
and is therefore (f − 1)-connected.

Define the following partial order on sequences of sets: (U0, . . . , Um) ≺ (V0, . . . , Vm) if
each Ui ⊆ Vi, and for at least one set, the inclusion is strict.

We argue by induction on the partially-ordered sequences. For the base case, Dr(In)
is (f − 1)-connected by hypothesis.

For the induction step for the set sequences, let U0, . . . , Um be a non-minimal sequence
of sets, and assume the claim for every preceding sequence. Since the Ui are not all
singleton sets, there must be some index i such that Ui = Vi ∪{v}, where Vi is non-empty.
It follows that

Dr(ψ(Pm;U0, . . . , Um)) = K ∪ L,

where
K = Dr(ψ(Pm;U0, . . . , Vi, . . . , Um)),

and
L = Dr(ψ(Pm;U0, . . . , {v} , . . . , Um)).

By the induction hypothesis for the sets, both K and L are (f − 1)-connected.
A vertex is in K and L if and only if the process id Pi does not appear in any vertex

label. The complex K ∩ L is the result of an r-round, f -failure execution in which Pi
fails before sending any messages. Equivalently, K ∩ L = Dr(In\ {Pi}), the result of an
r-round, (f−1)-failure execution over all processes except Pi. By the induction hypothesis
on f , K ∩ L is (f − 2)-connected, and by Theorem 3.7, K ∪ L is (f − 1)-connected.

Theorem 3.16. Dr(In) is (f − 1)-connected.

Proof. We argue by induction on r. For the base case, r = 1, and D(In) is a pseudosphere,
and therefore (n− 1)-connected and also (f − 1)-connected.

For the induction step, assume Dr−1(In) is (f −1)-connected. By Theorem 3.15, Dr−1

applied to any pseudosphere over In is also (f − 1)-connected. In particular, D(In) is a
pseudosphere, so Dr−1(D(In)) = Dr(In) is (f − 1)-connected.

3.5.2 Single Cluster

We now consider the case where there is a single cluster X of x processes, and a single
process P0 never suspected by any process in X. Let Dx be the corresponding operator.
Operationally, each process receives messages containing full state information from at
least n− f − 1 processes, and every process in X receives a message from P0. The result
of the one-round operator is thus the pseudosphere:

Dx(In) = ψ(In;U0, . . . , Un),

where

Ui =

{
{F |F ⊂ In, dim(F ) ≥ n− f, and Pi ∈ ids(F )} if Pi ∈ X
{F |F ⊂ In and dim(F ) ≥ n− f} otherwise

It follows that Dx(In) is (f − 1)-connected.
Let Dr

x(In) denote the r-round protocol complex on input simplex In for a given cluster
X.

Theorem 3.17. Let In = ψ(Pn; {u0} , . . . , {un}). If f ≥ x − 1, and Dr
x(In) is (f − x)-

connected, so is Dr
x(ψ(Pn;U0, . . . , Un)) for non-empty sets U0, . . . , Un.
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Proof. We proceed by induction on f . For the base case, let f = x − 1. Dr
x(In) is

non-empty, hence (f − x)-connected.
Assume the claim for fewer than f failures. As before, let ≺ be the partial order on

sequences of sets. We argue by induction on the partially-ordered sequences. For the base
case, Dr

x(In) is (f − x)-connected by hypothesis.
For the induction step for the set sequences, let U0, . . . , Um be a non-minimal sequence

of sets, and assume the claim for every preceding sequence. Since the Ui are not all
singleton sets, there must be some index i such that Ui = Vi ∪{v}, where Vi is non-empty.
It follows that

Dr
x(ψ(Pm;U0, . . . , Um)) = K ∪ L

where
K = Dr

x(ψ(Sm;U0, . . . , Vi, . . . , Um)),

and
L = Dr

x(ψ(Sm;U0, . . . , {v} , . . . , Um)).

By the induction hypothesis for the sets, both K and L are (f − x)-connected.
A vertex is in K and L if and only if Pi does not appear in any vertex label. There are

two cases to consider. Suppose Pi = P0, the process trusted by every process in X. Every
process in X receives a message from P0, so no process in X appears in the label of any
vertex in K∩L. If f ≥ x, the complex K∩L is the result of an r-round, f -failure execution
of Dr

x in which each process in X fails before sending any messages. Equivalently, because
f − x ≥ 0,

K ∩ L = Dr(In\X),

the result of an r-round, (f −x)-failure execution of Dr over the face of the input simplex
labeled with the n − x + 1 processes not in X. By Theorem 3.16, K ∩ L is (f − x − 1)-
connected. If f = x − 1, then K ∩ L is empty. Notice that f − x − 1 = −2, so K ∩ L is
(trivially) (f − x− 1)-connected.

If Pi is distinct from P0, then Pi does not appear in the label of any vertex in K ∩ L.
The complex K∩L is thus the result of an r-round, f -failure execution of Dr

x in which Pi
fails before sending any messages. If Pi is in X, then this complex is equivalent to

K ∩ L = Dr
x−1(In\ {Pi}),

the result of an r-round, (f − 1)-failure execution of Dr
x−1 over the face of the input

simplex containing every process except Pi. Let x′ = x − 1 and f ′ = f − 1. By the
induction hypothesis for f , K∩L is (f ′ − x′)-connected, and therefore (f − x)-connected,
and (f − x− 1)-connected.

If Pi is not in X, then this complex is equivalent to

K ∩ L = Dr
x(In\ {Pi}).

Let x′ = x and f ′ = f −1. By the induction hypothesis for f , K∩L is (f ′−x′)-connected,
and therefore (f − x− 1)-connected.

Since K and L are each (f−x)-connected, and K∩L is (f−x−1)-connected, it follows
from Theorem 3.7 that K ∪ L is (f − x)-connected.

Theorem 3.18. If f ≥ x− 1, Dr
x(In) is (f − x)-connected.

19



Proof. We argue by induction on r. For the base case, r = 1, and Dx(In) is a pseudosphere,
and therefore (n− 1)-connected and also (f − x)-connected.

For the induction step, assume Dr−1
x (In) is (f−x)-connected. By Theorem 3.17, Dr−1

x

applied to any pseudosphere over In is also (f − x)-connected. In particular, Dx(In) is a
pseudosphere, so Dr−1

x (Dx(In)) = Dr
x(In) is (f − x)-connected.

3.5.3 Multiple Clusters

We now consider the case where there are multiple clusters X0, . . . , Xq−1, where each Xj

contains a correct process never suspected by any process in Xj . Each Xj has size xj .
Index the processes so that Pj is not suspected by any process in Xj , for 0 ≤ j < q.

Let Dx,q be the corresponding one-round operator. Operationally, each process receives
messages containing full state information from at least n−f −1 processes, subject to the
condition that every process in Xj receives a message from Pj , for 0 ≤ j < q. Combina-
torially, after one round each process’s vertex is labeled with a face of In of dimension at
least n− f , where the faces labeled processes in Xj include Pj ’s vertex. The result of the
the one-round operator is thus a pseudosphere:

Dx,q(In) = ψ(In;U0, . . . , Un),

Ui =

{
{F |F ⊂ In and dim(F ) ≥ n− f and Pj ∈ ids(F )} if Pi ∈ Xj

{F |F ⊂ In and dim(F ) ≥ n− f} otherwise

It follows that Dx,q(In) is (f − 1)-connected.
Recall that κ = min(q, k).

Theorem 3.19. Let In = ψ(Pn; {u0} , . . . , {un}). If Dr
x,q(I

n) is (f−x+κ−1)-connected,
so is Dr

x,q(ψ(Pn;U0, . . . , Un)) for non-empty sets U0, . . . , Un.

Proof. We argue by induction on f . For the base case, let f = x−κ. Dr
x,q(ψ(Sn;U0, . . . , Un))

is non-empty, hence (f − x+ κ− 1)-connected.
Assume the claim for fewer than f failures. As before, let ≺ be the partial order on

sequences of sets. We argue by induction on the partially-ordered sequences. For the base
case, Dr

x,q(I
n) is (f − x+ κ− 1)-connected by hypothesis.

For the induction step for the set sequences, let U0, . . . , Um be a non-minimal sequence
of sets, and assume the claim for every sequence that precedes U0, . . . , Um in the partial
order. Since the Ui are not all singleton sets, there must be some index i such that
Ui = Vi ∪ {v}, where Vi is non-empty. It follows that

Dr
x,q(I

n) = K ∪ L,

where
K = Dr

x,q(ψ(Pm;U0, . . . , Vi, . . . , Um)),

and
L = Dr

x,q(ψ(Pm;U0, . . . , {v} , . . . , Um)).

By the induction hypothesis for the sets, both K and L are (f − x+ κ− 1)-connected.
A vertex is in K and L if and only if Pi does not appear in any vertex label. Suppose

i < q, meaning Pi is trusted by every process in Xi. Every process in Xi receives a message
from Pi, so no vertex with a label in Xi appears in K∩L. The complex K∩L is thus the
result of an r-round, f -failure execution of Dr

X,q in which each process in Xi fails before
sending any messages.
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If i < κ, then this complex is equivalent to

K ∩ L = Dr
x−xi,q−1(In\Xi),

the result of an r-round, (f −xi)-failure execution over the n−xi processes not in Xi. Let
f ′ = f − xi, x′ = x − xi, q′ = q − 1, k′ = k − 1, and κ′ = min(q′, k′) = κ − 1. Note that
x′ is the combined size of the q′ − 1 largest clusters, so by the induction hypothesis for f ,
K ∩ L is (f ′ − x′ + κ′ − 1)-connected, and is therefore (f − x+ κ− 2)-connected.

Suppose i ≥ κ. Let f ′ = f − xi, q′ = q − 1, k′ = k − 1, and κ′ = min(q′, k′) = κ − 1.
Let x′ = x−xκ−1, the combined size of the κ− 1 largest clusters. Notice that x′ ≤ x−xi.
By the induction hypothesis for f , K ∩ L is (f ′ − x′ + κ′ − 1)-connected. Because

f ′ − x′ + κ′ − 1 = f − xi − (x− xκ−1) + κ− 1− 1 ≥ f − x− κ− 2,

K ∩ L is (f − x+ κ− 2)-connected.
Finally, suppose Pi is not the trusted process for any Xi. No vertex with a label

containing Pi appears in K ∩ L. The complex K ∩ L is thus the result of an r-round,
f -failure execution of Dr

X,q in which Pi fails before sending any messages. If Pi is in
X0 ∪ · · · ∪X)κ− 1, then

K ∩ L = Dr
x−1,q(I

n\ {Pi}),

the result of an r-round, (f − 1)-failure execution over the processes distinct from Pi.
Let f ′ = f − 1, and x′ = x − 1, the combined size of the κ largest clusters. By the
induction hypothesis for f , K ∩ L is (f ′ − x′ + κ − 1)-connected, and therefore K ∩ L is
(f − x+ κ− 1)-connected. If Pi is not in X0 ∪ · · · ∪X)κ− 1, then

K ∩ L = Dr
x,q(I

n\ {Pi}),

the result of an r-round, (f − 1)-failure execution over the processes distinct from Pi. By
the induction hypothesis for f , this complex is (f − x+ κ− 2)-connected,

In all cases, K∩L is at least (f − x+ q− 2)-connected, and so by Theorem 3.7, K∪L

is (f − x+ κ− 1)-connected.

Theorem 3.20. Dr
x,q(I

n) is (f − x+ κ− 1)-connected.

Proof. We argue by induction on r. For the base case, r = 1, and Dx,q(In) is a pseudo-
sphere, and therefore (n− 1)-connected and also (f − x+ κ− 1)-connected.

For the induction step, assume Dr−1
x,q (In) is (f−x+κ−1)-connected. By Theorem 3.17,

Dr−1
x,q applied to any pseudosphere over In is also (f −x+κ− 1)-connected. In particular,

Dx,q(In) is a pseudosphere, so Dr−1
x (Dx,q(In)) = Dr

x,q(I
n) is (f−x+κ−1)-connected.

Theorem 3.21. Dr
x,q(I

n) is (f − x+ κ− 1)-connected.

Proof. By Theorem 3.18, Dr
x,q applied to any pseudosphere over Sn is also (f −x+κ−1)-

connected. In particular, In is a pseudosphere over Pn, so Dr
x,q(I

n) = Dr
x,q(ψ(Sn;V )) is

(f − x+ κ− 1)-connected.

Theorem 3.22. There exist protocols solving k-set agreement for n + 1 processes with
failure detectors of type Sx,q if and only if

f <

{
k + x− q q ≤ k
x otherwise
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Proof. By Theorems 3.9 and 3.21, a protocol exists only if f < k + x − κ. We start by
generalizing the Terminating Weak Agreement (TWA) protocol of Mostéfaoui and Raynal
[94] to encompass q sets Xi, instead of just one.

The TWAq protocol for process p appears in Figure 3.1. We are given a set Y of
processes, a unique id u, and an estimate e. The protocol iterates over all subsets Q of
Y of size q. At each round, the protocol generates a round number v. The concatenation
〈u, v〉 is used as a unique label for messages. If p is in Q, then it broadcasts its estimate
to the other processes in X Otherwise, p waits for a message from a process in Q, labeled
with id 〈u, v〉. If it receives such a message, it adopts the estimate in from that message.
If the process eventually suspects all the processes in Q, then it starts the next round with
the same estimate.

We claim that if TWAq is called with Y equal to the set of clusters, then the number
of estimates will be no larger than q. At some point during the protocol, the set Q will
contain exactly the processes Pi, where Pi is the correct process perpetually trusted by
every process in Xi. During that round, no process will suspect every process in Q, because
every process is in some Xi, and will trust Pi ∈ Q. Each process will adopt the estimate
of some process in Q, so the total number of distinct estimates among the processes in X
is at most q.

We now generalize the Sx protocol of Mostéfaoui and Raynal. The Sx,q protocol is
the same as Sx, except we take m = k + x − q instead of m = k + x − 1, where m is
the number of processes given to the TWAq protocol. From Mostéfaoui and Raynal [94],
it is straightforward to see that this slightly modified protocol solves k-set agreement in
asynchronous distributed systems equipped with failure detectors from the class Sx,q.

Theorem 3.23. There exist protocols solving k-set agreement for n + 1 processes with
failure detectors of type �Sx,q if and only if f < min(n+1

2 , k + x− q).

Proof. Both Sx,q and �S are at least as strong as �Sx,q, and Chandra and Toueg [28] show
that f < n+1

2 for �S. Moreover, by Theorem 3.22, f < k + x− q for Sx,q. It follows that
f < min(n+1

2 , k+x− q) for �Sx,q. The matching protocol is given in the next section.
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3.6 Eventual Weak (x, q)-Accuracy

int TWA(int p, Set Y, int e, int u) {
int v = 0;
for each subset Q of size q in Y {

if (p is in Q) { // I am a coordinator
broadcast new TWAMessage(r, e);

} else { // I am not coordinator
try {
// receive round (u,v) message from anyone in Q
Message m = receive(Q, <u,v>);
e = m.estimate; // take other’s estimate

} catch (suspectedException e) {
skip if all process in Q suspected

}
v = v + 1;
}

}
return e;

}

Figure 3.1: The TWAq Protocol

In this section, we present a novel protocol that matches our lower bound for failure
detectors in the class �Sx,q. We start with a slightly modified version of the Terminating
Weak Agreement (TWA) protocol of Mostéfaoui and Raynal, illustrated by pseudocode
in Figure 3.1. This protocol takes a set of m participating processes, an initial value for
each participating process, a round number, and the ID of the calling process. It considers
all possible orderings of the set of m participating processes (which is relevant just when
q > 1). It guarantees that if the set of participating processes includes q sets Xi of xi
processes such that some correct process in Xi is not suspected by any process in Xi, then
at most m− x+ q values are decided.

It is straightforward to extend the TWA protocol to solve k-set agreement for the Sx,q
failure detector: simply run TWA for each subset of m = min(n+ 1, k + x− q) processes
(Figure 3.2). Each process has an estimate, originally its input value. Each iteration
introduces no new estimates. Each process chooses a new estimate at the end of each
round, and retains the estimate it decided in the previous iteration. At some point, the m
processes will encompass the processes in X, and the m processes will henceforth agree on
at most k = m−x+ q distinct estimates for at least one of the orderings (namely, the one
where the trusted processes are positioned at the end). Every process not participating
in that round’s TWA protocol waits for a message from a participant (which will arrive
reducing the maximum number of distinct estimates from n + 1 to k = m − x + q). See
Mostéfaoui and Raynal [94] for a more complete discussion.

For our new �Sx,q protocol, we repeatedly run the TWA-based protocol. Eventually,
when all failure detectors have achieved weak (x, q)-accuracy, each subsequent iteration of
the TWA-based algorithm will yield k or fewer values. The challenge is to detect when
the TWA-based algorithm has converged.

We cycle through all permutations of the n + 1 processes. A low-order process in a
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int SxqAgree(int id, int estimate) {
int m = min(n+1, k + x - q);
// try all sets of size m
for (round = 0; round < C(n+1, m); round++) {

// next subset of m processes
Set particip = ProcessSet.subset(round);
if (id element of particip) { // I’m in the group
estimate = TWAq(id, particip, estimate, round);
broadcast new Message(round, estimate);

} else {
Message message = receive(round);
// take other’s value
estimate = message.estimate;

}
}
return estimate;

}

Figure 3.2: k-set agreement protocol for Sx,q

permutation is one with rank less than or equal to
⌊
n+1

2

⌋
+ 1, and the rest are high-order

processes. Each process broadcasts its estimate, waits to receive
⌊
n+1

2

⌋
+ 1 messages,

and changes its estimate to the estimate from the least-ranked process in the current
permutation. Because f < n+1

2 , each high-order process will receive a message from a low-
order process, so at the end of the round, every process will have switched to an estimate
from a low-order process. If we can determine that the low-order processes had at most k
distinct estimates at the start of the round, then all processes will have at most k estimates
at the end of the round.

Each process includes in its message a history of its estimates at the start of all earlier
rounds. Suppose, in round r, a process P receives messages from a set S of

⌊
n+1

2

⌋
+ 1

processes. Let s ≤ r be the most recent round, if any, for which S was the set of low-order
processes for the permutation at round s. P checks the histories received to determine
whether the processes in S had at most k distinct values at round s. If so, the protocol
has converged, and P can halt. The protocol is illustrated in Figure 3.3.

It is worth emphasizing that the DiamondAgree protocol does not actually depend on
the TWA-based protocol, or even on Sx,q. It requires only (1) that the embedded protocol
does not increase the set of original estimates, (2) it eventually solves k-set agreement,
and (3) that there are fewer than

⌊
n+1

2

⌋
failures.

Note that the complexity of rounds after accuracy is achieved may be lowered from
exponential to polynomial if one changes the size of the low-order set (and the set of
received messages) from

⌊
n+1

2

⌋
+1 to (n+1)−min(

⌊
n+1

2

⌋
, k + x− q)+1 and considers for

the number of rounds all possible combinations for the low-order sets instead of all (n+1)!
permutations of processes. However, this only works when k + x− q is constant.

Note also that getting rid of the anonymity of processes lowers the complexity for Sx,q
from exponential to polynomial, since the combination and ordering of processes are no
longer needed in the TWA protocol. However, it seems that this does not help in reducing
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public int DiamondAgree(int id, int estim) {
for (int r = 0; ; r++) { // run until accuracy achieved
estim = SxqAgree(id, estim);
// cycle through permutations
for (int p = 0; p < (n+1)!; p++) {

Perm perm = new Perm(p); // construct permutation
broadcast new Message(r, p, id, estim, hist);

// wait for ((n+1)/2)+1 messages
MessageSet mSet =receive(r, p, ((n+1)/2)+1);

// take estimate from low-order process
estim = mSet.getLowOrderEstimate();

// when were these processes all low-order?
ProcessSet pSet = mSet.getProcesses();
int lowOrderRound = Perm.firstLowOrder(pSet);
if (lowOrderRound <= round) { // has it happened yet?
// get low-order estimates from that round
EstimateSet eSet = mSet.getEstimates(lowOrderRound);
if (eSet.size() <= k)
broadcast new SuccessMessage();
return estim;

}
}

}
}

Figure 3.3: k-set agreement protocol for �Sx,q

the complexity for �Sx,q.

Theorem 3.24. Let f < min(n+1
2 , k+x−q). The protocol illustrated in Figure 3.3 solves

k-set agreement in asynchronous distributed systems equipped with failure detectors from
class �Sx,q.

Proof. The proof has three parts. Note that m = min(n+ 1, k + x− q), as in the code.
Validity follows from validity of the Sx,q protocol, and because every estimate is always

set to another process’s estimate.
Termination. Because f < m = min(n+ 1, k + x− q), each TWA instance terminates

and at least one process from the participating set broadcasts an estimate. Moreover, no
process waits forever for

⌊
n+1

2

⌋
+ 1 messages.

The eventual (x, q)-accuracy property ensures that at some point there are q sets Xi

of xi processes such that some correct process in Xi is not suspected by any process in Xi.
Consider the first round for which this property holds. The first subsequent execution of
the Sx,q agreement protocol will reduce the number of distinct estimates to no more than
k. After the Sx,q protocol execution, the processes run through the permutations. At some
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round, some non-faulty process must receive messages from the processes that were the
low-order processes for some permutation that occurred after the Sx,q protocol execution,
but before the current permutation. Checking the histories, that process will detect that
the low-order processes had k or fewer distinct estimates, and the protocol will terminate
when that process broadcasts an announcement.

Agreement. The protocol terminates if and only if there is a correct process that
identifies an earlier permutation such that there were at most k distinct estimates among
the low-order processes. Because every process sets its estimate to an estimate from a
low-order process, there can be at most k distinct estimates among all processes.
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Chapter 4

Robust Crash Transformations

Here we investigate computational models with stabilizing properties. Such models include
e.g. the partially synchronous model [48], where after some unknown global stabilization
time the system complies to bounds on computing speeds and message delays, or the
asynchronous model augmented with unreliable failure detectors [28], where after some
unknown global stabilization time failure detectors stop making mistakes [18, 19].

Using protocol transformations we show that many (families of such) models are equiv-
alent regarding solvability. We also analyze the efficiency of such transformations regarding
not only the number of steps in a model M1 necessary to emulate a step in a model M2, but
also the stabilization shift, which bounds the number of steps in M2 required to provide
properties of M2 after the stabilization of M1.

In the following, we begin in Section 4.1 by motivating and presenting related work.
Then in Section 4.2 we make a precise description of the system models. In Section 4.3
we show the models equivalence with the help of automatic protocol transformations and
in Section 4.4 we measure the efficiency of such transformations. Finally, in Section 4.5
we discuss work presented.

4.1 Motivation

We consider distributed message passing systems that are subject to crash failures. Due
to the well-known impossibility result for deterministic consensus in asynchronous systems
[52], a lot of research was done about adding assumptions to the asynchronous model in
order to allow solving the problem. These include assumptions on the timing behavior
of processes and communication links [42, 48] as well as assumptions on the capability of
processes to retrieve information on failures of others [28].

Failure detectors encapsulate timing assumptions in a modular way . The previous sen-
tence is stated in many research papers and sometimes even the required amount of syn-
chrony to solve a problem is expressed via the weakest failure detector necessary (e.g. [59]).
Interestingly, Charron-Bost et al. [29] have shown that in general, failure detectors do not
encapsulate timing assumptions properly. For perpetual kind failure detectors as the per-
fect failure detector P it was shown that the synchronous system has “a higher degree of
synchrony” than expressed by the axiomatic properties of P. Being optimistic, one could
only hope that (weaker) failure detectors that are just eventually reliable are equivalent
to the timing models sufficient for implementing them. This is the first issue we address.

Another line of research considers “asymmetric” models in which timing assumptions
need not hold at all links and all correct processes — as in [42, 48, 27] — but only for a
subset of components in a system. This stems from the following question in [78]: Is there
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a model that allows implementing the eventually strong failure detector �S (which can
be reduced to the eventual leader oracle Ω), but does not allow to implement �P (i.e.,
the eventually perfect failure detector, whose output stabilizes to complete information on
remote process crashes)? Indeed, it was shown in [3] that such models exist. Since [3],
much interest [2, 4, 85, 71] arose in weakening the synchrony assumption of models (or
adding as little as possible to the asynchronous model) in order to be able to implement Ω.
Regarding solvability, if such models are stronger than the asynchronous one, then these
models would allow to solve all problems that can be solved with Ω but would not allow
to solve problems where Ω is too weak. The second issue addressed here is thus whether
the different spatial distributions of timing assumptions proposed make a difference in the
set of problems which they allow to solve.

To tackle these challenges, we consider two main types of models: abstract computa-
tional models and system models. On one hand, abstract computational models, such as
round-based models and failure detector based models, do not consider the timing behav-
ior of distributed systems. For instance, round-based models restrict the sets of messages
which have to be received in the round they were sent, while failure detector based models
introduce axiomatic properties to guarantee access to information about failures. On the
other hand, system models, such as the partially synchronous and eventually synchronous
models, have explicit assumption on processing speeds and message delays. However, note
that a property which is shared by all models we consider is that they are stabilizing, i.e.,
they restrict the communication in a distributed computation only from some unknown
stabilization time on.

Finally, we introduce the notion of algorithm transformations, which we use to compare
different models from both a solvability and an efficiency viewpoint.

4.1.1 Contribution

Expressiveness of Models. Here we show that the result of [29] is in fact limited to perpetual
type failure detectors. To this end we introduce a new parametrized failure detector family,
of which both �P and �S are special cases. Additionally, we define new parametrized (with
respect to the number and distribution of eventually timely links and processes) partially
and eventually synchronous model families. In terms of solvability, we show equivalence
when instantiating both families with the same parameter k. As a corollary we show that
the asynchronous system with �P allows to solve the same problems as the classic partially
synchronous model in [48], as well as that the asynchronous model augmented with Ω is
equivalent to several source models, i.e., models where just the links from at least one
process (the source) are timely.

Method. We introduce the notion of algorithm transformations for partially synchronous
systems and for asynchronous systems augmented with failure detectors. While trans-
formations (or their close relatives simulations [10]) are well understood in the context
of synchronous as well as asynchronous systems, they have to the best of our knowledge
never been studied before for partially synchronous systems.

In the case of synchronous systems, the simplifying assumption is made that no addi-
tional local computation and no number of messages that has to be sent for a simulation
may lead to a violation of the lock-step round structure. It follows that layering of algo-
rithms as proposed in [10] can be done very easily.

In contrast, for asynchronous systems no time bounds can be violated anyhow. Con-
sequently, the coupling of the algorithm with the underlying simulation can be done so
loosely that between any two steps of the algorithm an arbitrary number of simulation
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steps can be taken. Thus, asynchronous simulations can be very nicely modeled e.g. via
I/O automata [82].

For partially synchronous systems, transformations are not straight forward. Based
on primitives of lower models, primitives of higher models must be implemented in a
more strongly coupled way than in asynchronous systems, while it has to be ensured1

that the required timing properties are achieved. For that purpose, we define algorithm
transformations, which we discuss in Section 4.2.6.
Cost. We also discuss the cost of these algorithm transformations, by examining two
diverse measures. The first considers the required number of steps in one model in order
to implement one step in the other one. To this end we introduce the notion of B-bounded
transformations which means that any step of the higher model can be implemented by
at most B steps of the lower model.

The second parameter considers how many steps are required to stabilize the imple-
mented steps after the system has stabilized. For this we use the notion of D-bounded shift ,
which means that after the system stabilizes, the implemented steps stabilize at most af-
ter D steps. Further we introduce the notion of efficiency preserving: A transformation is
efficiency preserving , if it is B-bounded, has D-bounded shift, and B and D are known
in advance. We show between which pairs of models efficiency-preserving transformations
exist.

1In sharp contrast to the synchronous case, where timing is assumed to hold .
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4.2 System Models

Here we consider multiple models of distributed computations, which vary in their ab-
straction. For example, failure detector based models are at a higher level of abstraction
than partially synchronous systems as they abstract away the timing behavior of systems
[28], while round-based models can be seen as being situated at an even higher level as
they abstract away how the round structure is enforced — which can be done based on
either timing assumptions [72] or on failure detector properties [28]. Whether these ab-
stractions have the “cost” of losing relevant properties of the “lower level” model is the
central question here.

We first turn to the common definitions, and then describe the specifics of each model
separately.

4.2.1 Common Definitions

A system is composed by a set Π of n distributed processes p1, . . . pn interconnected by
a point-to-point message system. Each process has its own local memory, and executes
its own automaton. In every execution all processes stick to their specified automaton,
except for f which prematurely halt. We call such processes crashed. Process that do
not crash are correct as they take an infinite number of steps in infinite executions. All
system models we consider assume an upper bound t ≥ f on the number of crashes in
every execution.

A system model defines the behavior of the environment of the automatons with respect
to a set of operations that bind together the automatons by allowing them to interact with
each other by manipulating or querying their environment (e.g., the message system).
Here, these operations are send and receive operations used to exchange messages from an
alphabet M. To simplify presentation, messages are assumed to be unique.

We define a partial run as an (infinite) sequence of global states Ci. A global state Ci
is composed of the local states of the n automata corresponding to n processes and the
message system (i.e., the messages in transit). We say that a process takes a step, when
its local state and possibly also the state of the message system changes. A run is a partial
run starting in an initial configuration.

A run is said to be admissible in a system model if the run sticks to the relations
between the operations that are defined in the system model. As an example, all models
here define the message system to be composed of reliable channels. Without going into
the particular definitions of the send and receive operations, we can describe the abstract
notion of reliable channels by the following three properties2:

Reliability. Every message sent to a correct process is eventually delivered.

Integrity. A message is delivered only if it was actually sent.

No Duplication. No message is received more than once.

Below (in Subsections 4.2.2, 4.2.3, 4.2.4, and 4.2.5) we will complement these defini-
tions with additional assumptions. Since we are interested in the spatial distribution of
synchrony here, these assumptions will only hold for some parts of the system. In fact,
we will define families of synchrony models, which only differ in the size of these subsets.
Note that (in contrast to [20]) the subset for which the synchrony holds is not known. Just
the smallest size of this subset is known.

2Note that we did not choose the buffer representation as in [48] but used equivalent separate properties
instead to characterize reliable channels.
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4.2.2 The Failure Detector Model

In an asynchronous system model with a failure detector, a process p that executes a well-
formed algorithm may execute during every computational step the following operations
in the given order :

a-receivep(): Delivers a message m, 〈m, q〉 ∈M×Π, sent from q to p.

a-queryp(): Queries the failure detector of p.

a-sendp(m, q): Sends a message m to process q.

Note that all of these operations (but at least one) have to be performed in each step.
Algorithms for the asynchronous model do not have access to global time.

A failure detector is of class Gk, if it outputs a set of processes, k is a (possibly constant)
function of the failure pattern, and the failure detector fulfills:

k-Eventual Trust. In every execution, there exists a set Π′ consisting of at least k of
correct processes, such that there exists a time τ from which on the failure detector
output of all correct processes is a set of correct processes and a superset of Π′.

The minimal instant τ is called stabilization time. Although this failure detector might
seem artificial at first sight, it turns out to unify most of the classical stabilizing failure
detectors in literature:

• The eventual strong failure detector �S [28] guarantees that eventually at least one
correct process is not suspected by any correct process. Therefore its output is the
converse of the output of G1. That is, the processes that are not suspected by �S
are those that are trusted by G1 at each process, and the (at least) one process
which is not suspected by any process’ �S is the (at least) one process that is in the
intersection of the failure detector outputs of all correct processes.

• The eventual perfect failure detector �P is the converse of Gn−f .

• Finally, the eventual leader election oracle Ω [27] chooses eventually exactly one
leader at all correct processes. This corresponds to a (stronger) variant of G1, where
the output always has only one element.

In the following, we will denote the family of asynchronous systems augmented with
Gk for some k by Async+G.

4.2.3 The Partially Synchronous Model

This section’s model is a variant of the generalized partially synchronous model given
in [28]. Based on the steps in a run, we define a discrete global timebase with instants
τ ∈ {0, 1, . . .}, which is inaccessible to processes. At every instant of this time, every
process may execute at most one step and at least one process executes a step. A process
p that runs a well-formed algorithm executes at most one step at every discrete time τ
and uses one of the following operations in every step:

par-sendp(m, q): Sends a message m to q.

par-receivep(): Delivers a set S, s.t. ∅ ⊆ S ⊆M ×Π of message-sender pairs.
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Definition 4.1. We say that ∆ holds between p and q at time τ provided that, if a
message m is sent to p by q at time τ and p performs par-receiveq() at time τ ′ ≥ τ + ∆,
m is delivered to p by time τ ′.

Definition 4.2. We say that Φ holds for p at time τ , when in the set of Φ + 1 consecutive
time instants starting with τ process p takes at least one step.

In contrast to [48], ∆ only holds for all outgoing links of k processes, which are called
sources. We thus assume that in every execution there is a set of processes Π′ of cardinality
at least k such that:

k-Partial Sources. Eventually some unknown ∆ holds for all outgoing links of processes
in Π′.

k-Partially Synchronous Processes. Eventually some unknown Φ holds for each
process in Π′.

The minimal time from which on the two properties hold for Π′ is called stabilization
time. (In contrast to [48], this stabilization time is not global, as it only holds for a subset
of the system.)

We denote the system model where all executions fulfill Reliability, Integrity , No Du-
plication, k-Partial Sources, and k-Partially Synchronous Processes, as ParSynck. If we
do not fix k, we denote this family of models as ParSync.
Remark. Often a variant of partial synchrony is considered where message loss before the
global stabilization time may occur. Here we consider only the case with reliable links,
for the following reason: In [1] it is shown that fair lossy links can be transformed into
reliable ones, if n > 2t, and that it is impossible to transform eventually reliable links into
reliable links if n ≤ 2t. So in the former case, which is also the relevant one for consensus,
our results regarding solvability hold as well, whereas for the latter case, the opposite of
our result is trivially true: It is not possible to build an asynchronous system with reliable
links plus a failure detector in a partially synchronous system with message loss before the
stabilization time.

Note that Dwork et al. [48] define another variant for partially synchronous commu-
nication, where ∆ holds always, but is unknown. Since we have reliable channels, this is
equivalent to our definition.

4.2.4 The Eventually Synchronous Model

The eventually synchronous model is a variant of partial synchrony, where the bounds on
the communication delay and relative speeds are known, but hold only eventually. This is
one of the two models in [48].

This model is very similar to the model of partial synchrony, for sake of brevity we do
not go into much detail and only state the operations and properties of the model:

ev-sendp(m, q): Sends a message m to q.

ev-receivep(): Delivers a set S, s.t. ∅ ⊆ S ⊆M ×Π of message-sender pairs.

As in the partially synchronous case, we consider a set of processes Π′ of cardinality
at least k, and we assume the following two properties:

k-Eventual Sources. A known ∆ eventually holds for all outgoing links of the processes
in Π′.
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k-Eventually Synchronous Processes. A known Φ eventually holds for each process
in Π′.

We denote the system model where all executions fulfill Reliability , Integrity , No Du-
plication, k-Eventual Sources and k-Eventually Synchronous Processes, as �Synck. If we
do not fix k, we denote this family of models as �Sync.

Observe that ParSynck is — by definition — not stronger than �Synck, that is, for
any k, every execution in �Synck is also an execution in ParSynck.

In order to distinguish the ∆ for ParSync and for �Sync, we will use ∆? for the
former, and ∆� for the latter. When no ambiguity arises we will however only use ∆.

4.2.5 The Round Model

In our round-based system, processes proceed in rounds r = 0, 1, 2, . . .. For a well-formed
algorithm, in every round r, a process p executes exactly one step comprising a send
operation followed by exactly one step comprising a receive operation, where the operations
are defined as:

rd-sendp(r, S): Sends a set S ⊆M × Π of messages. For every process q, S contains at
most one message mq.

rd-receivep(r): Delivers a set S ⊆ M × Π × {0, 1, . . .} of messages to p, where a tuple
〈m, q, r′〉 denotes a message m sent by q to p in round r′ ≤ r.

Further, we define the property:

k-Eventual Round Sources. There is a set Π′ of k correct processes, and a round r,
such that every message that is sent by some p ∈ Π′ in some round r′ ≥ r is received
in round r′ by all correct processes.

We denote the system model where all executions fulfill Reliability, Integrity , No Du-
plication and k-Eventual Round Sources, as Roundk. The family of all these models is
denoted Round.

In our definition of rd-receive above we do not allow the reception of messages from
future rounds. This implies that for each round r the rd-receive(r) operations form a
consistent cut. By [89, Theorem 2.4] this is equivalent to these operations taking place
in lockstep. Note also, that our model is communication open, and thus contrasts the
communication closed round models used for example in [109, 30].

4.2.6 Algorithm Transformations

In order to relate our models, we use algorithm transformations. An algorithm trans-
formation TA⇀B generates from any algorithm A that is correct (with respect to some
problem specification) in some system SA an algorithm B that is correct (with respect to
the same specification) in some other model B by implementing the operations in SA by
operations in SB. For the correctness of such transformations, it has to be shown that
B is well-formed as well, and that the implemented operations are those defined in SA.
Moreover it has to be shown that the assumptions on the operations of SA that A is based
on, hold for their implementations (given by the transformation) in SB. This is captured
by the notion of a trace: The trace of the SA operations is the sequence of implementations
of SA operations (in SB) the algorithm calls when being executed via the transformation
TA⇀B in SB.
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Obviously, problem statements only make sense here if they can be stated indepen-
dently of the model. Consequently, defining e.g. termination as “the consensus algorithm
terminates after x rounds” is not model independent as there is no formal notion of “a
round” e.g. in partially synchronous system models. Therefore the notion of a round in
such models depends on the algorithms which implement them. Hence, such properties
should be regarded as belonging to the algorithm and not to the problem and will be dealt
with in the discussions on efficiency of transformations below. In the literature on mod-
els with stabilizing properties, algorithms which decide (or terminate) within an a priori
bounded number of steps after stabilization time are termed efficient . Therefore we are
interested in the possibility of transforming efficient algorithms into efficient algorithms.

An algorithm transformation is B-bounded , iff any step of the higher model can be
implemented by at most B operations of the lower model.

Another measure for the efficiency of a transformation is how it behaves with respect
to the stabilization in the two models involved. To motivate this measure, consider some
implementation of e.g. the eventual perfect failure detector based on some partially syn-
chronous system which has some global stabilization time τ . Since the timing before τ is
arbitrary, the processes that some process p suspects may be arbitrary at τ as well. It
may take some time until the set of suspected processes at p is consistent. Until then, the
asynchronous algorithm using the failure detector may query the failure detector a couple
of times — say x times — before the failure detector becomes consistent. Informally, x may
be used as measure for the transformation of stabilizing properties.

More formally, since we are considering models with stabilizing properties there is
usually a step s from which on SB guarantees some properties. This step s is part of some
step S in SA. For a valid transformation, there must also be a step S′ from which on the
stabilizing properties of the implemented model are guaranteed to hold. When S 6= S′

the transformation is stabilization shifting . Moreover, we say that a transformation has
D-bounded shift , when the transformation guarantees that S′ does not occur more than
D steps after S.

Definition 4.3. A transformation is efficiency preserving, if there are two a priori known
values B and D such that the transformation is B-bounded and it has D-bounded shift.

Note that this definition implies that parameters unknown in advance, e.g., ∆? and Φ?

in the ParSync models, cannot occur in the expressions given for B, while the size of the
system, n, can.
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4.3 Equivalence of Solvability

4.3.1 Possibility of Async+G⇀ParSync

We begin by considering transformations of Async+G algorithms to ParSync algorithms.
As there are no assumptions on the relative processor speeds and the time it takes for

the network to transmit a message, all we need to show is that there is a set of processes
that eventually meets the requirements of k-Eventual Trust.

Lemma 4.4. In any ParSync run of an arbitrary algorithm A for an Async+Gk system
in conjunction with the transformation of Algorithm in Figure 4.1, the property k-Eventual
Trust holds for the trace of the Async+G operations.

Proof. By the definition of ParSynck, there is a set Π′ of processes, with |Π′| = k, so that
after some time τ0, all p ∈ Π′ take a step every Φ time steps, and messages originating
from these processes arrive after ∆ time steps. From the algorithm of the transformation,
we see that every Async+G-operation involves a call to update() and therefore sending
a message to all processes. That is, every process p sends a message to any process
q every n + 1 ParSync-steps. Therefore at any time after τ0, any process q can take
at most T ′ = (n + 1)Φ + ∆ steps between two consecutive messages from some process
p ∈ Π′ being deliverable. Since any process will take at most n send-steps before delivering
pending messages through par-receive, it follows that q must receive m′ at most T = T ′+n
steps after receiving m, for two consecutive messages m, m′ sent to q from p.

Since thresholdp is ever increasing, ∃τ,∀τ ′ ≥ τ : thresholdp(τ ′) > T . Therefore, for all
p ∈ Π and for all q ∈ Π′ some message from q will be in bufferp, when executing line 33.
Thus, eventually all processes in Π′ are trusted by all correct processes.

On the other hand, every crashed process eventually stops sending messages, and thus
eventually there will be no more messages from such a process in buffer of a correct process.
Thus, eventually, no faulty process is trusted.

All messages that are received via par-receive are stored into bufferp and then ap-
pended to undeliveredp, from where a-receive takes them while filtering out the additional
⊥ messages, therefore our reliable channel assumptions follow from their counterparts of
the ParSync-steps, and we obtain that:

Lemma 4.5. The transformation of Algorithm in Figure 4.1 preserves Reliability, In-
tegrity and No Duplication.

Note that the ever increasing thresholdp affects the detection time of the failure de-
tector and has no impact on whether the transformation is bounded. However, for the
Async+G-algorithm stabilization only occurs after thresholdp is greater than ∆?+(n+1)Φ?

(cf. Section 4.4.2). As ∆? and Φ? are unknown there is no a priori known bound for the
stabilization shift.

Corollary 4.6. Algorithm in Figure 4.1 transforms any algorithm A for Async+Gx to
an algorithm for ParSyncx, and this transformation is not efficiency preserving.

4.3.2 Possibility of ParSync⇀�Sync

Since the properties of �Synck imply the properties of ParSynck, for this transformation
it suffices to replace par-send with ev-send, and par-receive with ev-receive, respectively.
Also note that there is no stabilization shift either (since abiding to known bounds implies
abiding to unknown ones). We thus have:
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Figure 4.1: Transforming Async+G algorithms to ParSync algorithms.
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Corollary 4.7. There exists a 1-bounded transformation for a ParSync algorithm to a
�Sync algorithm, without stabilization shift.

4.3.3 Possibility of �Sync⇀Round

Now we transform any algorithm for �Sync to an algorithm for the Round model.
While each �Synck model can be instantiated with any values for ∆� and Φ�, we

implement a particular instance, i.e., �Synck with ∆� = 0 and Φ� = 1. The basic idea of
the transformation is to execute one round of the Round model in each �Sync step.

Lemma 4.8. In any Round run of an arbitrary algorithm A for an �Sync system in
conjunction with Algorithm 2 in Figure 4.2, the properties k-Eventual Sources and k-
Eventually Synchronous Processes with Φ = 1 and ∆ = 0 hold for the trace of �Sync
operations.

Proof. To establish the lemma we show that in the trace of �Sync operations the k
eventual source(s) of Roundk will form a set of processes denoted Π′ ⊆ Π, with |Π| = k,
for which Φ = 1 and ∆ = 0 eventually hold. That is, we show that there is a one-to-one
mapping of the instances of ev-send and ev-receive operations to lock step rounds — i.e.,
each �Sync operation corresponds to two Round steps. Eventually, if a message m is sent
by a source via an ev-send corresponding to round r at the sender, the receiver will put it
into bufferp (as return value from rd-receive) in the same round, and then the message is
delivered via the first ev-receive operation after that. By Definition 4.1 we get ∆ = 0.

To see why eventually Φ holds for the processes in Π′, we observe that (as noted above)
the rd-receive steps induce an (infinite) sequence of consistent cuts, which we can use as a
“relativistic” timebase. In this timebase, each process in Π′ takes exactly one �Sync-step
at each point in time. Therefore we have Φ = 1.

Lemma 4.9. Algorithm 2 in Figure 4.2 has no stabilization shift.

Proof. Let r be the first round where k-Eventual Round Sources holds, and let s denote
the �Sync-step in which implementation round r occurs. Then for all rounds r′ > r and
all step s′ corresponding to r′, all messages sent by processes belonging to Π′ in round r′

arrive in round r′, s.t., they are available for delivery by the first ev-receive-step following
r′, and (according to the proof of Lemma 4.8 above) all processes take a step at the
“relativistic” time corresponding to round r′.

Lemma 4.10. Algorithm 2 in Figure 4.2 preserves Reliability, Integrity and No Duplica-
tion.

It can be easily seen that we have:

ev-send 7→
{

rd-send
rd-receive

ev-receive 7→
{

rd-send
rd-receive

yielding that this transformation is 2-bounded , since only one of the two operations is
possible in each step of our delay-bounded models. Moreover, from Lemmas 4.8, 4.9
and 4.10 it is obvious that:

Corollary 4.11. Algorithm 2 in Figure 4.2 transforms any algorithm A for �Syncx to
an algorithm for Roundx, and this transformation is 2-bounded and does not shift stabi-
lization.
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Figure 4.2: Transforming �Sync algorithms to Round algorithms (Algorithm 2) and
Transforming Round algorithms to Async+G algorithms (Algorithm 3).
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4.3.4 Possibility of Round⇀Async+G

With this section’s transformation, we close the circle of transformations thereby estab-
lishing that the same problems are solvable in all four model families.

For implementing a round structure on top of our failure detector we simply wait in
each round until we have received messages for the current round from all trusted processes.

Lemma 4.12. In any Async+G run of an arbitrary algorithm A for a Round system in
conjunction with the transformation of Algorithm 3 in Figure 4.2, the property k-Eventual
Round Sources holds for the trace of the Round steps.

Proof. Following the same pattern as above, we show the lemma by proving that eventually
at least the messages from the trusted processes are received by all correct processes in
the round they were sent in.

We first observe that every correct process sends (a possibly empty, i.e., 〈∗,⊥〉) message
to every other process for each round, therefore progress is ensured, since at some point a
message must have arrived from every process currently trusted (cf. line 17).

For each q which is eventually trusted forever, there is a round r for which it is trusted
by all processes when executing line 18. Obviously from now on (i.e., for rounds r′ ≥ r) a
message from q must be contained in the undeliveredq set of every alive process every time
a process reaches this line. If the content of the message is not ⊥ it will also be delivered,
thereby ensuring that every correct process does indeed receive p’s round r′ message (if it
sent one).

Lemma 4.13. Algorithm 3 in Figure 4.2 preserves Reliability, Integrity and No Duplica-
tion.

Again, this lemma follows directly from the transformation and from the fact that the
properties are provided by Round (cf. for example lines 14 and 19 for Integrity and No
Duplication, resp.). Transforming Round to Async+G with Algorithm 3 in Figure 4.2,
we have:

rd-send 7→


a-send(∗, 1)
...
a-send(∗, n)

rd-receive 7→



a-receive
a-query
a-receive
a-query
...

yielding that this transformation is unbounded . (Although the a-send are not necessarily
executed in the given order.) Therefore we conclude this Subsection with observing that:

Corollary 4.14. Algorithm 3 in Figure 4.2 transforms any algorithm A for Roundk to
an algorithm for Async+Gk, and this transformation is not efficiency preserving.
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4.4 Efficiency of Transformations

In the previous section we showed that from a solvability point of view, all four models are
equivalent. The chain of transformations of a ParSync algorithm to a �Sync algorithm
to a Round algorithm can be done with bounded transformation, i.e., the transformation
is efficiency preserving. That means, e.g., if there is already an efficient algorithm for the
ParSync model, the transformed algorithm is also efficient in the �Sync and the Round
model. On the other hand, in this section we show that there is no transformation that
maintains this efficiency for (1) the other transformations in the previous section and (2)
for the transformations going backwards in the efficient chain. Note, however, that this
does not imply the non-existence of efficient algorithms for these models, but just that
these cannot be obtained by a (general) transformation from an efficient algorithm of the
other model.

4.4.1 Lower Bounds

The aim of this section is to show that which transformations cannot be efficiency pre-
serving. The (trivial) idea behind the proof that no transformation ParSync⇀Async+G

can be efficiency preservingis that no message with an unbounded delay can be received
in a bounded number of steps.

Theorem 4.15. There exists no efficiency-preserving transformation that transforms any
algorithm A for ParSynck to an algorithm for Async+Gk.

Proof. Assume by contradiction that there exists a transformation T that is B-bounded
for some B. By the definition of ParSync, there exists a ∆, a time τstab, and a set of
processes C, with |C| = k, so that all messages sent by a p ∈ C at τ ≥ τstab are received by
ParSync time τ + ∆ at q. Assuming that the sending of such a message m at ParSync
time τ happens at Async+G time τ ′, the transformation has to ensure that it can deliver
m in the par-receive step following the Async+G time τ ′ + B∆. However, in Async+G

there is no guarantee that m is received by q by this time, and thus arbitrarily (finitely)
many asynchronous steps might be necessary. Thus q is not able to deliver this message
after a constant number of steps.

We can also show that no transformation in the opposite direction can be efficiency
preserving. The main idea is that no reliable suspicion of faulty processes can be made
within known time in a system with unknown delays.

Theorem 4.16. There exists no efficiency-preserving transformation that transforms any
algorithm A for Async+Gk to an algorithm for ParSynck .

Proof. We are going to show that any transformation from Async+G to ParSync is
either unbounded or has unbounded shift.

However, this is easy to see, since if a transformation is bounded with bounded shift,
this implies that every process stops suspecting all sources after a bounded number of
steps after stabilization. Let L be such a bound, and τL the earliest time where all correct
processes made L steps after stabilization. By this time, every correct process has to have
no faulty process in its trusted list, and at least k processes have to be the same for all
processes. Consider now a run R, where no message from correct processes arrives before
τL. Since ∆ is unknown, and τL lies only bounded time after stabilization, such a run
might exist. Let Q be the set of processes that are trusted by a correct process at τL in
R. As already mentioned, we must have |Q| ≥ k. Now pick one of these processes, say
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q, and consider a run R′ that is similar to R, except that q has crashed initially. Since
R′ is indistinguishable from R, q will be trusted by all processes, a contradiction to the
assumption that only correct processes are trusted at this time.

While the transformation of ParSync algorithms to ones for the �Sync model is rather
simple (recall that by definition every �Sync execution is also a ParSync execution) there
is no efficiency-preserving transformation for the opposite direction. The reason for this
is, informally speaking, that fixed bounds (∆� and Φ�) have to be ensured in a system
where there are only unknown bounds (∆? and Φ?).

Theorem 4.17. There exists no efficiency-preserving transformation that transforms any
algorithm A for �Synck to an algorithm for ParSynck.

Proof. Assume by contradiction that there exists a transformation T that is B-bounded
for some known B. By the definition of �Sync, there exists a known ∆�, a time τ0

� , and
a set of processes C, with |C| ≥ k, so that all messages sent by some p ∈ C at τ� ≥ τ0

�
are received by �Sync time τ� + ∆� at q. Assuming that the sending of such a message
m at �Sync time τ� happens at ParSync time τ?, the transformation has to ensure that
it can deliver m in the ev-receive-step following the ParSync time τ? + B∆�. However,
in ParSync, m is guaranteed to be received by q only after some ∆?, that is unknown
a priori, and may be greater than B∆� in some runs. Thus q is not able to deliver this
message after an a priori known number of steps in all runs.

Our next lower bound follows from Theorem 4.15 and Corollary 4.7: If there was
an efficiency-preserving transformation �Sync⇀Async+G these two results would be
contradictory.

Theorem 4.18. There exists no efficiency-preserving transformation that transforms any
algorithm A for �Sync to an algorithm for Async+G.

Proof. Follows from Theorem 4.15 and Corollary 4.7: If such an efficiency-preserving trans-
formation existed, the combination of this transformation with the (trivial) transformation
of Corollary 4.7 would contradict Theorem 4.15.

To prove that the transformations considered above are necessarily not efficiency pre-
serving it was sufficient to examine only stabilization shift. Conversely, our proof there
is no efficiency-preserving transformation Round⇀�Sync is based on showing that no
transformation can be B-bounded and, at the same time, cause only D-bounded shift.

Theorem 4.19. There exists no efficiency-preserving transformation that transforms any
algorithm A for Roundk to an algorithm for �Synck.

Proof. Assume by contradiction that an efficiency-preserving transformation exists. Then
there must be two known bounds B and D, such that the transformation is B-bounded
and causes D-bounded stabilization shift. The argument of the calls of the implementation
of the operations of the Round model imply a round number at each step of the �Sync
model. During the unstable period the round numbers of two processes p and q may drift
arbitrarily far from each other. (Because the transformation is B-bounded but Φ does not
hold yet.) Now assume w.l.o.g. that p is the process that has the lowest round number, but
is one of the k processes for which ∆ and Φ hold once the system stabilizes (at τstab), and q
has the highest round number and is not in the set of k eventually synchronous processes.
Then the transformation has to ensure that p will reach the highest round number in the
system within D rounds (recall that by assumption the stabilization shift is bounded by
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D), since p must become a Round source, i.e., must be heard by all processes within
the same round. This, however, is impossible since it may take an unbounded number of
�Sync-steps until p learns that q has a larger round number and starts to catch up.

4.4.2 Upper Bound on Async+G⇀�Sync

We use a modified version of Algorithm in Figure 4.1, with the following changes: thresholdp
is initialized to ∆� + (n + 1)Φ� and the last line is omitted. This incorporates that we
know ∆� and Φ� in advance, and thus we do not have to estimate it.

It is clear that the proof of Algorithm in Figure 4.1 analogously applies here and thus
this transformation is correct. It is also easy to see that it is also (n+ 1)-bounded:

a-send, a-receive, a-query 7→


ev-send(∗, 1)
...
ev-send(∗, n)
ev-receive

To determine the bound on the stabilization shift, note that since every source s will
send a message to p in every Async+G operation (taking at most (n+ 1)Φ �Sync steps)
and messages are delivered within ∆� �Sync steps, p will always receive a message from
s before updating trustedp, thus never suspecting s anymore. Therefore the maximal shift
is bounded by ∆� + (n+ 1)Φ� �Sync steps, and consequently:

Theorem 4.20. There exists an efficiency-preserving transformation that transforms any
algorithm A for Async+Gk to an algorithm for �Synck .
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Figure 4.3: Relations of models with pointers to sections here; an arrow from model M1 to
model M2 indicates that a result on algorithm transformations from model M1 to model
M2 can be found here. Solid lines indicate upper bounds, dotted lines indicate lower
bounds. B|D means that a transformation exists which is B-bounded and has D-bounded
shift. We use nep to mark non-efficiency-preserving transformations.

4.5 Discussion

Solvability. Figure 4.3 presents a graphical overview of our results. It can easily be seen
that the directed subgraph consisting of solid arrows is strongly connected. This subgraph
presents the transformation algorithms we have provided here. Thus, all model families
presented are equivalent regarding solvability.
Relation to the results of [29]. Setting k = n− f in our models, Roundn−f is in fact the
classic basic round model by Dwork et al. [48] and the asynchronous model with Gn−f is
the asynchronous model augmented with the eventually perfect failure detector [28]. We
use k = n − f in order to intuitively discuss why these stabilizing models are equivalent
from a solvability viewpoint while their perpetual counterparts are not.

The main observation in the relation to [29] is concerned with the term “eventually” in
the model definition: In the asynchronous model augmented with �P, two things happen in
every execution: (1) eventually, the failure detector becomes accurate, and (2) eventually,
the last process crashes and all its messages are received.

The model considered in [29] (asynchrony with P), however shares only (2) while the
failure detector taken into account satisfies perpetual strong accuracy. It was shown in [29]
that given (2), even perpetual strong accuracy — and thus P — is too weak to implement
a model where every round is communication closed and reliable, as is required by the
synchronous model of computation: If a process p crashes, P does not provide information
on the fact whether there are still messages sent by p in transit (cf. [58]).

For showing our equivalence result in the special case of n − f , one has to show that
communication closed rounds are ensured eventually. We observe that (1) and (2) are
sufficient to achieve this. After (1) and (2) hold, all processes are correct, they will never
be suspected and thus all their messages are received in the round they were sent. Thus we
achieve communication closed rounds eventually which is equivalent to eventual lock-step
and thus eventual synchrony.
Timing Assumptions. Our results show the equivalence of diverse models with stabilizing
properties in which the properties that are guaranteed to hold have the same spatial
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distribution. Informally, for the models we present, it is equivalent if a source is defined
via timing bounds, restrictions on the rounds its messages are received, or whether the
“source” has just the property that it is not suspected by any process. Consequently, we
conjecture that similar results hold for other timing assumptions as the FAR model [51]
or models where the function in which timing delays eventually increase is known given
that the spatial distribution of timing properties is the same as in here.
Number of Timely Links. An interesting consequence of our results concerns models where
only t links of the sources are eventually timely [4]. In models stronger than the asyn-
chronous one where at least one such source exists, Ω and thus �S can be implemented. As
�S is equivalent to G1, our results reveal that one can transform any algorithm which works
in ParSync1 (one source with n timely links) to an algorithm which works in a partially
synchronous systems with a source with t < n timely links. Consequently, although the
number of timely links was reduced in the model assumptions, the set of solvable problems
remained the same.
Efficiency. An algorithm solving some problem in a stabilizing model is efficient, if it
decides (i.e., terminates) after a bounded number of steps after stabilization. Consider
some efficient algorithm A working in model M . If there exists an efficiency-preserving
transformation from M into some model M ′, this implicates that there exists an efficient
algorithm in M ′ as well (the resulting algorithm when A is transformed). The converse,
however, is not necessarily true. The dotted lines with a nep label in Figure 4.3 show
that no efficiency-preserving transformations exist. Consequently, by means of transfor-
mations (which are general in that they have to transform all algorithms) nothing can be
said about the existence of an efficient solution in the absence of an efficiency-preserving
transformation from M to M ′. As an example, consider Roundn−f and �Syncn−f for
which efficient consensus algorithms were given in [46] and [47], respectively. Despite this
fact, our results show that there cannot be a (general) efficiency-preserving transformation
from Round to �Sync algorithms.
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Chapter 5

Randomized Message Omission
Robust Protocols

In the fair exchange problem, mutually untrusting parties must securely exchange digital
goods. A fair exchange protocol must ensure that no combination of cheating or failures
will result in some goods being delivered but not others, and that all goods will be delivered
in the absence of cheating and failures. An interesting feature of fair exchange is that it
can be reduced to consensus when trusted coprocessors are available. Another one is that
fair exchange not only may provide fairness in electronic commerce but also is in fact
analogous to the problem of atomic commit in database repositories.

We begin our exposition of message omission robust protocols by proposing two novel
randomized protocols for solving fair exchange using simple trusted coprocessors [54]. Both
protocols have an optimal expected running time, completing in a constant (3) expected
number of rounds. They also have optimal resilience. The first one tolerates any number
of dishonest parties, as long as one is honest, while the second one, which assumes more
agressive cheating and failures assumptions, tolerates up to a minority of dishonest parties.

The key insight is similar to the idea underlying the code-division multiple access
(CDMA) communication protocol: outwitting an adversary is much easier if participants
share a common, secret pseudo-random number generator.

The presentation is structured as follows. After introducing some motivation (Section
5.1), we describe the model of computation considered (Section 5.2), show how to reduce
fair exchange to uniform consensus (Section 5.3), and display related work (Section 5.4).
Optimal randomized uniform consensus protocols for binary inputs with a constant (3)
expected number of rounds are then introduced (Section 5.5 and Section 5.6). Note that
both protocols may be generalized to a larger set of k values with a factor of log(k).
However, we concentrate on the binary case, as we are interested in solving fair exchange
efficiently.

5.1 Motivation

In the fair exchange problem, a set of parties want to trade an item which they have
for an item of another party (for a survey of fair exchange see [99]). Fair exchange is
a fundamental problem in domains with electronic business transactions since (1) items
can be any type of electronic asset (electronic money, documents, music files, etc.) and
(2) fairness is especially important in rather anonymous environments without means to
establish mutual trust relationships. Briefly spoken, fair exchange guarantees that (1)
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Figure 5.1: Untrusted parties and security modules.

every honest party eventually either delivers its desired item or aborts the exchange, (2)
the exchange is successful if no party misbehaves and all items match their descriptions,
and (3) the exchange should be fair, i.e., if the desired item of any party does not match
its description, then no party can obtain any (useful) information about any other item.
Fair exchange algorithms must guarantee these properties even in the presence of arbitrary
(malicious) misbehavior of a subset of participants.

Fair exchange, a security problem, can be reduced [11] to a fault-tolerance problem,
namely a special form of uniform consensus. In the (non-uniform) consensus problem [101],
each process in a group starts with a private input value, and after some communication,
each non-faulty process is required to decide (termination) on the same private output
value (agreement), so that all processes that decide choose some process’s private input
value (validity). In its uniform version, however, agreement requires all processes that
decide (faulty or non-faulty) to decide the same value. Only non-faulty processes are
required to terminate.

The reduction from fair exchange to consensus [11] holds in a synchronous model where
each participating party is equipped with a trusted coprocessor, that is, a tamper-proof
security module like a smart card (see Fig. 5.1). Security modules have recently been
advocated by key players in industry to improve the security of computers in the context
of trusted computing [114]. Today, products exist which implement such trusted devices
(see for example [49]). Roughly speaking, a security module is a certified piece of hard-
ware executing a well-known algorithm. Security modules can establish confidential and
authenticated channels between each other. However, since they can only communicate by
exchanging messages through their (untrusted) host parties, messages may be intercepted
or dropped. Overall, the security modules form a trusted subsystem within the overall (un-
trusted) system. The integrity and confidentiality of the algorithm running in the trusted
subsystem is protected by the shield of tamper proof hardware. The integrity and confi-
dentiality of data sent across the network is protected by standard cryptographic protocols.
These mechanisms reduce the type and nature of adversarial behavior in the trusted sub-
system to message loss and process self-destruction, two standard fault-assumptions known
under the names of omission and crash in the area of fault-tolerance.

Here we propose two novel randomized protocols for solving uniform consensus with
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Figure 5.2: The untrusted system and the trusted subsystem.

binary inputs (and hence fair exchange) using such trusted coprocessors. Our protocols
are time optimal, completing in a constant (3) expected number of rounds. They are also
optimal in terms of resilience. The essential idea lies in participants sharing a common,
secret pseudo-random number generator. In a multi-round protocol, each trusted copro-
cessor can flip a coin, and take action secure in the knowledge that every other trusted
coprocessor has flipped the same value, and is taking a compatible action in that round.
Because messages are encrypted, coin flip outcomes can be hidden, so dishonest parties
can neither observe past coin flips nor predict future ones. (Of course, the pseudo-random
algorithm itself need not be secret as long as the trusted coprocessors’ common seed is
kept secret, just like their common cryptographic key.) We believe that this approach is
both efficient and practical.

5.2 Model of Computation

Our model of computation is essentially synchronous: participants exchange messages
in synchronous rounds. Of course, real distributed systems are not synchronous in the
classical sense, but it is reasonable to assume an upper bound on how long one can expect
a non-faulty processor to take before responding to a message. A processor that takes too
long to join in a round is assumed to be faulty or malicious.

The system is logically structured into an untrusted system (including the untrusted
parties and their communication channels) and the trusted subsystem consisting of the
parties’ individual trusted coprocessors, that is, their tamper-proof security modules (see
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Fig. 5.2). The untrusted parties can interact with their trusted coprocessors through a
well-defined interface, but they cannot in any other form influence the computation within
the trusted coprocessor.

As noted, communication among the trusted coprocessors is confidential and authenti-
cated, so malicious parties cannot interpret or tamper with these messages. Because each
trusted coprocessor sends the same encrypted message to every other trusted coprocessor,
we have receiver anonymity and so a cheating party cannot learn who is communicating
to who from traffic analysis. An untrusted party can, however, prevent outgoing messages
from being sent (called a send omission), or incoming messages from being received (called
a receive omission) or destroy its trusted coprocessor (called a crash). The effects of a
crash can be regarded as a permanent send (and receive) omission.

Define a party as cheating if it causes send or receive omissions of its trusted coproces-
sor. A party which does not cheat is honest. A fair exchange protocol must ensure that
under no circumstances will goods be delivered to a cheating party but not to all honest
parties. It is, however, acceptable to deliver the goods to all honest parties, but not to
some cheating parties. Cheating may cause the exchange to fail, so that no goods are
delivered to any party. In the absence of cheating, the exchange should succeed, causing
goods to be delivered to all participants. For brevity, we refer to processes when we really
mean untrusted processes equipped with trusted coprocessors. With a process failure we
mean either a crash, a send message omission or a receive message omission.

5.3 Fair Exchange as Consensus

The reduction from fair exchange to uniform consensus works as follows. In the first round
of the protocol, each party applies its acceptance test to the encrypted digital goods re-
ceived from the others (in special cases this test can also be performed within the trusted
coprocessor). It then informs its trusted coprocessor whether the goods passed the test.
The trusted coprocessors broadcast this choice (using confidential and authenticated mes-
sages) within the trusted subsystem. Each coprocessor that receives unanymous approvals
starts the consensus protocol with input 1, and each trusted coprocessor that either ob-
serves a disapproval or no message from a trusted coprocessor starts the consensus protocol
with input 0. At the end of the protocol, each trusted coprocessor delivers the goods if
the outcome of the protocol is 1, and refuses to do so if the outcome is 0.

It is easy to see that in the absence of failures or cheating all goods will be delivered.
The uniform consensus protocol ensures that all honest parties agree on whether to deliver
the goods, and its uniformity ensures that no trusted coprocessor residing at a cheating
party will deliver the goods if any trusted coprocessor at an honest party decides not to.
(Recall that it is acceptable if the honest processes deliver the goods after deciding 1, even
if a cheating process fails to deliver the goods after deciding 0.)

As noted, the protocols considered here are randomized, in the sense that they rely
on the assumption that trusted coprocessors generate pseudo-random values that cannot
be predicted by an adversary. These protocols always produce correct results, but their
running time is a random variable, the so-called Las Vegas model. (It is straightforward
to transform these protocols into Monte-Carlo protocols that run for a fixed number of
rounds, and produce correct results with very high probability.)

To simplify the presentation, we first present an uniform consensus protocol that works
in a failure model that permits send, but not receive omissions. This protocol is slightly
simpler and more robust: it tolerates f < n cheating processes, while the full send/receive
omissions model protocol tolerates f < n/2 failures. Both resilience levels are optimal
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for their respective models [100]. Presenting the protocol in two stages illustrates how
assumptions about the model affect the protocol’s complexity and resilience.

5.4 Related Work

We build on work of Parvédy and Raynal [100]. They derive optimal early stopping deter-
ministic uniform consensus algorithms for synchronous systems with send or send/receive
omission failures. However, our algorithms are more efficient in most cases (if the number
of failures is not constant) and at least comparable (otherwise).

Feldman and Micali [50] exhibit optimal consensus algorithms for Byzantine agreement,
which in principle could also be used in omission failure models. Despite having also an
optimal expected running time, our algorithms outperform theirs both on resilience and
on the probability of not having termination violated.

Avoine, Gärtner, Guerraoui and Vukolic [11] show how to reduce the fair exchange
problem in a system where processes are provided with security modules to the consensus
problem in omission failure models. A solution to the fair exchange problem is presented
by use of the algorithms of Parvédy and Raynal [100]. In the same context, Delporte,
Fauconnier and Freiling [38] investigate solutions to consensus for asynchronous systems
which are equipped with unreliable failure detectors. They exhibit a weak failure detector
in the spirit of previous work by Chandra, Hadzilacos and Toueg [27] that allows to solve
asynchronous consensus in omission failure environments.

Aspnes [7] presents a survey of randomized consensus algorithms for the shared memory
model where processes are prone to crashes. These results are particularly interesting, since
consensus cannot be solved deterministically in a pure asynchronous distributed system,
as proved in [52] by Fischer, Lynch and Paterson.

5.5 Optimal Protocol for Send Omissions

The ConsensusS algorithm in Figure 5.3 solves uniform consensus with binary inputs in
optimal 3 expected synchronous rounds tolerating an optimal number of up to f < n
failures - send message omissions as well as process crashes.

As noted, all processes share a common secret seed and pseudo-random number gen-
erator. We denote the r-th such pseudo-random binary number by flip(r). For each r,
every process computes the same value for flip(r).

In ConsensusS, each process broadcasts its binary input (line 1). In each subsequent
round, the process waits to hear each process’s preference. If they disagree (line 3), the pro-
cess broadcasts a message informing the others. When receiving such a broadcast for the
first time (line 6), every process relays it. Hence, if any non-faulty process receives mixed
preferences or a disagreement(r) message, then all processes receive a disagreement(r)
message and will change preference according to the coin flip. If they agree (line 9) and
no message communicating disagreement seen by another process is received, then the
process checks whether that preference agrees with the common pseudo-random binary
number for that round. If so, it is safe to decide that value (line 11). If not, the process
simply rebroadcasts the preference (line 13). If the preferences disagree or the process is
informed so, then the process uses the common pseudo-random binary number to choose
a new preference (line 16). If any process announces that it has decided, then the process
decides on the same value (line 18).

Very informally, this protocol exploits in an essential way the observation that each
process (but not the adversary) can predict the others’ next coin flips. If a process receives
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Figure 5.3: Uniform consensus for send message omissions and process crashes.

v from all processes, then v was sent by at least one good process, so every other process
will either receive all v preferences or both preferences. Any processes that receive either
mixed preferences or disagreement(r) messages will change preference according to the
coin flip. If the coin flip is the same as v, then all processes will prefer v, and it is safe to
decide.

Lemma 5.1. If f < n, for every process the expected number of rounds of ConsensusS is
3, and the protocol terminates with probability 1.

Proof. Think of an execution as a tree, where the root node represents the initial round
and the children of a node represent the following round possibilities. Let E(n) be the
expected number of rounds from node n. If n has children n.1 and n.2, chosen by coin
flip, then E(n) = (1/2)(1 + E(n.1)) + (1/2)(1 + E(n.2)). Each child contributes one plus
its expected running time, but with probability one-half. Now let

• E(n) = E1(n) if at node n some non-faulty processes sent prefer(0) and some non-
faulty processes sent prefer(1),

• E(n) = E2(n) if at node n all non-faulty processes sent prefer(v) and some non-faulty
processes receive a disagreement message or both prefer(0) and prefer(1),

• E(n) = E3(n) if at node n all non-faulty processes sent prefer(v) and all non-faulty
processes receive no disagreement messages and only prefer(v).

Note that if E(n) = Ez(n) and E(n.1) = Ew(n.1), it may be that z 6= w. However,
it is always the case that if E(n.1) = Ez(n.1) then E(n.2) = Ez(n.2). The reason is that
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from one round to the other the values that the non-faulty processes send and receive
may change. However, if the non-faulty processes behave in a way at one children, then
they should behave the same way at the other, since both children just differ in the coin
flip. Hence, executions differing themselves by the values sent and received by non-faulty
processes may generate distinct execution trees.

Now let e be the root of an execution tree. Consider that

• E(e) = E1(e): If there are non-faulty processes that sent prefer(0) and other non-
faulty processes that sent prefer(1) in round r, then at round r + 1 every process
receives at least one message prefer(0) and one message prefer(1), and thus, from
round r + 1 on, all preference messages sent by every process (and all received as
well) will be prefer(flip(r+ 1)). Hence, all processes will decide on flip(r+ 1) in the
first round t such that flip(t) = flip(r + 1), and the probability that any process
(and thus, a non-faulty one) violates termination is the same as the probability that
such a round t never happens, that is, zero. Besides, the expected number of rounds
to achieve a round t such that flip(t) = flip(r+ 1) is 2. Thus, the expected number
of rounds of ConsensusS is 3 = E1(e) = (1/2)(1 + 2) + (1/2)(1 + 2).

• E(e) = E2(e): If all non-faulty processes sent prefer(v) in round r and part of the
non-faulty processes receive a disagreement message or both messages prefer(0) and
prefer(1) in round r + 1, then all processes receive disagreement messages and from
round r + 1 on, all preference messages sent by every process (and all received as
well) will be prefer(flip(r + 1)). Thus, all processes will decide on flip(r + 1) in the
first round t such that flip(t) = flip(r + 1), and the probability that any process
(and thus, a non-faulty one) violates termination is the same as the probability that
such a round t never happens, that is, zero. Besides, the expected number of rounds
to achieve a round t such that flip(t) = flip(r+ 1) is 2. Thus, the expected number
of rounds of ConsensusS is 3 = E2(e) = (1/2)(1 + 2) + (1/2)(1 + 2).

• E(e) = E3(e): If all non-faulty processes sent prefer(v) and receive no disagreement
messages and only prefer(v) in round r+1, then if flip(r+1) = v, all non-faulty pro-
cesses send decide(v) messages and then decide by returning v themselves. Moreover,
on receipt of decide(v), all remaining processes decide by returning v. If flip(r) 6= v,
then we fall again into the case that all non-faulty processes send prefer(v). That
is, E3(e.2) = E2(e.2)orE3(e.2). Thus, the probability that any process (and thus, a
non-faulty one) violates termination is zero and the expected number of rounds of
ConsensusS is 3 = E3(e) = (1/2)(1 + 1) + (1/2)(1 + 3).

In short, in all cases, if f < n, the probability that any process (and thus, a non-faulty
one) violates termination is zero. Moreover, the expected number of rounds of ConsensusS
is 3 for all processes.

Lemma 5.2. If f < n, each decided value is some process’s input.

Proof. Any decided value v is either an original input or the result of a shared coin flip.
Consider the first prefer(flip(r)) statement to be executed, if any. In this case, there
must have been a process received both prefer(0) and a prefer(1) messages, which means
that some process had input value 0 and another had input value 1. It follows that either
value is some process’s input.

Lemma 5.3. If f < n, no two processes decide differently.
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Proof. Consider the first round r in which a process decides v. It must be the case that
at round r, flip(r) = v and all preference messages received by the process are prefer(v).
As the messages from all non-faulty processes are received by all processes and there is at
least one non-faulty process, all processes receive at least one prefer(v) message, and either
decide on v at the same round r or send prefer(v) = prefer(flip(r)). It follows that from
the next round r + 1 on, all messages sent from all processes (and thus, also all received
ones) will be prefer(v). Henceforth, no process can decide a value different from v.

Theorem 5.4. ConsensusS solves uniform consensus with binary inputs in a synchronous
system prone to crashes and send message omissions, with a probability zero of termination
violation, and both an optimal constant (3) expected rounds and an optimal n−1 resilience
(that is, up to n− 1 processes may be faulty: f < n).

Proof. Follows directly from Lemmas 5.1, 5.2 and 5.3.

5.6 Optimal Protocol for Send and Receive Omissions

The ConsensusSR algorithm in Figure 5.4 solves uniform consensus with binary inputs in
optimal 3 expected synchronous rounds tolerating an optimal number of up to f < n/2
failures - send message omissions and receive message omissions as well as process crashes.

In ConsensusSR, all processes start by broadcasting their inputs (line 2). Whenever
one process does not receive a message from another, it decides that process must be
faulty, and ignores it from that point on (line 6). Even so, all non-faulty processes send
and receive messages from one another. Moreover, a live faulty process always receives
messages from at least one non-faulty process, since otherwise, it would have less than
n/2 + 1 messages and it would halt before reaching a decision (line 7).

On each round, every process checks if all received messages contain the same preferred
value v (line 9). If so, it broadcasts a message that it wants to decide on v (line 10). When
receiving this message for the first time (line 12), processes relay it. If a process receives
such message from a majority of processes (line 15) or if it receives a message to decide on
v (line 18), then it sends messages to all processes to decide on v and retuns v. Note that
if a non-faulty process relays the message, all non-faulty processes will relay the message
as well, so all non-faulty processes will receive the message from a majority of processes.
As every process needs a non-faulty process to relay the message in order to decide on v,
if any process decides on v, then every non-faulty process does as well. If a decision is not
reached, then the process either sends a message with v as its current preference (line 22),
if it received a majority of preferences v, or sends a message containing flip(r) (line 24),
otherwise.

Lemma 5.5. On any single round after initialization (sending the binary private input),
only one value is preferred or chosen deterministically.

Proof. A process prefers or decides v deterministically only if it sees a majority for v.

Lemma 5.6. If f < n/2, for every process the expected number of rounds of ConsensusSR
is 3, and the protocol terminates with probability 1.

Proof. After initialization (sending the binary private input), if all live processes send
prefer(flip(r)) or if all live processes send prefer(v), they agree right away, by Lemma 5.5.
If some send prefer(v) and some send prefer(flip(r)), again by Lemma 5.5, then all live
processes will agree in the first round t such that v = flip(r), and the probability that any
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Figure 5.4: Uniform consensus for send and receive message omissions and process crashes.
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non-faulty process violates termination is the same as the probability that such a round t
never happens, that is, zero. Besides, the expected number of rounds to achieve a round
t such that v = flip(r) is 2.

Once agreement by all live processes is achieved, non-faulty processes will receive
a majority of wantdecide(r, v), send decide(v) and return(v), immediately in the same
round. This is because they always receive messages from each other, that is, they
always belong to the Recipients of non-faulty processes, so once a non-faulty process
sends a wantdecide(r, v) message, all non-faulty processes will send wantdecide(r, v) mes-
sages to (and receive them from) all non-faulty processes and guarantee a majority of
wantdecide(r, v).

In short, in all cases, if f < n/2, the probability that a non-faulty process violates
termination is zero. Moreover, the expected number of rounds of ConsensusSR is 3 for all
processes.

Lemma 5.7. If f < n/2, all processes in ConsensusSR decide some process’s input.

Proof. A decided value v, from decide(v), is just obtained from a prefer(v). Now, by
induction, a v from prefer(v) has to be either an input or a flip(r) for some r. However,
take the first prefer(flip(r)) to occur, if any do. In this case, a process received both a
prefer(0) and a prefer(1), which means that there should be a proposed input value equal
to 0 and another equal to 1, as the particular prefer(flip(r)) was the first one to take
place. Otherwise, either there would be a majority of prefer(v) or Hence, flip(r) must
be a proposed input value if any prefer(flip(r)) occurs, and v must also be one of the
proposed values.

Lemma 5.8. If f < n/2, agreement is never violated in ConsensusSR: no two processes
decide differently.

Proof. Consider the first round r when a process decides by returning v. Then, it must be
the case that a majority of wantdecide(r, v) is received by the process. However, because
each process deciding has to receive a wantdecide(r, v) from a non-faulty process and non-
faulty processes always receive messages from each other, when any process has a majority
of wantdecide(r, v), it must be the case that all non-faulty processes have a majority of
wantdecide(r, v), that is, all non-faulty processes decide by returning v as well.

Theorem 5.9. ConsensusSR solves uniform consensus with binary inputs in a synchronous
system prone to crashes, send message omissions and receive message omissions, with a
probability zero of termination violation, and both an optimal constant (3) expected number
of rounds and an optimal n/2−1 resilience (that is, up to n/2−1 processes may be faulty:
f < n/2).

Proof. Follows directly from Lemma 5.6, 5.7 and 5.8.

Hence, the key idea here is that if secure coprocessors can share secret cryptographic
keys (as they do), then they can also share secret seeds for secure pseudo-random number
generators. Such shared coins enable randomized (Las Vegas) algorithms for fair exchange
and uniform consensus that are optimal in terms of expected running time and resilience.
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Chapter 6

Deterministic Message Omission
Robust Protocols

Here we present a modular redesign of TrustedPals, a smartcard-based security framework
for solving secure multiparty computation (SMC) [36]. TrustedPals is a practical imple-
mentation which allows to reduce SMC to the problem of fault-tolerant consensus between
smartcards or other trusted coprocessors [17, 54, 53] - an environment where only crashes
or message omissions may occur, as in previous chapter. Note that fair exchange is in fact
an instance of SMC.

Within the redesign we now continue our exposition of message omission robust proto-
cols by investigating the problem of solving consensus in an asynchronous message omission
failure model augmented with failure detectors, instead of the synchronous scenario from
previous chapter. To this end, we give novel definitions of both consensus and the class of
3P failure detectors in the omission model and show how to implement 3P and have con-
sensus in such a system with some weak synchrony assumptions. The integration of failure
detection into the TrustedPals framework uses tools from privacy enhancing techniques
such as message padding and dummy traffic.

The next sections are divided up as follows. In Section 6.1 we give an overview over and
motivate the system model of TrustedPals. In Section 6.2 we give details on the system
model. In Section 6.3 we define and implement the failure detector 3P in the omission
failure model. We then use this failure detector to solve consensus in Section 6.4. In
Section 6.5 we describe how to integrate failure detection and consensus securely in the
TrustedPals framework.

6.1 Motivation

Consider a set of parties who wish to correctly compute some common function F of
their local inputs, while keeping their local data as private as possible, but who do not
trust each other, nor the channels by which they communicate. This is the problem of
Secure Multi-party Computation (SMC) [118]. SMC is a very general security problem,
i.e., it can be used to solve various real-life problems such as distributed voting, private
bidding and auctions like Ebay, sharing of signature or decryption functions and so on.
Unfortunately, solving SMC is—without extra assumptions—very expensive both in terms
of communication (number of messages) and time (number of synchronous rounds).

TrustedPals [53] is a smartcard-based implementation of SMC which allows much more
efficient solutions to the problem. Conceptually, TrustedPals considers a distributed sys-
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Figure 6.1: Processes with tamper proof security modules.

tem in which processes are locally equipped with tamper proof security modules (see
Fig. 6.1) which work as trusted coprocessors, as in previous chapter. In practice, processes
are implemented as a Java desktop application and security modules are realized using
Java Card Technology enabled smartcards [33]. Roughly speaking, solving SMC between
processes is achieved by having the security modules jointly simulate a trusted third party
(TTP), as we now explain.

To solve SMC in the TrustedPals framework, the function F is coded as a Java function
and is distributed within the network in an initial setup phase. Then processes hand their
input value to their security module and the framework accomplishes the secure distribu-
tion of the input values. Finally, all security modules compute F and return the result
to their process. The network of security modules sets up confidential and authenticated
channels between each other and operates as a secure overlay within the distribution phase.
Within this secure overlay, arbitrary and malicious behavior of an attacker is reduced
to rather benign faulty behavior (process crashes and message omissions). TrustedPals
therefore allows to reduce the security problem of SMC to a fault-tolerant synchronization
problem [53], namely that of consensus.

To date, TrustedPals assumed the synchronous network setting from last chapter, i.e.,
a setting in which all important timing parameters of the network are known and bounded.
This makes TrustedPals sensitive to unforeseen variations in network delay and therefore
not very suitable for deployment in networks like the Internet. In this chapter, we explore
how to make TrustedPals applicable in environments with less synchrony. More precisely,
we unveal the possibilities to implement TrustedPals in a modular fashion inspired by
results in fault-tolerant distributed computing: We use an asynchronous consensus algo-
rithm and encapsulate (some weak) timing assumptions within a device known as a failure
detector [28].

The concept of a failure detector has been investigated in quite some detail in systems
with merely crash faults [55]. In such systems, correct processes (i.e., processes which do
not crash) must eventually permanently suspect crashing processes. There is very little
work on failure detection and consensus in message omissions environments. In fact, it
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is not clear what a sensible definition of a failure detector (and consensus) is in such
environments because the notion of a correct process can have several different meanings
(e.g., a process with no failures whatsoever or a process which just does not crash but
omits messages).

Related Work.
Delporte, Fauconnier and Freiling [38] were the first to investigate non-synchronous

settings in the TrustedPals context. Following the approach of Chandra and Toueg [28]
(and similarly here) they separate the trusted system into an asynchronous consensus layer
and a partially synchronous failure detection layer. They assume that transient omissions
are masked by a piggybacking scheme. The main difference however is that they solve a
different version of consensus than we do: Roughly speaking, message omissions can cause
processes to communicate only indirectly, i.e., some processes have to relay messages for
other processes. Delporte, Fauconnier and Freiling [38] only guarantee that all processes
that can communicate directly with each other solve consensus. In contrast, we allow also
those processes which can only communicate indirectly to successfully participate in the
consensus. As a minor difference, we focus on the class 3P of eventually perfect failure
detectors whereas Delporte, Fauconnier and Freiling [38] implement the less general class
Ω. Furthermore, Delporte, Fauconnier and Freiling [38] do not describe how to integrate
failure detection within the TrustedPals framework: A realistic adversary who is able to
selectively influence the algorithms for failure detection and consensus can cause their
consensus algorithm to fail.

Apart from Delporte, Fauconnier and Freiling [38], other authors also investigated
solving consensus in systems with omission faults. Unpublished work by Dolev et al. [43]
also follows the failure detector approach to solve consensus, however they focus on the
class 3S(om) of failure detectors. Babaoglu, Davoli and Montresor [13] also follow the
path of 3S to solve consensus in partitionable systems.

Recently, solving SMC without security modules has received some attention focusing
on two-party protocols [83, 84]. In systems with security modules, Avoine and Vaudenay
[12] examined the approach of jointly simulating a TTP. This approach was later extended
by Avoine et al. [11] who show that in a system with security modules fair exchange can
be reduced to a special form of consensus. They derive a solution to fair exchange in a
modular way so that the agreement abstraction can be implemented in diverse manners.
Note that this solution is deterministic and more costy than optimal randomized ones
presented in last chapter [54]. Benenson et al. [17, 53] extended this idea to the general
problem of SMC and showed that the use of security modules cannot improve the resilience
of SMC but enables more efficient solutions for SMC problems. However, all these works
assume a synchronous network model.

Correia et al. [35] present a system which employs a real-time distributed security
kernel to solve SMC. The architecture is very similar to that of TrustedPals as it also
uses the notion of architectural hybridization [111]. However, the adversary model of
Correia et al. [35] assumes that the attacker only has remote access to the system while
TrustedPals allows the owner of a security module to be the attacker. Like other previous
work [12, 17, 11, 54, 53] Correia et al. [35] also assume a synchronous network model at
least in a part of the system.

Our work on TrustedPals is closely related to building failure detectors for arbitrary
(byzantine) failures which has been investigated previously (see for example Kihlstrom,
Moser and Melliar-Smith [79] and Doudou, Garbinato and Guerraoui [44]). In contrast to
previous work on byzantine failure detectors, we use security modules to avoid the tar pits
of this area.
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Contributions.

Here we present a modular redesign of TrustedPals using consensus and failure detec-
tion as modules. More specifically, we make the following technical contributions:

• We give a novel definition of 3P in the omission model and we show how to implement
3P in a system with weak synchrony assumptions in the spirit of partial synchrony
[48].

• We give a new definition of consensus in the omission model and give an algorithm
which uses the class 3P to solve consensus. The algorithm is an adaptation of the
classic algorithm by Chandra and Toueg [28] for the crash model.

• We integrate failure detection and consensus securely in TrustedPals by employing
message padding and dummy traffic, tools known from the area of privacy enhancing
techniques.

• We give a detailed security analysis of the system using the attack tree method.
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Figure 6.2: The untrusted and trusted system.

6.2 System Model and Architecture

6.2.1 Untrusted and Trusted System

To be able to precisely reason about algorithms and their properties in the TrustedPals
system we now formalize the system assumptions within our hybrid model, which is divided
into two parts (see Fig. 6.2). Note that, though many aspects from this section may have
been already described in previous chapter, there are important details and definitions
used here which have not appeared before.

The upper part of our hybrid model consists of n processes which represent the un-
trusted hosts. The lower part equally consists of n processes which represent the security
modules. Because of the lack of mutual trust between untrusted hosts, we call the former
part the untrusted system. Since the security modules trust each other we call the latter
part the trusted system. Each host is connected to exactly one security module by a direct
communication link.

Summarizing, there are two different types of processes: processes in the untrusted
system and processes in the trusted system. For brevity, we will use the unqualified term
process if the type of process is clear from the context.

Within the untrusted system each pair of hosts is connected by a pair of unidirectional
communication links, one in each direction. Since the security modules also must use these
links to communicate, the trusted system can be considered as an overlay network which
is a network that is built on top of another network. Nodes in the overlay network can be
thought of as being connected by virtual or logical links. In practice, for example, smart-
cards could form the overlay network which runs on top of the Internet modeled by the
untrusted processes. Within the trusted system we assume the existence of a public key
infrastructure, which enables two communicating parties to establish confidentiality, mes-
sage integrity and user authentication without having to exchange any secret information
in advance.

We assume reliable channels, i.e., every message inserted to the channel is eventually
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delivered at the destination. We assume no particular ordering relation on channels.

6.2.2 Timing Assumptions

We assume that a local clock is available to each host, but clocks are not synchronized
within the network. Security modules do not have any clock, they just have a simple
step counter, whereby a step consists of receiving a message from other security modules,
executing a local computation, and sending a message to other security modules. Passing
of time is checked by counting the number of steps executed.

Since trusted and untrusted system operate over the same physical communication
channel, we assume the same timing behavior for both systems. Both systems are assumed
to be partially synchronous meaning that eventually bounds on all important network
parameters (processing speed differences, message delivery delay) hold. The model is
a variant of the partial synchrony model of Dwork, Lynch and Stockmeyer [48]. The
difference is that we assume reliable channels.

We say that a message is received timely if it is received after the bounds on the timing
parameters hold. Omission of such a message can be reliably detected using timeout-based
reasoning.

6.2.3 Failure Assumptions

The model is hybrid because we have distinct failure assumptions for both systems. The
failure model we assume in the untrusted system is the byzantine failure model [80]. A
byzantine process can behave arbitrarily. In the trusted system we assume the failure
model of message omission, which we now explain again, as previously.

The concept of omission faults, meaning that a process drops a message either while
sending (send omission) or while receiving it (receive omission), was introduced by Hadzi-
lacos [61] and later generalized by Perry and Toueg [103]. The failure model used for the
trusted system is that of message omission, in which processes can crash and experience
either send-omissions or receive omissions. We allow the possibility of transient omissions,
i.e., a process may temporarily drop messages and later on reliably deliver messages again.

A process (untrusted host or security module) is correct if it does not fail. A process
is faulty if it is not correct. We assume a majority of processes to be correct both in the
untrusted and in the trusted system. Note that a faulty security module implies a faulty
host but a faulty host not necessarily implies a faulty security module.

The motivation behind this hybrid approach is that the system runs in an environment
prone to attacks, but the assumptions on the security modules and the possibility to
establish secure channels reduce the options of the attacker in the trusted system to attacks
on the liveness of the system, i.e., destruction of the security module or interception of
messages on the channel.

6.2.4 Classes of Processes in the Trusted System

The omission model in the trusted system implies the possibility of both transient send
omissions and receive omissions. Given two processes, p and q, if a single message m sent
from p to q is not delivered by q, the following question arises: has p suffered a send omis-
sion, or has q suffered a receive omission? Formally, one of the two processes is incorrect,
but it is not possible to determine which one. Observe that considering both processes p
and q incorrect can be too restrictive. This leads us to reconsider the different classes of
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Figure 6.3: Examples for classes of processes.

processes in the omission model with respect to the common correct/incorrect classifica-
tion. In particular, processes suffering a limited number of omissions, e.g., processes that
do not suffer omissions with some correct process, will be considered as good, since they
can still participate in a distributed protocol like consensus.

On the basis of this motivation, we consider the following two classes of processes:

Definition 6.1. A process p is in-connected if and only if:

(1) p is a correct process, or

(2) p does not crash and there exists a process q such that q is in-connected and all
messages sent by q to p are eventually received timely by p (i.e., q does not suffer
any send-omission with p, and p does not suffer any receive-omission with q).

Definition 6.2. A process p is out-connected if and only if:

(1) p is a correct process, or

(2) p does not crash and there exists a process q such that q is out-connected and all
messages sent by p to q are eventually received timely by q (i.e., p does not suffer
any send-omission with q, and q does not suffer any receive-omission with p).

Observe that correct processes are both in-connected and out-connected. Observe also
that the definitions of in-connected and out-connected processes are recursive. Intuitively,
there is a timely path with no omissions from every correct process to every in-connected
process. Also, there is a timely path with no omissions from every out-connected process
to every correct process, and hence to every in-connected process.

Fig. 6.3 shows an example. In the figure, arcs represent timely links with no omissions
(they are not shown for the majority of correct processes). Processes p and q are out-
connected, while process s is in-connected, and processes r and v are both in-connected
and out-connected. Finally, process u is neither in-connected nor out-connected.

6.2.5 The TrustedPals Architecture

Fig. 6.4 shows the layers and interfaces of the proposed modular architecture for Trusted-
Pals. A message exchange is performed on the transport layer, which is under control of
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Figure 6.4: The architecture of our system.

the untrusted host. The failure detector and the security mechanisms for message encryp-
tion etc. run in the TrustedPals layer. In the consensus layer runs the consensus algorithm.
On the application layer, which again is under the control of the untrusted host, protocols
like fair exchange operate.

6.3 Failure Detection in TrustedPals

Based on the two new classes of processes defined in the previous section, we redefine
now the properties that 3P must satisfy in the omission model. While the common
correct/faulty classification of processes is well addressed by means of a list of suspected
processes, in the omission model we will consider two lists of processes, one for the in-
connected processes and the other one for the out-connected processes. If a process p has
a process q in its list of in-connected (out-connected) processes, we say that p considers q
as in-connected (out-connected). The 3P class of failure detectors in the omission model
satisfies the following properties:

• Strong Completeness. Eventually every process that is not out-connected will be
permanently considered as not out-connected by every in-connected process.

• Eventual Strong Accuracy. Eventually every process that is out-connected will be
permanently considered as out-connected by every in-connected process.

• In-connectivity. Eventually every process that is in-connected will permanently con-
sider itself as in-connected.

Figs. 6.5, 6.6 and 6.7 present an algorithm implementing 3P. The algorithm provides
to every process p a list of in-connected processes, InConnectedp, and another list of
out-connected processes, OutConnectedp. For every in-connected process p, these lists
will have the information required to satisfy the properties of 3P. In particular, the
list OutConnectedp will eventually and permanently contain exactly all the out-connected
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processes. Regarding the InConnectedp list, it will eventually and permanently contain
p itself. as well as every process that is both in-connected and out-connected (hence, at
least all correct processes).

In order to detect message omissions, messages carry a sequence number. Besides,
every process p uses a matrix Mp of n × n elements. In the beginning, all processes are
supposed to be correct, so every element in the matrix has a value of 1. If all messages
sent from a process q to a process p are received timely by p, Mp[p][q] will be maintained
to 1. Otherwise, process p will set Mp[p][q] to 0. In this way, the matrix will have the
information needed to calculate the lists of in-connected and out-connected processes.

Actually, M represents the transposed adjacency matrix of a directed graph, where
the value of the element M [p][q] shows if there is an arc from q to p. We can derive
from powers of the adjacency matrix if there is a path with no omission of any length
between every pair of processes. Observe that in the given algorithm a process does not
monitor itself and, as a consequence, the elements of the main diagonal of the matrix
are always set to 1. Taking this into account, the n-th power of the adjacency matrix,
Ap = (Mp)n, gives us the information we need to obtain the sets of in-connected and out-
connected processes. A process p is in-connected if it is able to receive all the messages
(either directly or indirectly) from at least d (n+1)

2 e processes. Similarly, a process p is
out-connected if at least d (n+1)

2 e processes are able to receive (either directly or indirectly)
all the messages sent by p. The lists of in-connected and out-connected processes are
computed in the update In Out Connected lists() procedure, which is called every time a
value of the matrix Mp is changed.

In Task 1 (line 14), a process p periodically sends a heartbeat message to the rest of
processes. When a message is sent, the sequence number associated to the destination is
incremented. Observe that the matrix Mp is sent in the heartbeat messages.

In Task 2 (line 21), if a process p does not receive the next expected message from a
process q in the expected time, the value of Mp[p][q] is set to 0.

In Task 3 (line 28), received messages are processed. The messages a process p receives
from another process q are delivered following the sequence number next receivep[q]. Ev-
ery process p has a buffer for every other process q to store unordered messages received
from q. If p receives a message from q with a sequence number different from the expected
one, this message is inserted in Bufferp[q] and the message is not delivered yet (line 42).
A message is delivered when it is the next expected message, either because it has been
just received (line 30) or it is inside the buffer (line 33). If the delivered message was in
the buffer, it is removed from there. Having delivered the next expected message from a
process q, if the buffer is empty it means that there is no message left from q, so Mp[p][q]
is set to 1. This way, process p fills its corresponding row in the matrix indicating if all
the messages it expected from every other process have been received timely.

The procedure deliver next message() is used to update the adjacency matrix Mp using
the information carried by the message. In the procedure, process p copies into Mp the
row q of the matrix Mq received from q. This way, p learns about q’s input connectivity.
With respect to every other process u, a mechanism based on version numbers is used to
avoid copying old information about u’s input connectivity. Process p will only copy into
Mp the row u of Mq if its version number is higher.

Correctness Proof

Lemma 6.3. ∀p, q ∈ Π, if neither p nor q crashes and there is no message omission from
q to p, eventually and permanently Mp[p][q]=1. Otherwise, i.e., if q crashes or there is
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Figure 6.5: 3P in the omission model: main algorithm.
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Figure 6.6: 3P in the omission model: procedure update In Out Connected lists().

Figure 6.7: 3P in the omission model: procedure deliver next message().

some message omission from q to p, eventually and permanently Mp[p][q]=0.

Proof. If all messages sent by q to p are eventually received by p, every heartbeat mes-
sage sent by Task 1 of q will be eventually received by Task 3 of p. Observe that the
deliver next message() procedure does not modify Mp[p][q]. By Task 2 of p, Mp[p][q]
is set to 0 when the next expected message m from q has not been received timely by
p. Eventually, on the reception of m by Task 3 of p, m will be delivered. After that, if
Bufferp[q] becomes empty, Mp[p][q] will be set to 1. Observe that this will permanently
happen when ∆p(q) reaches the unknown bound on message transmission time. Since
∆p(q) is incremented when m is not received timely, and since the communication link be-
tween q and p is eventually timely, this bound will be eventually reached, after which p will
receive every (ALIV E, q, −, −, −) message always before ∆p(q) expires, and Mp[p][q] = 1
forever.

On the other hand, if a message m is omitted from q to p, by Task 2 of p, Mp[p][q] is set
to 0 because m has not been received timely by p. After that, p could receive a message
l with a higher sequence number from q. This message would be inserted in Bufferp[q]
because it was not the next expected message. If the next expected message m is never
received, Bufferp[q] will never become empty and Mp[p][q] = 0 forever. Observe that if
p does not receive more messages from q after the omission of m because all the messages
are omitted or q has crashed, Task 3 of p will never be executed due to a reception of a
message from q, and Mp[p][q] = 0 forever too.

Lemma 6.4. ∀p, q ∈ Π, if neither p nor q crashes and there is a path with no omission
from q to p, eventually and permanently the row q of matrices Mp and Mq will be identical,
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i.e., Mp[q][] = Mq[q][].

Proof. Process q has information about its own in-connectivity in the row q of its matrix
Mq[q][]. Every time a value of this row changes, its version number will be incremented.
By Lemma 6.3, this information eventually stabilizes in q and its version number will be
the highest associated to this row in the system. When a process r receives a message
from q it will copy the row Mq[q][] into Mr[q][] if the row version number is higher, that
is to say, the received information is newer. If there is no message omission from process
q to process r, r will obtain the last version of the in-connectivity information of q. After
updating the information about q, by Task 1 r will send this information in its own matrix
to the rest of processes.

If there is a path with no omission from q to p, recursively, p will receive the latest
information about q going through all the processes in the path. The version number
mechanism ensures that old information about q arriving at p will not be copied into Mp.
As a consequence, Mp[q][] = Mq[q][] eventually and permanently.

Lemma 6.5. ∀p, q ∈ Π, if neither p nor q crashes and there is a path with no omission
from q to p, eventually and permanently (Mp)n[p][q] ≥ 1.

Proof. The path from q to p will be composed of processes q, u, v, ..., p. If this is a path
with no omission, there is no omission from q to u, from u to v and so on. By Lemma 6.3,
Mu[u][q] = 1, Mv[v][u] = 1 and so on. By Lemma 6.4, the rows q, u, v, ...., p of the
adjacency matrix Mp will be eventually updated with the in-connectivity information of
all these processes, reflecting this path in the matrix. This way, the n-th power of the
adjacency matrix will tell us that there is a path of some length from q to p, being
(Mp)n[p][q] ≥ 1.

Lemma 6.6. ∀p in-connected, ∀q out-connected it holds that eventually and permanently
q ∈ OutConnectedp.

Proof. By definition, since process p is in-connected there is a path with no omission from
some correct process to p. By definition too, since process q is out-connected there is a
path with no omission from q to some correct process. Observe that all correct processes
never suffer any omission, and considering that a majority of processes is correct, by
Lemma 6.3, every correct process will have at least d (n+1)

2 e 1 values in its row. Even more,
by Lemma 6.4, every correct process will update its matrix copying all the rows of the
rest of correct processes, having eventually and permanently at least d (n+1)

2 e 1 values in
its column. Considering that there is no omission among correct processes, we can derive
that there is a path with no omission from q to every correct process and also that there is
a path with no omission from every correct process to p. By Lemma 6.5, for every correct
process r, (Mr)n[r][q] ≥ 1. Being a path with no omission from all correct processes to p,
by Lemma 6.4, p will update its matrix from the correct processes, and (Mp)n[][q] ≥ 1 for
more than d (n+1)

2 e processes (at least the correct processes). As a consequence, according
to the procedure update In Out Connected lists(), q will be permanently included in the
list OutConnectedp.

Lemma 6.7. ∀p in-connected, ∀q not out-connected, eventually and permanently q /∈
OutConnectedp.

Proof. Since q is not out-connected, it does not exist a correct process r such that there is
a path with no omission from q to r. By Lemma 6.4, if p is in-connected, p will eventually
and permanently know about the connectivity of every correct process r, and therefore,
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(Mp)n[r][q] = 0. Since there is a majority of correct processes, the number of processes
such that (Mp)n[][q] ≥ 1 will always be less than d (n+1)

2 e, so eventually and permanently
p will consider q as not out-connected (q /∈ OutConnectedp).

Lemma 6.8. ∀p in-connected, eventually and permanently p ∈ InConnectedp.

Proof. As shown in Lemma 6.6, there is a a path with no omission from every correct
process to p. Considering that there is a majority of correct processes, the number of
processes with a path with no omission to p will be at least d (n+1)

2 e, and by Lemma 6.5,
p will eventually and permanently consider itself as in-connected in the procedure up-
date In Out Connected lists().

Theorem 6.9. The algorithm of Figure 6.5 implements 3P in the omission model.

Proof. The strong completeness, eventual strong accuracy, and in-connectivity properties
of 3P are satisfied by Lemmas 6.7, 6.6, and 6.8 respectively.

6.4 3P-based Consensus in TrustedPals

In the consensus problem, every process proposes a value, and correct processes must
eventually decide on some common value that has been proposed. In the crash model, every
correct process is required to eventually decide some value. This is called the Termination
property of consensus. In order to adapt consensus to the omission model, we argue that
only the Termination property has to be redefined. This property involves now every in-
connected process, since, despite they can suffer some omissions, in-connected processes
are those that will be able to decide.

The properties of consensus in the omission model are the following:

• Termination. Every in-connected process eventually decides some value.

• Integrity. Every process decides at most once.

• Uniform agreement. No two processes decide differently.

• Validity. If a process decides v, then v was proposed by some process.

Figs. 6.8 and 6.9 present an algorithm solving consensus using 3P in the omission
model. It is an adaptation of the well-known Chandra-Toueg consensus algorithm. Instead
of explaining the algorithm from scratch, we just comment on the modifications required
to adapt the original algorithm:

• In Phase 2, the current coordinator waits for a majority of estimates while it considers
itself as in-connected in order not to block. Only in case it receives a majority of
estimates a valid estimate is sent to all. If it is not the case, the coordinator sends
a NEXT message indicating that the current round cannot be successful.

• In Phase 3, every process p waits for the new estimate proposed by the current coor-
dinator while p considers itself as in-connected and the coordinator as out-connected
in order not to block. Also, p can receive a NEXT message indicating that the cur-
rent round cannot be successful. In case p receives a valid estimate, it replies with a
ack message. Otherwise, p sends a nack message to the current coordinator.
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Figure 6.8: Solving consensus in the omission model using 3P: main algorithm.

Figure 6.9: Solving consensus in the omission model using 3P: adopting the decision.
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• In Phase 4, if the current coordinator sent a valid estimate in Phase 2, it waits for
replies of out-connected processes while it considers itself as in-connected in order not
to block. If a majority of processes replied with ack, the coordinator R-broadcasts a
decide message.

When a process p sends a consensus message m to another process q, the following
approach is assumed: (1) p sends m to all processes, including q, except p itself, and (2)
whenever p receives for the first time a message m whose destination is another process
q different from p, p forwards m to all processes (except the process from which p has
received m and p itself). Clearly, this approach can take advantage of the underlying
all-to-all implementation of the 3P failure detector.

Correctness Proof

We provide here a proof sketch of our adapted consensus algorithm in the omission model.
First of all, observe that uniform agreement is preserved, because we keep the original
mechanism based on majorities to decide on a value. Also, it is easy to see that integrity
and validity are satisfied. Finally, in order to show that termination is satisfied, we first
show that the algorithm does not block in any of its wait instructions:

• In Phase 2, if the current coordinator p is not in-connected, it will eventually stop
waiting because the failure detector will eventually exclude p from InConnectedp.
On the other hand, if p is in-connected, it will eventually receive a majority of
estimates since there is a majority of correct processes in the system. Hence, no
coordinator blocks forever in the wait instruction of Phase 2.

• In Phase 3, every process p waits for the new estimate proposed by the current
coordinator or a NEXT message while p considers itself as in-connected and the
coordinator as out-connected. Clearly, by the properties of 3P no process blocks
forever in the wait instruction of Phase 3.

• In Phase 4, the current coordinator waits for replies of out-connected processes while
it considers itself as in-connected. Again, by the properties of 3P and the fact that
there is a majority of correct processes in the system, no coordinator blocks forever
in the wait instruction of Phase 4.

By the previous, eventually some correct process c will coordinate a round in which:

• In Phase 2, c will receive a majority of estimates, because c will be permanently in
InConnectedc (by the properties of 3P) and there is a majority of correct processes
in the system. Hence, c will send a valid estimate to all processes at the end of
Phase 2.

• In Phase 3, every correct process p will receive c’s valid estimate, because p will be
permanently in InConnectedp and c will be permanently in OutConnectedp (by the
properties of 3P). Hence, p will send a ack message to c at the end of Phase 3.

• In Phase 4, c will receive a majority of ack messages, because c will be permanently
in InConnectedc and all correct processes will be permanently in OutConnectedc
(by the properties of 3P) and there is a majority of correct processes in the system.
Hence, c will R-broadcast the decision, and every in-connected process will eventually
decide.
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Figure 6.10: Smartcard with scrambler.

6.5 Integrating Failure Detection and Consensus Securely

As depicted in Fig. 6.4, the TrustedPals layer receives messages from the consensus protocol
and from the failure detector. If an untrusted host could distinguish protocol messages
from failure detector messages he could intercept all former messages while leaving the
latter untouched. This would result in a failure detector working properly but a consensus
protocol to block forever. In order to prevent such malicious actions we piggyback the
protocol messages on the failure detector messages, which are sent in regular time intervals.
To make sure that the adversary can not distinguish the packets with the protocol message
piggybacked from the ones without protocol message, packets will have the same size, i.e.,
failure detector messages are padded and protocol messages are divided into a predefined
length. It might be inefficient for small messages to be padded or large packets split up in
order to get a message of the desired size. However, it is necessary to find an acceptable
tradeoff between security and performance such that a message size provides better security
in expense of worse performance.

We assume a scrambler which receives the protocol and failure detector messages and
outputs equal looking messages of the same size in regular time intervals (see Fig. 6.10). It
proceeds as follows. Whenever a protocol message has to be sent, it will be piggybacked on
the failure detector message. If there is no protocol message ready to be sent, the packet’s
payload will be filled with random bits. In order to be efficient, the predefined size of the
messages sent will be kept as small as possible. If a protocol message is too big, it will be
divided, using a fragmentation mechanism, and piggybacked into multiple failure detector
messages. Since the protocol is asynchronous, even long delays can be tolerated as long as
the failure detector works correctly.

Cryptography is applied to prevent and detect cheating and other malicious activities.
We use a public key cryptosystem for encryption. Each message m in our model will be
signed and then encrypted in order to reach authenticity, confidentiality, integrity, and
non-repudiation.

The source and destination address are encrypted because this enables the receiver
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Figure 6.11: Example of scrambler’s function.

of a message to check whether the received message was intended for it or not and who
the sender was. Thus, a malicious process cannot change the destination address in the
header of a message from its security module and send it to an arbitrary destination
without being detected. To detect a message deletion or loss, each message which is sent
gets an identification number, where the fragment offset field determines the place of a
particular fragment in the original message with same identification number.

As an example for the scrambler’s function, consider the situation where the scrambler
takes a protocol message m, whose size is three times the size of a failure detector message,
from the queue of protocol messages to be sent. The scrambler divides the protocol message
in three parts and assigns the next available sequence number to each part. Also each part
gets a fragment offset. The first message part gets the fragment offset 1, the second
message part gets the fragment offset 2, and the last message part gets the fragment offset
3. (see Fig. 6.11). Next, the sequence number, all other fields, and the first message
part all together are signed with the private key of the sender. After that, the signature
is encrypted. Then, the next failure detector message is taken from the queue of failure
detector messages to be sent and the encrypted message part is inserted into the failure
detector message payload. Now, the first message part is ready to be sent in the next
upcoming interval. The same is applied to the second and third part of the protocol
message.

When the queue of protocol messages is empty, the scrambler only takes a failure
detector message from the queue of failure detector messages (see Fig. 6.12) . Here, also
a sequence number is assigned. But the fragment offset and the data field are filled with
random bits. Then, the sequence number, the not set CD field, the not set MF field, the
source and destination address of the message, and the random bits are taken and signed
all together. Now, the signature is encrypted and added to the failure detector message
payload. Then, the message can be sent in the next upcoming interval.
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1 if (queue of protocol messages is empty) {
2 take a failure detector message
3 assign a sequence number
4 fill fragment offset field and data field with random bits
5 sign message payload
6 encrypt signature
7 add ciphertext into failure detector message payload
8 send generated message in next upcoming interval
9 }

Figure 6.12: Part of scrambler’s function in pseudocode.

6.6 Security Evaluation

The correct execution and termination of the algorithm must be provided and all parties
must have the confidence that certain objectives associated with the algorithm’s security
have been met. The system must provide reliable multi-party interaction under partial
synchrony and subject to malicious as well as accidental faults. We evaluate if all desired
security objectives are accomplished in the proposed system model. Since the failure model
assumed in the untrusted system is the Byzantine failure model, malicious processes can
collude, exchange information, and jointly gather knowledge to perform any kind of attack
on the system. On the other hand, correct processes try to achieve safety and liveness and
keep the messages exchanged secret.

To model the security threats against the system we make use of attack trees. Attack
trees are conceptual diagrams of threats on systems and possible attacks to reach those
threats. The reason we have chosen attack trees and not formal proofs to perform a
security analysis is because verifying information flow properties is complex and different
from proving safety and liveness properties

In the next section, we introduce three attack trees. The leafs of the trees are used
as a basis for further discussion, where the attacks they represent are analyzed in more
detail, including capabilities needed by the attacker.

6.6.1 Analysis

In this section we perform an analysis of the proposed system using the methodology of
attack trees. We have to examine the following attacker goals:

Goal 1: Violate safety properties of the system
Goal 2: Violate liveness properties of the system
Goal 3: Violate information flow properties of the system
In the following we will give attack trees for each of these goals.

Attacks Aimed at Safety Properties of the System

Figure 6.13 shows an attack tree for the threat of the system’s safety properties. The goal
is to violate the safety properties of the system. In order to violate the safety properties
of the system, the attacker can cause the safety properties of the consensus algorithm to
fail. This can be done either by violating the validity property of the algorithm or by
violating the agreement property of the algorithm, or attacking the failure detector. The
validity property can be violated by attacking the integrity of the system. The agreement
property can also be violated by attacking the integrity of the system or by deleting and
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Goal 1: Violate safety properties of the system

1. Cause safety properties of consensus to fail

(a) Violate validity property (OR)

i. Attack integrity
A. Manipulate message payload (OR)

1. Cryptoanalyze asymmetric encryption (OR)
2. Flip some bits (OR)
3. Replace some blocks with previously sent message blocks

B. Manipulating message header
1. Spoofing

(b) Violate agreement property (OR)

i. Attack integrity (OR)
ii. Delete messages (AND)
iii. Inject false messages (OR)
iv. Inject replays of previous messages

(c) Attack failure detector

i. Violate eventual strong accuracy property
A. Delete messages ∗ (OR)
B. Attack processes’ availability ∗

Figure 6.13: Attack tree for the threat of safety properties.

injecting messages. To attack the failure detector, the attacker has to violate the eventual
strong accuracy property of the failure detector. Note that it can be detected if messages
were corrupted in the network and corruptions are converted to omission failures.

Attacks Aimed at Liveness Properties of the System

Figure 6.14 shows an attack tree for the threat of the system’s liveness properties. The
goal is to violate the liveness properties of the system. For this purpose, an attacker can
violate the liveness properties of the consensus algorithm. In order to attack the liveness
properties of the consensus algorithm, it either has to violate the termination property of
the algorithm or violate the failure detector’s strong completeness property. To violate
the termination property of consensus the attacker must try to avoid that the majority of
correct processes eventually decide on some value by attacking the availability of either
the network or the processes or the smartcard.

Attacks Aimed at Information Flow Properties of the System

Figure 6.15 shows an attack tree for the threat of the system’s information flow properties.
The goal is to violate the information flow properties of the system. For this purpose,
attackers can attack the system’s cofidentiality or do traffic flow analysis. To attack
confidentiality, they either can try to read the encrypted messages transmitted over the
network or can attack their own smartcard. There are many ways to read encrypted
messages. Here, we consider only some of the most common ones. Note that in the
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Goal 2: Violate liveness properties of the system

1. Cause liveness properties of consensus to fail

(a) Violate termination property (OR)

i. Attack availability
A. Attack network (OR)

1. Physical destruction of network (OR)
2. Denial of service attack on network

B. Attack process (OR)
1. Physical destruction of processes (OR)
2. Denial of service attack on processes

C. Attack smartcard
1. Physical destruction of the smartcard (OR)
2. Denial of service attack on the smartcard (OR)
3. Pull smartcard out from smartcard reader

(b) Attack failure detector

i. Violate strong completeness property
A. Inject false messages (OR)
B. Inject replays of previous messages

Figure 6.14: Attack tree for the threat of liveness properties.

majority of cryptographic systems, the secrecy of the method to encrypt data is based on
the encryption algorithm, which is the collection of the mathematical rules determining the
sequence of fulfilling the elementary operations above the data, and on the cryptographic
key, which determines the precise computation of the plaintext in ciphertext and vice
versa.
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Goal 3: Violate information flow properties of the system

1. Attack Confidentiality (OR)

(a) Read encrypted message in transfer (OR)

i. Decrypt the message itself (OR)
A. Mathematically break asymmetric encryption (OR)
B. Ciphertext-only attack

ii. Obtain private key of recipient (OR)
A. Brute-force attack (OR)
B. Mathematically break asymmetric encryption (OR)
C. Social engineering (OR)
D. Ciphertext-only attack (OR)
E. Known-plaintext attack

iii. Get recipient to (help) decrypt the message
A. Chosen-plaintext attack (OR)
B. Adaptive chosen-plaintext attack (OR)
C. Chosen-ciphertext attack (OR)
D. Adaptive chosen-ciphertext attack (OR)
E. Read message after it is decrypted by the recipient

(b) Attack smartcard

i. Side-channel attack (OR)
ii. Physical attack

2. Traffic flow analysis

(a) Analyze traffic to/from own security module (OR)

(b) Analyze network traffic

i. Install sniffer (OR)
ii. Man-in-the-middle attack

Figure 6.15: Attack tree for the threat of information flow properties.
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6.6.2 Summary

We evaluated the security of the entire system and showed how security threats are coun-
tered by security enforcing functions and mechanisms. To model the security threats
against the system we made use of attack trees which provide a formal, methodical way of
describing the security of systems, based on varying attacks. We examined three attacker
goals and created an attack tree for each of these goals. The main goals of an attacker are
to violate the safety, the liveness, and the information flow properties of the system. We
analysed the attack each leaf node presented in detail and identified the conditions for the
attack as well as the capabilities needed by the attacker.

The analysis indicates that the system is secure against almost all discussed attacks. An
attacker can only be successful in violating the safety property of the system by attacking
the eventual strong accuracy property of the failure detector. However, the attacker is
not successful in preventing the execution of the consensus algorithm. Weak physical
protection of system components could make the system vulnerable to attacks but in
order to be efficient a large amount of system components must be attacked what makes
this type of attack highly unlikely. Attention should also be paid to side-channel attacks
against smartcards since all cryptographic algorithms are assumed to be vulnerable to
side-channel cryptanalysis if there are no special countermeasures in the implementation.
Due to the large complexity and effort to perform a side-channel attack makes this type
of attack also highly unlikely.
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Chapter 7

Message Omission Robust
Weakest Failure Detectors

In this last chapter on message omission models, we study the impact of message omission
failures on asynchronous distributed systems with crash-stop failures. We provide two
different transformations for algorithms, failure detectors, and problem specifications, one
of which is weakest failure detector preserving. [41]

We prove that our transformation of failure detector Ω [27] is the weakest failure
detector for consensus in environments with crash-stop and permanent omission failures
and a majority of correct processes.

Our results help to use the power of the well-understood crash-stop model to automat-
ically derive solutions for the message omission model, which has recently raised interest
for being noticeably applicable for security problems in distributed environments equipped
with security modules such as smartcards or other trusted coprocessors [53, 54, 11].

In Section 7.1, we motivate automatic transformations and cite related work. In Section
7.2, we define our formal system model, in Section 7.3, we define our general problem and
algorithm transformations, and finally in Section 7.4 we state and prove our theorems.

7.1 Motivation

Message omission failures, which have been introduced by Hadzilacos [61] and been refined
by Perry and Toueg [104], put the blame of a message loss to a specific process instead
of an unreliable message channel. Beyond the theoretical interest, omission models are
also interesting for practical problems like they arise from the security area: Assume that
some kind of trusted smartcards are disposed on untrusted processors. If these smartcards
execute trusted algorithms and are able to sign messages, then it is relatively easy to re-
strict the power of a malicious adversary to only be able to drop messages of the trusted
smartcards or to stop the smartcards themselves. Following this approach, omission mod-
els have lead to the development of reductions from security problems in the Byzantine
failure model [80] such as fair-exchange [11, 54], and secure multiparty computation [53]
to well-known distributed problems in the message omission model, such as consensus
[32], where both process crashes and message omissions may take place. Apart from that,
omission failures can model overflows of local message buffers in typical communication
environments.

The message omission and crash failures are considered here in asynchronous systems.
Due to classical impossibility results concerning problems as consensus [52] in asynchronous
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systems, following the failure detector approach [28], we augment the system with oracles
that give information about failures.

The extension of failure detectors to more severe failure models than crash failures
is unclear [45], because in these models failures may depend on the scheduling and on
the algorithm. As it is easy to transform the message omission model into a model with
only permanent omissions using standard techniques like the piggybacking of messages,
we consider only permanent omissions and crashes. This means that if an omission failure
occurs, then it occurs permanently. In this model, precise and simple definitions for failure
detectors can easily be deduced from the ones in the crash-stop model.

To provide the permanent omission model with the benefits of a well-understood system
model like the crash-stop model, we give automatic transformations for problem specifi-
cations, failure detectors, and algorithms such that algorithms designed to tolerate only
crash-stop failures can be executed in permanent omission environments and use trans-
formed failure detectors to solve transformed problems. Specifically, we give two trans-
formations. At first, one that works in every environment, but that transforms uniform
problems into problems with only limited uniformity, and at second one that works only
with a majority of correct processes, but transforms uniform crash-stop problems into
their uniform permanent omission counterpart. An interesting point is the fact that the
transformation of the specification gives for most of the classical problems the standard
specification in the message omission and crash failure model. For example, from an
algorithmic solution A of the consensus problem with a failure detector D in the crash-
stop model, we automatically get A′ = trans(A), an algorithmic solution of the consensus
problem using D′ = trans(D) in the message omission and crash failure model.

Moreover, our first transformation preserves also the “weaker than” relation [27] be-
tween failure detectors. This means that if a failure detector is a weakest failure detector
for a certain (crash-stop) problem, then its transformation is a weakest failure detector
for the transformed problem. We can use this to show that our transformation of failure
detector Ω [27] is the weakest failure detector for (uniform) consensus in an environment
with permanent omission failures and a majority of correct processes.

The problem of automatically increasing the fault-tolerance of algorithms in environ-
ments with crash-stop failures has been extensively studied before [14, 96, 40, 15]. The
results of Neiger and Toueg [96], Delporte-Gallet et al. [40], and Bazzi and Neiger [15] as-
sume in contrast to ours synchronous systems and no failure detectors. Neiger and Toueg
[96] propose several transformations from crash-stop to send omission, to message omis-
sion, and to Byzantine faults. Delporte-Gallet et al. [40] transform round-based algorithms
with broadcast primitives into crash-stop-, message omission-, and Byzantine-tolerant al-
gorithms. Asynchronous systems are considered by Basu, Charron-Bost, and Toueg [14]
but in the context of link failures instead of omission failures and also without failure
detectors. The types of link failures that are considered by Basu, Charron-Bost, and
Toueg [14] are eventually reliable and fair-lossy links. Eventually reliable links can lose
a finite (but unbounded) number of messages and fair-lossy links satisfy that if infinitely
many messages are sent over it, then infinitely many messages do not get lost. To show
our results, we extend the system model of Basu, Charron-Bost, and Toueg [14] such that
we can model omission failures, failure patterns, and failure detectors. Another definition
for a system model with crash-recovery failures, omission failures, and failure detectors is
given by Dolev et al. [43]. In this model, the existence of a fully connected component
of processes that is completely detached from all other processes is assumed and only the
processes in this component are declared to be correct.

The omission failure detector defined by Delporte-Gallet et al. [38] that can be im-
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plemented in partially synchronous models using some weak timing assumptions, is in
comparison with our transformed Ω strictly stronger. However, with a correct majority,
both failure detectors can easily be transformed into each other.

To the best of our knowledge, this is the first work that investigates an automatic
transformation to increase the fault tolerance of distributed algorithms in asynchronous
systems augmented with failure detectors.

7.2 Model

The asynchronous distributed system is assumed to consist of n distinct fully-connected
processes Π = {p1, . . . , pn}. The asynchrony of the system means, that there are no
bounds on the relative process speeds and message transmission delays. To allow an easier
reasoning, a discrete global clock T is added to the system. The system model used here
is derived from that of Basu, Charron-Bost, and Toueg [14]. It has been adapted to model
also failure detectors and permanent omission failures.

Algorithms

An algorithm A is defined as a vector of local algorithm modules (or simply modules)
A(Π) = 〈A(p1), . . . , A(pn)〉. Each local algorithm module A(pi) is associated with a process
pi ∈ Π and defined as a deterministic infinite state automaton. The local algorithm
modules can exchange messages via send and receive primitives. We assume all messages
to be unique.

Failures and Failure Patterns

A failure pattern F is a function that maps each value t from T to an output value that
specifies which failures have occurred up to time t during an execution of a distributed
system. Such a failure pattern is totally independent of any algorithm. A crash-failure
pattern

C : T → 2Π

denotes the set of processes that have crashed up to time t (∀t : C(t) ⊆ C(t+ 1)).
Additionally to the crash of a process, it can fail by not sending or not receiving a

message. We say that it omits a message. The message omissions do not occur because of
link failures, they model overflows of local message buffers or the behavior of a malicious
adversary with control over the message flow of certain processes. It is important that
for every omission, there is a process responsible for it. As we already mentioned, we
consider only permanent omissions and leave the treatment of transient omissions over to
the underlying asynchronous communication layer. Intuitively, a process has a permanent
send omission if it always fails by not sending messages to a certain other process after a
certain point in time. Analogously, a process has a permanent receive omission if it always
fails by not receiving messages from a certain other process after a certain point in time.
The permanent omissions are modeled via a send- and a receive-omission failure pattern:

OS : T → 2Π×Π and OR : T → 2Π×Π

If (ps, pd) ∈ OS(t), then process ps has a permanent send-omission to process pd after time
t. If (ps, pd) ∈ OR(t), then process pd has a permanent receive-omission to process ps after
time t. All the failure patterns defined so far can be put together to a single failure pattern
F = (C,OS , OR).
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With such a failure pattern, we define a process to be correct, if it experiences no
failure at all. We assume that at least one process is correct. A process p is crash-correct
(p ∈ cr.-correct(F)) in F, if it does not crash.

A process pd is directly-reachable from another process ps in F, if for all t ∈ T, (ps, pd) 6∈
OS(t) and (ps, pd) 6∈ OR(t). A process pd is called reachable from a process ps, if pd is
directly-reachable from ps, or if there exists a process q, such that pd is reachable from
q and q is reachable from ps (transitive closure). If a process is reachable from some
correct processes, then it is in-connected. Analogously, a process is out-connected, if some
correct processes are reachable from it. If a process p is in-connected and out-connected
in a failure pattern F, then we say that p is connected in F (p ∈ connected(F)). This
means that between connected processes there is always reliable communication possible.
With a simple relaying algorithm, every message can eventually be delivered. Note that it
is nevertheless still possible that connected processes receive messages from disconnected
processes or disconnected processes receive messages from connected ones. The difference
between connected and disconnected processes is that the former are able to send and to
receive messages to/from correct processes and therefore are able to communicate in both
directions. It is easy to see that crash-correct(F) ⊇ connected(F) ⊇ correct(F).

We say that a failure pattern F′ is an omission equivalent extension of another failure
pattern F (F ≤om F′), if the set of crash-correct processes in F is at all times equal to the
set of connected processes in F′ and there are no omission failures in F.

We define an environment E to be a set of possible failure patterns. E
f
c.s. denotes the

set of all failure patterns where only crash-stop faults occur and at most f processes crash.
E
f
p.o. denotes the set of all failure patterns where crash-stop and permanent omission faults

may occur and at most f processes are not connected (clearly, E
f
c.s. ⊆ E

f
p.o.).

Failure Detectors

A failure detector provides (possibly incorrect) information about a failure pattern [28].
Associated with each failure detector is a (possibly infinite) range R of values output by
that failure detector. A failure detector history FDH with range R is a function from Π×T

to R. FDH(p, t) is the value of the failure detector module of process p at time t. A failure
detector D is a function that maps a failure pattern F to a set of failure detector histories
with range R. D(F) denotes the set of possible failure detector histories permitted by D

for the failure pattern F. Note that a failure detector D is specified as a function of the
failure pattern F of an execution. However, an implementation of D may use other aspects
of the execution such as when messages are arrived and executions with the same failure
pattern F may still have different failure detector histories. It is for this reason that we
allow D(F) to be a set of failure detector histories from which the actual failure detector
history for a particular execution is selected non-deterministically.

Take failure detector Ω [27] as an example. The output of the failure detector module
of Ω at a process pi is a single process, pj , that pi currently considers to be crash-correct.
In this case, the range of output values is RΩ = Π. For each failure pattern F, Ω(F)
is the set of all failure detector histories FDHΩ with range RΩ that satisfy the following
property: There is a time after which all the crash-correct processes always trust the same
crash-correct process:

∃t ∈ T,∃pj ∈ cr.-correct(F),
∀pi ∈ cr.-correct(F), ∀t′ ≥ t : FDHΩ(p, t′) = pj

The output of failure detector module Ω at a process pi may change with time, i.e. pi may
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trust different processes at different times. Furthermore, at any given time t, processes pi
and pj may trust different processes.

A local algorithm module A(pi) can access the current output value of its local failure
detector module using the action queryFD.

Histories

A local history of a local algorithm module A(pi), denoted H[i], is a finite or an infinite
sequence of alternating states and events of type send, receive, queryFD, or internal. We
assume that there is a function time that assigns every event to a certain point in time
and define H[i]/t to be the maximal prefix of H[i] where all events have occurred before
time t. A history H of A(Π) is a vector of local histories 〈H[1], H[2], . . . ,H[n]〉.

Reliable Links

A reliable link does not create, duplicate, or lose messages. Specifically, if there is no per-
manent omission between two processes and the recipient executes infinitely many receive
actions, then it will eventually receive every message. We specify, that our underlying
communication channels ensure reliable links.

Problem Specifications

Let Π be a set of processes and A be an algorithm. We define H(A(Π),E) to be the set of
all tuples (H,F) such that H is a history of A(Π), F ∈ E, and H and F are compatible,
that is crashed processes do not take any steps after the time of their crash, there are
no receive-events after a permanent omission, etc. A system S(A(Π),E) of A(Π) is a
subset of H(A(Π),E). A problem specification Σ is a set of tuples of histories and failure
patterns, because (permanent) omission failures are not necessarily reflected in a history
(e.g., if a process sends no messages). A system S satisfies a problem specification Σ, if
S ⊆ Σ. We say that an algorithm A satisfies a problem specification Σ in environment E,
if H(A(Π),E) ⊆ Σ.

Take consensus as an example (see Figure 7.4): It is specified by making statements
about some variables propose and decide in the states of a history (e.g. the value of decide
has eventually to be equal at all (crash-)correct processes). This can be expressed as
the set of all tuples (H,F) where there exists a time t and a value v, such that for all
pi ∈ cr.-correct(F), there exists an event e in H[i] with time(e) ≤ t and for all states s
after event e, the value of the variable decide in s is v.

7.3 From Crash-Stop to Permanent Omission

We will give here two transformations: one general transformation for all environments,
where we provide only restricted guarantees for disconnected processes, and one for envi-
ronments where less than half of the processes may not be connected, where we are able
to provide for all processes the same guarantees as for the crash-stop case.

To improve the fault-tolerance of algorithms, we simulate a single state of the original
algorithm with several states of the simulation algorithm. For these additional states, we
augment the original states with additional variables. Since an event of the simulation
algorithm may lead to a state where only the augmentation variables change, the sequence
of the original variables may stutter. We call a local history H ′[i] a stuttered and aug-
mented extension of a history H[i] (H[i] ≤sa H ′[i]), if H[i] and H ′[i] differ only in the
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value of the augmentation variables and some additional states caused by differences in
these variables (in particular, H[i] ≤sa H[i] for all H[i]). If H[i] ≤sa H ′[i] for all pi ∈ Π,
we write H ≤sa H ′. We say that a problem specification Σ is closed under stuttering
and augmentation, if (H,F) ∈ Σ and H ≤sa H ′ implies that (H ′,F) is also in Σ. Most
problems satisfy this natural closure property (e.g. consensus).

7.3.1 The General Transformation

Transformation of Problem Specifications

To transform a problem specification, we first show a transformation of a tuple of a trace
and a failure pattern. Based on this transformation, we transform a whole problem spec-
ification. The intuition behind this transformation is that we demand only something
from processes as long as they are connected. After their disconnection, processes may
behave arbitrary. More formally, let tc.s.(i) be the time at which process pi crashes in F

(tc.s.(i) =∞, if pi never crashes). Analogously, let t′p.o.(i) be the time at which process pi
becomes disconnected in F′ (t′p.o.(i) =∞, if pi never becomes disconnected). Then:

(H ′,F′) ∈ trans((H,F)) :⇔ ∀pi ∈ Π : H[i]/tc.s.(i) ≤sa H
′[i]/t′p.o.(i)

and for a whole problem specification:

trans(Σ) := {(H ′,F′) | (H ′,F′) ∈ trans((H,F)) ∧ (H,F) ∈ Σ}

A transformation of non-uniform consensus, where properties of certain propose- and
decision-variables of (crash-)correct processes are specified would lead to a specification
where the same properties are ensured for the states of connected processes, because only
histories with the same states (disregarding the augmentation variables) are allowed in
the transformation at this processes (see Figure 7.4). We also take the states of processes
before they become disconnected into account, because they (e.g. their initial states for the
propose variables) may also have an influence on the fulfillment of a problem specification,
although they are after their disconnection not allowed to have this influence anymore.
Since we impose no restriction on the behavior of processes after their disconnection, the
transformed problem specification allows them to decide a value that was never proposed
(although our transformation algorithms guarantee that this will not happen).

A transformation of uniform consensus leads to a problem specification where the
uniform agreement is only demanded for processes before their time of disconnection.
This means that it is allowed that after a partitioning of the network, the processes in the
different network partitions come to different decision values. Another transformation, in
which uniform consensus remains truly uniform is given in Section 7.3.2.

Transformation of Failure Detector Specifications

We allow all failure detector histories for a failure pattern F in trans(D) that are allowed
in the crash-stop version F′ of F in D:

trans(D)(F) :=
⋃
F′

{D(F′) | F′ ≤om F}

Consider failure detector Ω [27]. Ω outputs only failure detector histories that eventually
provide the same crash-correct leader at all crash-correct processes. Then, trans(Ω) out-
puts these failure detector histories if and only if they provide a connected common leader
at all connected processes.
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Figure 7.1: Additional Communication Layers

Transformation of Algorithms

In our algorithm transformation, we add new communication layers such that some of the
omission failures in the system become transparent to the algorithm (see Figure 7.1). We
transform a given algorithm A into another algorithm A′ = trans(A) in two steps:

• In the first step, we remove the send and receive actions from A and simulate them
with a three-way-handshake (3wh) algorithm. The algorithm is described in Figure
7.2. The idea of the 3wh-algorithm is to substitute every send-action with an ex-
change of three messages. This means that to send a message to a certain process,
it is necessary for a process to be able to send and to receive messages from it.
Moreover, while the communication between connected processes is still possible,
processes that are only in-connected or only out-connected (and not both) become
totally disconnected. Hence, we eliminate influences of disconnected processes not
existing in the crash-stop case.

• Then, in the second step, we remove the send and receive actions from the three
way handshake algorithm and simulate them with a relaying algorithm. The idea of
the relay algorithm is to relay every message to all other processes, such that they
relay it again and all connected processes can communicate with each other, despite
the fact that they are not directly-reachable. It is similar to other algorithms in the
literature [113]. Its detailed description can be found in Figure 7.3.

To execute the simulation algorithms in parallel with the actions from A, we add some
new (augmentation) variables to the set of variables in the states of A. Whenever a step
of the simulation algorithms is executed, the state of the original variables in A remains
untouched and only the new variables change their values. Whenever a process queries
a local failure detector module D(pi), we translate it to a query on trans(D)(pi). The
relaying layer overlays the network with the best possible communication graph and the
3wh-layer on top of it cuts the unidirectional edges from this graph.

7.3.2 The Transformation for n > 2f

If only less than a majority of the processes are disconnected (n > 2f), then we only need
to adapt the problem specification to the failure patterns of the new environment. We
indicate this adaptation of a problem specification with the index p.o. and specify it in
the following way:

Σp.o. := {(H,F) | ∃(H,F′) ∈ Σ ∧ F′ ≤om F}
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Figure 7.2: The Three Way Handshake Algorithm for Process pi.

Figure 7.3: The Relaying Algorithm for Process pi.

84



Consensus trans(Consensus) Consensusp.o.
Validity: The decided value The decided value The decided value

of every process of every connected of every process
must have been process must have must have been
proposed. been proposed. proposed.

Non-Uniform No two cr.-correct No two connected No two connected
Agreement: processes decide processes decide processes decide

differently. differently. differently.
Uniform No two processes No two processes No two processes

Agreement: decide differently. decide differently decide differently.
before their dis-
connection.

Termination: Every cr.-correct Every connected Every connected
process eventually process eventually process eventually
decides. decides. decides.

Figure 7.4: Transformations of the Consensus Problem

If we adapt consensus to omission failures, then we get Consensusp.o. as in Figure 7.4.
The failure detector specifications can be transformed as in Section 7.3.1. The algorithm
transformation trans2 works similar as in the previous section, but we add an additional
two-way-handshake (2wh) layer between the relaying layer and the 3wh layer. The algo-
rithm is described in Figure 7.5 and is similar to an algorithm in the literature [14]. The
idea of the algorithm is to broadcast every message to all other processes and to block until
f + 1 processes have acknowledged the message. In this way, disconnected processes block
forever (since they receive less than f +1 acknowledgements) and connected processes can
continue. Thus, we emulate a crash-stop environment.

7.4 Results

In our first theorem, we show that for any algorithm A, for any failure detector D, and
for any problem specification Σ, trans(A) using trans(D) solves trans(Σ) in a permanent
omission environment if and only if A using D solves Σ in a crash-stop environment. This
theorem does not only show that our transformation works, it furthermore ensures that
we do not transform to a trivial problem specification, but to an equivalent one, since we
prove both directions.

Theorem 7.1. Let Σ be a problem specification closed under stuttering and augmenta-
tion. Then, if A is an algorithm using a failure detector D and A′ = trans(A) is the
transformation of A using trans(D), it holds that:

∀f with 0 ≤ f ≤ n : (H(A(Π),Efc.s.) ⊆ Σ
⇔ (H(A′(Π),Efp.o.) ⊆ trans(Σ)

Proof. (Sketch) Due to lack of space, we only sketch the proof of the theorem here. The
detailed proof can be found elsewhere [37]. The proof is divided up into two parts. Let
Sc.s. := (H(A(Π),Efc.s.) and Sp.o. := (H(A′(Π),Efp.o.) and assume that A′ = trans(A).

“⇒”: Assume that Sc.s. ⊆ Σ. By constructing for a given (H,F) in Sp.o. a tuple (H ′,F′)
in Sc.s. with (H,F) ∈ trans((H ′,F′)), we can show that Sp.o. ⊆ trans(Sc.s.). In
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Figure 7.5: The Two Way Handshake Algorithm for Process pi.

this construction, we remove the added communication layers from H and use the
properties of our two send-primitives to prove the reliability of the links in H ′. We
ensure “No Loss” with the relaying algorithm and “No Creation” with the three way
handshake algorithm. As we know from the definition of trans, that trans(Sc.s.) ⊆
trans(Σ), we can conclude that Sp.o. ⊆ trans(Σ).

“⇐”: Assume that Sp.o. ⊆ trans(Σ) and (H,F) ∈ Sc.s.. We then build a new history
H ′ from H and simulate all links according to the specification of the three-way-
handshake and the relay algorithm such that (H ′,F) ∈ trans((H,F)) and (H ′,F) ∈
Sp.o. ⊆ trans(Σ) (F ∈ E

f
c.s. implies that F is in E

f
p.o). This means that there exists a

(H ′′,F′′) ∈ Σ, with (H ′,F) ∈ trans((H ′′,F′′)).

Since in both, F′′ and F occur only crash failures, F′′ = F and therefore for all
pi, H ′′[i] ≤sa H ′[i]. Together with the fact that Σ is closed under stuttering and
augmentation, we can conclude that (H ′,F) ∈ Σ. H ′ and H differ only in the aug-
mentation variables that are not relevant for the fulfillment of trans(Σ) and therefore:
(H,F) ∈ Σ.

Proof. We divide up the proof into two parts. Let Sc.s. := (H(A(Π),Efc.s.) and Sp.o. :=
(H(A′(Π),Efp.o.) and assume that A′ = trans(A).

“⇒”: Assume that Sc.s. ⊆ Σ. By constructing for a given (H,F) in Sp.o. a tuple (H ′,F′) in
Sc.s. with (H,F) ∈ trans((H ′,F′)), we can show that Sp.o. ⊆ trans(Sc.s.) (Proposition
7.2). In this construction, we remove the added communication layers from H and
use the properties of our two send-primitves to prove the reliability of the links
in H ′. We ensure “No Loss” with the relaying algorithm and “No Creation” with
the three way handshake algorithm. As we know from the definition of trans, that
trans(Sc.s.) ⊆ trans(Σ), we can conclude that Sp.o. ⊆ trans(Σ).

“⇐”: Assume that Sp.o. ⊆ trans(Σ). We construct (H ′,F′) for all (H,F) in Sc.s., such that
(H ′,F′) is in Sp.o. ⊆ trans(Σ). We can use this to prove that Sc.s. ⊆ Σ (Proposition
7.10).
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Proposition 7.2. Sp.o. ⊆ trans(Sc.s.)

Proof. The proposition is equivalent to

(H,F) ∈ Sp.o. ⇒ (H,F) ∈ trans(Sc.s.)

From the definition of trans follows:

(H,F) ∈ Sp.o. ⇒ ∃(H ′,F′) ∈ Sc.s. :
∀pi ∈ Π : H ′[i]/t′c.s.(i)

≤sa H[i]/tp.o.(i) (7.1)

We will in the following construct a new history H ′ and a failure pattern F′ from H and
F which satisfy equation (7.1):

(a) At first, we undo step 2 of the transformation and remove the variables, additional
states, and events of the relaying algorithm from H. This means, that every time a
relay-send or relay-receive event in H occurs, this event is substituted by an send/re-
ceive event of the underlying communication channel. We let the inserted events take
place at the time when the relay events have been completed (since a process may
take several steps to accomplish the relaying task). We call the intermediate history
we get after this H1.

(b) Then, we undo step 1 and remove the variables, additional states, and events of the
three way handshake algorithm from H1 (in the same way as above). We call this
intermediate history H2.

(c) After that, we construct F′, such that F′ ≤om F. To build H ′ from H2, we substitute
every query on a failure detector trans(D) in H2 with a query on D in H ′ and remove
all states and events for every process pi that occur after the time when pi crashes
in F′.

The schedule of the construction is illustrated in Figure 7.6. From the construction of H ′

and F′ it is clear, that ∀pi ∈ Π : H ′[i]/t′c.s.(i)
≤sa H[i]/tp.o.(i). It remains to show, that

(H ′,F′) ∈ Sc.s.. This means, that at most f processes crash in F′ (Lemma 7.3), H ′ is
a history of A(Π) using D (Lemma 7.4), and all links in H ′ are reliable according to F′

(Lemma 7.5).

H −→ H1 −→ H2 −→ H ′

(a): undo step 2 (b): undo step 1 (c): crash not
(the relaying) (the 3wh) connected processes

Figure 7.6: Construction of H ′

Lemma 7.3. At most f processes crash in F′.

Proof. Follows immediately from (c).
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Lemma 7.4. H ′ is a history of A(Π) using D.

Proof. All events and states are from A(Π), because all additional events and states have
been removed. If algorithm A makes use of a failure detector D, then trans(D)(F) = D(F′)
(Since F′ ≤om F).

Lemma 7.5. All links in H ′ are reliable according to F′.

Proof. We have to show the three properties of reliable links, namely: No Creation (Lemma
7.7), No Duplication (Lemma 7.8), and No Loss (Lemma 7.9).

To prove lemma 7.7, we first need to show the auxiliary lemma 7.6:

Lemma 7.6. Let ts be the time a send event from A(pi) to A(pj) in H2 occurs, tr be the
time of the corresponding receive event in H2, tj be the time when pj becomes disconnected
in F, and ti be the time when pi become disconnected in F. Then:

ts ≥ ti ⇒ tr ≥ tj

Proof. In the following, when we write tnr(F,p,q), we mean the point in time when process
p is not longer reachable from process q in F (for any p, q, and F).

The above lemma is equivalent to: tr < tj implies ts < ti. At first, we observe that
ts < tr. Assume tr < tj . Since A(pj) receives the message, we can conclude:

tnr(F,pj ,pi) > tr > ts (7.2)

Since the in H2 removed 3wh-algorithm is only allowed to 3wh-deliver messages after
having received a [3,m] message (line 12 in Figure 7.2), which is only sent from a process
after having on his part received a [2,m] message (line 11), we are sure that after the
3wh-send event, A(pi) was able to receive the [2,m] message from A(pj) and therefore:

tnr(F,pi,pj) > ts (7.3)

From the definition of connected follows:

∃c ∈ correct(F), tnr(F,c,pj) ≥ tj > tr > ts (7.4)
∃c′ ∈ correct(F), tnr(F,pj ,c′) ≥ tj > tr > ts (7.5)

If we put all paths together, we have:

with (7.2) & (7.4) : ∃c ∈ correct(F), tnr(F,c,pi) > ts (7.6)
with (7.3) & (7.5) : ∃c′ ∈ correct(F), tnr(F,pi,c′) > ts (7.7)

Equations (7.6) and (7.7) imply ti > ts.

Lemma 7.7. (No Creation in H ′.) For all messages m, if pj receives m from pi in H ′,
then pi sends m to pj in H ′.

Proof. We know, that there is no creation in H. In our construction, send events of the
same layer can only decrease in the local history of crashed processes in step (c) (after
the time of their crash). But since Lemma 7.6 shows that messages that are sent from a
process that is already disconnected in F (and therefore crashed in F′) can only be received
by processes that are already disconnected too, the corresponding receive events also get
lost in H ′.
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Lemma 7.8. (No Duplication in H ′.) For all messages m: pj receives m from pi at most
once.

Proof. In the 3wh-algorithm, no message is delivered more than once and in the relay-
algorithm, every message received is remembered in a variable deliveredi (lines 12-13 in
Figure 7.3).

Lemma 7.9. (No Loss in H ′ according to F′.) For all messages m, if pi sends m to pj
and pj executes receive actions infinitely often, then pj receives m from pi.

Proof. In the removed relaying algorithm, after every relay-send event, the message m is
relayed by A(pi) to all other processes (lines 5-6 in Figure 7.3). If a connected process (in
F) receives such a relayed message, it checks in lines 12-13 whether it is the recipient and
has not yet delivered it (and relay-delivers m in this case). Otherwise, it propagates m
further to all other processes (lines 14-16).

Since pi is at the time of the in step (a) in H1 inserted send-event out-connected in
F (otherwise, pi would have already crashed in F′), there is a path of directly-reachable
connected processes to a (totally) correct process in F. A correct process will receive m
and relay it (possibly indirectly) to A(pj), since pj is in-connected in F (because it takes
infinitely many steps in (H ′,F′)).

Proposition 7.10. Sc.s. ⊆ Σ

Proof. Assume (H,F) ∈ Sc.s.. We then build a new history H ′ from H and simulate all
links according to the specification of the three-way-handshake and the relay algorithm
such that (H ′,F) ∈ trans((H,F)) and (H ′,F) ∈ Sp.o. ⊆ trans(Σ) (F ∈ E

f
c.s. implies that

F ∈ E
f
p.o). This means, that there exists a (H ′′,F′′) ∈ Σ, with (H ′,F) ∈ trans((H ′′,F′′)).

Since in both, F′′ and F occur only crash failures, F′′ = F and therefore for all pi,
H ′′[i] ≤sa H ′[i]. Together with the fact that Σ is closed under stuttering and augmentation,
we can conclude that (H ′,F) ∈ Σ. H ′ and H differ only in the augmentation variables
that are not relevant for the fulfillment of trans(Σ), therefore: (H,F) ∈ Σ.

Our second theorem shows, that with a majority of connected processes (n > 2f),
trans2 can be used to solve the adaptation of a problem to the message omission model.

Theorem 7.11. If A is an algorithm using a failure detector D and A′ = trans2(A) is the
transformation of A using trans2(D) and Σ is closed under stuttering and augmentation,
then it holds that:

∀f with f < n/2 : (H(A(Π),Efc.s.) ⊆ Σ
⇒ (H(A′(Π),Efp.o.) ⊆ Σp.o.

Proof. (Sketch) Due to lack of space, we only sketch the proof of the theorem here.
The detailed proof can be found elsewhere [37]. Let Sc.s. := (H(A(Π),Efc.s.) and Sp.o. :=
(H(A′(Π),Efp.o.) and assume that A′ = trans(A). It is sufficient to show, that

∀(H,F) ∈ Sp.o.,∃(H ′,F′) ∈ Sc.s. : (H ′ ≤sa H) ∧ (F′ ≤om F) (7.8)

To show this, we construct (H ′,F′) ∈ Sc.s. for a given (H,F) ∈ Sp.o. in the following way:
We first remove the variables, events, and states of the relay-algorithm, then remove the
same for the 2wh-algorithm, and then remove the 3wh-algorithm to get H ′. F′ is a failure
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pattern, such that F′ ≤om F. We need to show, that (H ′,F′) fulfills the properties of
equation 7.9. From the construction it is clear, that H ′ ≤sa H and F′ ≤om F. It remains
to show, that (H ′,F′) ∈ Sc.s.. This means, that at most f processes crash in F′, H ′ is a
history of A(Π) using D, all links are reliable in (H ′,F′), and H ′ and F′ are compatible.
Here we can use the properties of the 2wh-algorithm to ensure that a process that is
crashed in F′ takes no steps in H ′ after the time of its crash.

Proof. Let Sc.s. := (H(A(Π),Efc.s.) and Sp.o. := (H(A′(Π),Efp.o.) and assume that A′ =
trans(A). It is sufficient to show, that

∀(H,F) ∈ Sp.o., ∃(H ′,F′) ∈ Sc.s. :
(H ′ ≤sa H) ∧ (F′ ≤om F) (7.9)

To show this, we construct (H ′,F′) ∈ Sc.s. for a given (H,F) ∈ Sp.o. in the following way:
We first remove the variables, events, and states of the relay-algorithm, then remove the
same for the 2wh-algorithm, and then remove the 3wh-algorithm to get H ′. F′ is a failure
pattern, such that F′ ≤om F. We need to show, that (H ′,F′) fulfills the properties of
equation 7.9. From the construction it is clear, that H ′ ≤sa H and F′ ≤om F. It remains
to show, that (H ′,F′) ∈ Sc.s.. This means, that at most f processes crash in F′ (Lemma
7.12), H ′ is a history of A(Π) using D (Lemma 7.13), all links are reliable in (H ′,F′)
(Lemma 7.18), and H ′ and F′ are compatible (Lemma 7.17).

Lemma 7.12. At most t processes crash in F′.

Proof. Follows immediately from F′ ≤om F.

Lemma 7.13. H ′ is a history of A(Π) using D.

Proof. All events and states are from A(Π), because all additional events and states have
been removed. If algorithm A makes use of a failure detector D, then trans(D)(F) = D(F′)
(Since F′ ≤om F).

Lemma 7.14. Connected processes take infinitely many steps.

Proof. The only possibility for a process to block is in line 7 of the 2wh-algorithm in Figure
7.5. Since n > 2f , even after the disconnection of all f possibly faulty processes, every
connected process receives acknowledgements from n − f > f connected processes and
therefore never blocks in line 7.

Lemma 7.15. Every process 2wh-sends at most one message after its disconnection.

Proof. If pi is disconnected after some time, it either does not receive messages from
connected processes or connected processes do not receive messages from it. If it does not
receive messages from connected processes, then after a 2wh-send event, it receives at most
f acknowledgements (from the disconnected ones) and therefore waits forever in line 7 of
the 2wh-algorithm in Figure 7.5. If the connected processes do not receive messages from
it and pi 2wh-sends a message, also at most f processes will receive the ONE-message and
answer with a TWO-message. Therefore, process pi will block forever in line 7.

Lemma 7.16. The state of a process in H ′ does not change after its disconnection.
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Proof. With the 3wh-algorithm, we can ensure that a process does not receive messages
from connected processes (Lemma 7.6). With Lemma 7.15, no process sends more than one
message after its disconnection (and this message is not sufficient for a 3wh). Therefore,
this send event is not visible to other processes and the internal state of a disconnected
process cannot be influenced after its disconnection.

Lemma 7.17. H ′ and F′ are compatible.

Proof. We show, that every connected process takes infinitely many steps (Lemma 7.14),
and that the state of a process after its disconnection does not change anymore in H ′

(Lemma 7.16).

Lemma 7.18. All links in H ′ are reliable according to F′.

Proof. We have to show the three properties of reliable links, namely: No Creation (Lemma
7.19), No Duplication (Lemma 7.20), and No Loss (Lemma 7.21).

Lemma 7.19. No Creation in H ′.

Proof. There is no loss in H and the send events in the same layer never decrease.

Lemma 7.20. No Duplication in H ′.

Proof. In the relay- and the 3wh-handshake algorithm, there is no duplication (Lemma
7.8). In the 2wh-algorithm, only one ONE message with the correct id is sent for every
2wh-send.

Lemma 7.21. No Loss in H ′.

Proof. We know from Lemma 7.9, that there is no loss between connected processes with-
out the 2wh-algorithm. With Lemma 7.14, we know connected processes take infinitely
many steps and make therefore infinitely many receive actions. It remains to show, that dis-
connected processes stop sending and receiving messages after their disconnection (Lemma
7.16).

Weakest Failure Detectors

A failure detector [27] is a weakest failure detector for a problem specification Σ in envi-
ronment E, if it is necessary and sufficient. Sufficient means, that there exists an algorithm
using this failure detector that satisfies Σ in E, whereas necessary means, that every other
sufficient failure detector is reducible to it. A failure detector D is reducible to another
failure detector D′, if there exists a transformation algorithm TD→D′ , such that for ev-
ery tuple (H,F) ∈ H(TD→D′(Π),E), H is equivalent to a failure detector history FDH in
D′(F). We call the problem specification that arises in emulating D′, Probl(D′). In the
following theorem, we show that trans preserves the weakest failure detector property for
non-uniform1 failure detectors.

Theorem 7.22. For all f with 1 ≤ f ≤ n: If a non-uniform failure detector D is a
weakest failure detector for Σ in E

f
c.s. and Σ is closed under stuttering and augmentation,

then trans(D) is a weakest failure detector for trans(Σ) in E
f
p.o..

1A non-uniform failure detector D outputs always the same set of histories for two failure patterns F

and F′ in which correct(F) = correct(F′) (i.e. D(F) = D(F′)).
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Proof. If D is a weakest failure detector for Σ in E
f
c.s., then trans(D) is sufficient for

trans(Σ) in E
f
p.o. (Theorem 7.1). It remains to show that trans(D) is also necessary.

Assume a failure detector D′ is sufficient for trans(Σ) in E
f
p.o.. Clearly, Σ ⊆ trans(Σ)

(since H ≤sa H for all H). Therefore, D′ is sufficient for Σ in E
f
c.s., and moreover, D′ is

reducible to D in E
f
c.s. (since D is a weakest failure detector for Σ in E

f
c.s.). This means that

it is possible to emulate D using D′ (i.e. a problem specification Probl(D) that is equivalent
to D). If the reduction algorithm is TD′→D, then trans(TD′→D) using trans(D′) emulates
trans(Probl(D)) in E

f
p.o. (Theorem 7.1) and since D is non-uniform, the transformation

of the problem specification, trans(Probl(D)) is equivalent to the transformation of the
failure detector trans(D) (trans does not change the meaning of Probl(D) since only the
states of connected processes matter). Therefore, D′ is reducible to trans(D) in E

f
p.o..

With Theorem 7.1, 7.11, and 7.22 we are able to show, the following:

Theorem 7.23. trans(Ω) is a weakest failure detector for uniform Consensusp.o. with a
majority of correct processes.

Proof. Since we know, that Ω is a weakest failure detector for non-uniform Consensus
[27] and Ω is clearly non-uniform, together with Theorem 7.22, trans(Ω) is a weakest
failure detector for non-uniform trans(Consensus). Since non-uniform trans(Consensus) is
strictly weaker than uniform Consensusp.o., trans(Ω) is especially necessary for uniform
Consensusp.o.. To show that trans(Ω) is sufficient for uniform Consensusp.o., we can simply
use Theorem 7.11, since we know that Ω is sufficient for uniform Consensus with a majority
of correct processes.
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Chapter 8

Byzantine Robust Protocols

Now we present our results about how to save on the number of processors when executing
byzantine robust protocols, besides certain others, within a class of weaker and stronger
assumptions. More precisely, here we initiate the first study of how to save on processors
when running threshold protocols in a dependent failure model where processors may
behave badly in an arbitrary, byzantine way [80]. In particular, we look at the problem of
running any protocol that has a threshold upper bound of n > kt, for any positive integer
constant k, where n is the total number of processors and t is the maximum number of
failures. We introduce an optimal byzantine-resilient transformation protocol that enables
any protocol with such a restriction to be automatically translated into a dependent failure
model so that it can execute with less than n processors, saving computing power. No
authentication, self-verification or encryption is needed.

To model dependent failures, we use the powerful notion of a survivor set system,
the unique collection of all minimal sets of correct processors, each set containing all
correct processors of some execution [74]. Survivor set systems are the mirrors of fail-
prone systems [74], relating in a bijective complementary way, and can represent concisely
complex adversarial structures [70], in a manner particularly useful for quorum systems.
To further illustrate why such an abstraction is omnipotent, the existence of quorum
systems [86] in such adversarial structures depends totally on the survivor set system.
The reason is that, unlike quorum systems, survivor set systems encapsulate availability
by definition, that is, for any execution, at least one set must have all its elements alive.
Such availability requirement is crucial for almost all sensible quorum systems [86], thus
implying that each element of the survivor set system must contain a quorum for a quorum
system to exist. Moreover, as general adversarial structures, survivor set systems allow
solutions to specific problems for which one would be impossible if a threshold model were
to be used instead. Finally, we characterize equivalence classes of adversarial structures,
in terms of solvability, by making use of a particular set of hierarchic properties based on
set intersection.

In Section 8.1 we motivate work and in Section 8.2 we give details of the system model.
Then in Section 8.3 we define essencial intersection properties to be used in the next
Sections 8.4 and 8.5, presenting results and equivalence classes of adversarial structures.
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8.1 Motivation

A typical way to model failures in a distributed system is to assume that no more than t
out of n components can be faulty. Lower bounds for problems are often stated using such
notation. For instance, it is widely known that consensus in a synchronous system with
byzantine failures requires n > 3t processors if digital signatures are not to be used [80].
That sort of failure representation is what is called threshold model in the literature: no
more than t components out of n can fail in a distributed system, given a failure type.
Hence, provided with previous definition, one can then design protocols that are optimal
with respect to threshold-based lower bounds. Such protocols are optimal, however, only
when failures are independent and identically distributed (IID). This is because the thresh-
old assumption does not restrict which subsets of t or less processors can fail. To use a
threshold algorithm in a system in which components can fail in an non-IID manner, one
can compute t as being the largest number of faulty components in any execution. Then, if
the number of components n is sufficiently large to meet the threshold-based requirements
of the protocol based on this value of t, one can run the protocol on the system.

However, this approach can result in excessive replication. In [75], Junqueira and
Marzullo developed a dependent failure representation that allows one to express bounds
on problems concisely and in a specially practical way for quorum systems [86]. It is based
on a survivor set system, the unique collection of all minimal sets of correct processors,
each set containing all correct processors of some execution. Moreover, in [75], we also
rederived some of the lower bounds for consensus using our dependent failure model and
developed protocols that are optimal with respect to these bounds. More precisely, we
showed that there are situations in which using the strategy described above—choosing
t to be the largest number of faulty processors in any execution and having only one
automaton running distributed protocol per processor—would fail because there would
not be enough processors n to satisfy the replication bound n > k · t. Nevertheless, there
would in fact be enough if our dependent failure model was to be used.

Hence, we look closely at the problem of running a protocol that has a replication
requirement of n > k · t for any positive integer constant k on systems in which failures are
not IID. We develop an optimal byzantine-resilient transformation protocol that enables
any protocol with such a restriction to be automatically translated into a dependent failure
model so that it can execute with less than n processors, saving computing power. No
authentication, self-verification or encryption is needed. Less general transformations for
structural failure models regarding more particular problems were investigated by Warns,
Freiling and Hasselbring in [115]. We also unveal equivalence classes of adversarial struc-
tures, in terms of solvability, by investigating a key set of hierarchic properties based on
set intersection.
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8.2 System model

A system is composed of a set of processors Π = {p1, p2, · · · , pn} that communicate by
exchanging messages. Each processor is capable of executing multiple automata, as in the
model described by Attiya and Welch for simulations [9]. The set of automata of a system
is {sm1, sm2, · · · , smm}, where each automaton smi has a state, code, and an identity
which is used by other automata to send messages to smi. The code of an automaton
is deterministic, in that the state of an automaton is determined only from its initial
state and the sequence of messages it has received. We model an automaton as a state
machine [110].

We assume that processors can fail arbitrarily. A faulty processor can crash, modify the
content of messages arbitrarily, omit to send or receive messages, and behave in malicious
ways. It is important to observe that the failure of a processor implies the failure of all
automata in it. Thus, if a processor is arbitrarily faulty, then all of the automata running
in that processor can exhibit arbitrary behavior. The converse is also true: if a processor
is correct, then all automata running in it are correct as well.

We do not assume a threshold on the number of processor failures. Instead, we char-
acterize failure scenarios by providing the survivor set systems, the unique collection of
all minimal sets of correct processors, each set containing all correct processors of some
execution [74, 75]. Informally, elements of a survivor set system, called survivor sets,
generalizes subsets of size n − t under the threshold model, where n is the total number
of processor and t is again a threshold on the number of processor failures. Let φ be an
execution from the set of all possible executions Φ for the protocol, and Correct(φ) the
set of automata which never fail in φ, that is, which always remain correct in φ. More
formally, we define a survivor set as follows:

Definition 8.1. A subset S ⊆ Π is a survivor set if and only if: 1) ∃φ ∈ Φ, Correct(φ) = S;
2) ∀φ ∈ Φ, pi ∈ S, Correct(φ) 6⊂ S/pi.

Henceforth, we refer to the survivor set system as the collection of survivor sets of Π
as SΠ. Note that it is unique given a fail-prone system [74], that is, an exact configuration
of possible failures. The inverse is also true.

A survivor set system is equivalent to a core system [74], and one defines uniquely the
other as well. Informally, a core is a subset of processors that generalizes subsets of size
t + 1 in the threshold model, where t is a threshold on the number of processor failures.
Thus, in every execution of the system, there is at least one processor in every core that
is correct. From the set of cores, one can obtain the set of survivor sets by creating all
minimal subsets of processors that intersect every core. More formally, we define cores as
follows:

Definition 8.2. A subset C ⊆ Π is a core if and only if: 1) ∀φ ∈ Φ, Correct(φ) ∩ C 6= ∅;
2) ∀pi ∈ C, ∃φ ∈ Φ such that C/pi ∩ Correct(φ) = ∅.

Henceforth, we refer to the set of cores of Π as CΠ. Along with Π, both collections
of sets constitute a system profile. We use the notation 〈Π, SΠ, CΠ〉 to refer to a system
profile. Note that, in fact, the notation is so for later simplicity in usage, though either
SΠ or CΠ would be enough to define a system profile, as one can uniquely be obtained
from the other, just as the fail-prone system representing the adversarial structure. For a
system 〈Π, CΠ, SΠ〉 we assume that there is no processor pi ∈ Π in every survivor set of
SΠ, what indicates a processor that never fails. Were this the case, then the solution to
many problems in distributed computing would be trivial.
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We now present two examples to motivate the use of survivor set systems. The first
example illustrates the advantage of our approach when the probability of failure across
processors is not the same. In the second example, we look at a system in which failures
of processors are partially correlated.

Example 8.3. :
Consider a system with five processors Π = {p1, p2, p3, p4, p5}, and the following probabil-
ities of failure:

P (p1 is faulty in an execution) = P (p2 is faulty in an execution) =
= P (p3 is faulty in an execution) = 0.01

P (p4 is faulty in an execution) = P (p5 is faulty in an execution) = 0.001

This means that p1, p2, and p3 are not as reliable as p4 and p5. Assuming both that
these processors fail independently, and that target degree of reliability for this system is
0.0001, we can then infer the following survivor set system and core system:

• SΠ = {{p1, p4, p5}, {p2, p4, p5}, {p3, p4, p5}, {p1, p2, p3, p4}, {p1, p2, p3, p5}}.

• CΠ = {{p1, p2, p3}, {p1, p4}, {p1, p5}, {p2, p4}, {p2, p5}, {p3, p4}, {p3, p5}, {p4, p5}}.

From [75], this system satisfies Byzantine Intersection and Byzantine Partition, two
equivalent properties that are necessary and sufficient to solve consensus in a synchronous
system with arbitrarily faulty processors. Consequently, one can solve this problem with
seven automata but only five processors. Under the threshold model, it requires at least
seven processors for seven automata.

Example 8.4. :
Suppose a system with six processors {p1, p2, p3, p4, p5, p6}, and the following properties
for these processors:

• All the processors have the same probability x of failure in an execution;

• We can separate the processors in two distinct groups: A = {p1, p2, p3} and B =
{p4, p5, p6};

• Let φ ∈ Φ: P (pi ∈ A is faulty in φ | pj ∈ B is faulty in φ) = P (pi ∈ A is faulty in φ)·
P (pj ∈ B is faulty in φ)(independent failures for processors in different groups);

• Let φ ∈ Φ: P (pi ∈ Ψ is faulty in φ | pj ∈ Ψ is faulty in φ)> P (pi ∈ Ψ is faulty in φ)·
P (pj ∈ Ψ is faulty in φ), i 6= j and Ψ ∈ {A,B} (failures are positively correlated for
processors in the same group) ;

• Let φ ∈ Φ: P (pi ∈ Ψ is faulty in φ | pj , pk ∈ Ψ are faulty in φ) < x2, i 6= j, k and
Ψ ∈ {A,B};

Assuming that the target degree of reliability for this system is x2, we can infer the
survivor set system and core system:

• SΠ = {{p1, p2, p3, p4}, {p1, p2, p3, p5}, {p1, p2, p3, p6}, {p1, p4, p5, p6}, {p2, p4, p5, p6},
{p3, p4, p5, p6}}.
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• CΠ = {{p1, p2, p3}, {p4, p5, p6}, {p1, p4}, {p1, p5}, {p1, p6}, {p2, p4}, {p2, p5}, {p2, p6},
{p3, p4}, {p3, p5}, {p3, p6}}.

Suppose an implementation of a fault-tolerant state machine that tolerates arbitrary
failures, such as the one described by Castro and Liskov [24]. To make failures independent,
one can use opportunistic n-version programming, as proposed by Castro, Rodrigues and
Liskov in [25]. If only two implementations are available, then one could analyze the
failure behavior of these implementations. If it happens that the properties of these two
implementations fulfill the ones described above, then such a system can be used to solve
the given problem, since one can be used in group A and the other in group B. Note that
if there is a high probability that all processors executing the same implementation fail
together, then this construction is not useful.

It is important to observe that our dependent failure model does not provide an ap-
proach that violates impossibility results previously presented, such as the one on the
minimum degree of replication necessary to solve consensus with arbitrary failures [80].
We observe, however, that under realistic assumptions, our approach is able, in several
instances, to overcome impossibility results.

8.3 Replication with cores and survivor sets

In [75], Junqueira and Marzullo showed two equivalent properties on replication that are
necessary and sufficient to solve consensus assuming arbitrary processor failures under the
core and survivor set systems model. These properties, called Byzantine Partition and
Byzantine Intersection, generalize the bound on replication based on a threshold n > 3t,
where n is the number of processors in a system and t is a threshold on the number of
processors failures. Based on these properties, we stated two parameterized properties
(α, β)-Partition and (α, β)-Intersection, for integers α, β and α > β ≥ 1, that generalizes a
bound of the form n > bαt/βc. An example of such a bound in the literature is the lower
bound for primary-backup with receive-omission failures, which is n > b3t/2c [23].

In this work, we concentrate on the cases in which β = 1 and α = k ≥ 2, which is
equivalent in the threshold model to a replication requirement of n > k · t for k ≥ 2. This
replication bound implies that if one constructs k subsets of the processors, then at least
one of them will contain at least n− t processors. Generalized to an expression on cores,
we have:

Property 8.5. : k-Partition
For every partition A = {A1, A2, · · · , Ak} of Π, at least one of the sets Ai contains a core.
2

For the following sections, we make use of the equivalent (k, 1)-Intersection property,
which we call from this point on k-Intersection. This is a property expressed in terms
of survivor sets rather than cores, and it is essencial both for our optimal automatic
translation protocol and the definition of equivalence classes of adversarial structures. Let
〈Π, CΠ, SΠ〉 be a system profile such that there is no core in CΠ of size one. Then:

Property 8.6. : k-Intersection
For every {S1, S2, · · · , Sk} ∈ SΠ, ∩iSi 6= ∅. 2
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8.4 Constructing protocols

In this section, we present ways to build protocols for our dependent failure model out of
protocols designed for the threshold model. By assumption, protocol Λt requires n > k · t
replication for some positive integer value of k and some threshold on the number of failures
t > 0. The main idea is to allow a processor to run more than one automaton of Λt. At
first glance, this may appear to be a fruitless approach, since automata being executed by
the same processor fail in a completely correlated fashion. That is, a processor pi being
faulty is equivalent to all of the automata of Λt that pi executes being faulty as well.
By choosing which automata to replicate, however, one can increase replication enough
without increasing t in a similar manner so that the replication requirement n > k · t is
met.

Our goal is to provide a method for constructing a protocol Λcs for the core and
survivor set systems model based on protocol Λt. More specifically, given a system profile
〈Π, CΠ, SΠ〉 satisfying k-Intersection, we provide a set M 〈Λcs 〉 of automata and a mapping
ϕ 〈Λcs 〉 of these automata to processors.

First, we describe a procedure to determine a value of n and to assign automata of Λt
to processors, such that in no execution more that t automata of Λt fail, for some value
of t under the constraint that n > k · t. Consider a system profile 〈Π, CΠ, SΠ〉. Let li
be the fraction of automata of M(Λt) that processor pi ∈ Π executes, where 0 ≤ li < 1.
Moreover, in each execution, the fraction of correct automata is as follows:

n− t
n

>
(k · t− t)
k · t

=
k − 1
k

These observations lead us to the following set of constraints:

∑
pi∈Π

li = 1

∀s ∈ SΠ :
∑
pi∈s

li >
k − 1
k

(8.1)

These equations imply that every processor is executed by exactly one processor, and
in no execution there are more than bn/kc faulty automata. If we solve this system of
linear equations, and choose a large enough value of n such that n · li is an integer for
every i, then we have a solution for our problem. We can then simply choose the smallest
value of n for which this condition holds. That is:

min
n
{∀li : n · li is an integer} (8.2)

Let 〈Π, CΠ, SΠ〉 be a system profile and L be a set of values li, 0 ≤ li < 1, with a value
li for each processor of Π. We say that L is a valid solution for 〈Π, CΠ, SΠ〉 and degree
of replication k if these values satisfy the constraints in Definition 8.1 for 〈Π, CΠ, SΠ〉 and
k. The following theorem states that there being a valid solution is sufficient for a system
profile 〈Π, CΠ, SΠ〉 to satisfy k-Intersection.

Theorem 8.7. Let 〈Π, CΠ, SΠ〉 be a system profile and k be a degree of replication. There
is a valid solution L for 〈Π, CΠ, SΠ〉 and k only if 〈Π, CΠ, SΠ〉 satisfies k-Intersection.
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Proof. We prove this theorem by contradiction. Suppose that there is a system with profile
〈Π, CΠ, SΠ〉 that does not satisfy k-Intersection and there is a valid array of values li for
〈Π, CΠ, SΠ〉 and k. From the first assumption, there is a subset {S1, S2, · · · , Sk} in SΠ

such that ∩iSi = ∅. From the second assumption we have the following:

∑
pi∈S1

li >
k − 1
k∑

pi∈S2

li >
k − 1
k

...∑
pi∈Sk

li >
k − 1
k

Summing together these k equations, we have the following:

∑
pi∈S1

li

+

∑
pi∈S2

li

+ · · ·+

∑
pi∈Sk

li

 > (k − 1) (8.3)

Since by assumption no processor is in all k survivor sets by assumption and k ≥ 2 we
also have that:∑

pi∈S1

li

+

∑
pi∈S2

li

+ · · ·+

∑
pi∈Sk

li

 ≤ ∑
pi∈Π

li ≤ 1 ≤ (k − 1) (8.4)

Equations 8.3 and 8.4, however, contradict each other, giving us our contradiction.

Using the value of n provided by (8.2), we can determine the set of automata M 〈Λt〉.
Assuming a valid solution L, we build M 〈Λcs 〉 and ϕ 〈Λcs 〉 as follows:

1. M 〈Λcs 〉 ←M 〈Λt〉;

2. For each sm ∈M 〈Λcs 〉: ϕ 〈Λcs 〉 ← [ϕ 〈Λcs 〉 | smi → pj ], (pj ∈ Π)∧(|(ϕ 〈Λcs 〉)−1(pj)| ≤
n · lj).

The following theorem states that in every execution of Λcs there are at most t faulty
automata, where t = n− bk·(n+1)−n

k c.

Theorem 8.8. Let 〈Π, CΠ, SΠ〉 be a system profile and k a degree of replication. Given a
valid solution L for 〈Π, CΠ, SΠ〉 and k, there are at most t faulty automata in any execution
φ ∈ Φ of the protocol Λcs, for t = n− bk·(n+1)−n

k c.

Proof. We first show that in every execution, there are at least n− t correct automata, for
some value of t. By assumption, for every execution φ ∈ Φ there is at least one survivor
set S ∈ SΠ containing only correct processors. Given that L is a valid solution, we have:

∑
S

n · li = n ·
∑
S

li >
n · (k − 1)

k
≥
⌊
n · (k − 1)

k
+ 1
⌋

(8.5)
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It also must be the case that for all S ∈ SΠ, the sum of t and
∑

S n · li = is greater
or equal to n. Otherwise, there is at least one execution in which there are more than t
faulty automata. Expressed more formally,

∀S ∈ SΠ : n ·
∑
S

li + t ≥ n

⇒ ∀S ∈ SΠ : t ≥ n− n ·
∑
S

li (8.6)

⇒ t ≥ n− min
S∈SΠ

{n ·
∑
S

li} (8.7)

By equation 8.5, we have that the value of the previous sum is bounded from below
by
⌊
k·(n+1)−n

k

⌋
. That is:

min
S
{n ·

∑
S

li} ≥
⌊
k · (n+ 1)− n

k

⌋
(8.8)

If we then choose t as:

t = n−
⌊
k · (n+ 1)− n

k

⌋
(8.9)

We have:

∀S ∈ SΠ : n− n ·
∑
S

li ≤ n−
⌊
k · (n+ 1)− n

k

⌋
= t (8.10)

From Equation 8.10, we conclude that there is no execution in which more that t
automata fail, where t is given by Equation 8.9.

With this construction, automata behave as in the original protocol, sending and re-
ceiving messages from each other. The only difference is that some automata may run
in the same processor, and consequently these automata fail together. From the previous
theorem, however, our construction provides a threshold on the number of faulty automata
that does not violate the replication requirement for protocol Λt, thereby guaranteeing the
correct execution of Λcs .

A problem is that, in some instances, even if a system profile satisfies k-Intersection,
for some value of k, there is no valid solution for 〈Π, CΠ, SΠ〉 and k. We show this with
the following theorem, and explain in the sequence how to circumvent optimally this
impossibility result.

Theorem 8.9. For every value of k > 1, there is a system profile 〈Π, CΠ, SΠ〉 satisfying
k-Intersection such that there is no valid solution L for 〈Π, CΠ, SΠ〉 and k.

Proof. The case k = 2 follows directly from Theorem 3.1 in [57]. We show that it holds
for k ≥ 3.

We construct a system profile 〈Π, CΠ, SΠ〉 for which the proposition holds. Suppose
that |Π| = (k − 1) · k. Now, partition Π into k − 1 disjoint sets A = (A1, A2, · · · , Ak−1),
each of size k, and let CΠ be as follows:
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CΠ = {A1, A2, · · · , Ak−1} ∪ {{pi, pj} | pi ∈ Ax, pj ∈ Ay, x 6= y} (8.11)

From this set of cores, we can build the set of survivor sets as follows:

SΠ = {Ax ∪ {pi} | pi ∈ Ay, x 6= y} (8.12)

This system clearly satisfies k-partition, since any partition of Π into k subsets will
result in at least one subset containing either all of some Ax or two automata from different
subsets Ax and Ay. We now show that there is no set of values li, one for each processor
pi ∈ Π, satisfying equations in 8.1.

The set of linear equations for our system is as follows. For each Ax and p ∈ Ax: ∑
Ay∈A/{Ax}

∑
pi∈Ay

li

+ lp >
k − 1
k

(8.13)

From 8.13, there are k · (k − 1) equations, where each li appears on the left side of
exactly k · (k−2) + 1 = (k−1)2 equations. Summing up each side these equations, we get:

(k − 1)2 · (l1 + l2 + · · ·+ l|Π|) > k · (k − 1) · k − 1
k

⇒ (k − 1)2 · (l1 + l2 + · · ·+ l|Π|) > (k − 1)2

⇒ (l1 + l2 + · · ·+ l|Π|) > 1 (8.14)
(8.15)

We conclude that the constraint imposed by the first equation of 8.1 cannot be fulfilled
as we wanted to show.

To illustrate this construction, consider the system profile of example 8.3. Recall that
in that system there are five processors. There is one core that contains three processors,
and all of other cores are of size two. Given k = 3, we have the following solution for this
system:

• l1 = 1
7 , l2 = 1

7 , l3 = 1
7 , l4 = 2

7 , l5 = 2
7 ;

• We choose n = 7.

• Let M 〈Λt〉 = {sm1, sm2, sm3, sm4, sm5, sm6, sm7}. A possible mapping ϕ 〈Λcs 〉 is
as follows: {sm1 → p1, sm2 → p2, sm3 → p3, sm4 → p4, sm5 → p4, sm6 → p5, sm7 →
p5};

• t = n− bk·(n+1)−n
k c = 7− 5 = 2;

In example 8.4, however, there is no solution satisfying the set of constraints 8.1. This
example is actually the case presented in the proof of Theorem 8.4 for k = 3.

However, remark that, to circumvent the impossibility result, it suffices to apply Byzan-
tine Consensus[75, 21] in an optimal fashion. Note that resorting to Byzantine Consensus
is actually necessary, once having state machine replication [110, 24] in a timely manner
is required.
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8.5 Equivalence classes of adversarial structures

To end, we would like to point out that the hierarchy of k-intersection properties defines
then in a straightforward fashion, due to previous section, equivalence classes of adversarial
structures in terms of problem solvabilities:

Theorem 8.10. Any protocol requiring n > kt replication is solvable for a system profile
〈Π, CΠ, SΠ〉 with |Π| ≤ n if and only if 〈Π, CΠ, SΠ〉 satisfies k-Intersection.
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Chapter 9

Summary and Future Work

In this thesis we presented several techniques to protect against hostile attacks in a
message-passing distributed computing environment. We started by considering rela-
tively benign failures and proceeded to more malign ones. We focused on the classical
k-set agreement problem. We derived an optimal crash-resilient k-set agreement protocol,
which tolerates an optimal linear number of crashes given (exactly or close to) minimal
synchrony features provided by limited-scope failure detectors in asynchronous systems.
Tight bounds on the maximum possible number of crashes were achieved through tech-
niques borrowed from combinatorial topology. How to connect failure detection to timing
assumptions was also discussed.

Next, we considered message omission failure models in the form of a tamper-proof
secure coprocessor embedded in an untrusted host. The coprocessor exchanged messages
with other secure coprocessors at other untrusted hosts. The untrusted host could fail
to send or deliver messages, but could not tamper with them. Using secret shared coins,
we developed randomized consensus (that is, 1-set agreement) protocols, optimal both in
terms of time and resilience, with applications to secure electronic commerce. Determin-
istic versions and automatic transformations for failure detectors were also given.

Finally, we turned our attention into Byzantine faults. We introduced an optimal
byzantine-resilient protocol that allows one protocol using fewer processors to simulate
another protocol that uses more. We also identified a particular hierarchy of properties
that define equivalence classes of failure configurations.

As an open problem in Chapter 3, we point out that it is still unknown which is
the weakest failure detector for the problem of k-set agreement. An initial investigation
towards that goal was made in [92], where a failure detector Ωk, generalizing Ω, was
compared to others and presented as a potential candidate.

In chapter 4, it is not known whether and how results would map to more severe fail-
ures. Still another research direction, stemming from Chapter 5, would be one concern-
ing resilience improvement in randomized consensus protocol applied in secure eletronic
commerce, more specifically one which requires a majority of correct hosts. For that,
techniques from quantum cryptography could be useful in turning the protocol wait-free,
that is, into a state where execution of any coprocessor would not depend on the correct
execution of any other coprocessor. In that case, instead of a majority of correct processes,
only one correct process would be necessary for a secure eletronic commerce protocol to
take place, which would mean a huge gain. Moreover, note that both the ConsensusS and
ConsensusSR binary consensus protocols can be extended to a larger set of k values in
3 log(k) rounds via bit-by-bit consensus. It is an open question whether faster protocols
exist (perhaps by doing bit-by-bit consensus in parallel).
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Note that in Chapter 6 there are multiple lines of future work to consider. On the
practical side as next step we intend to have the approach implemented and extended to
other classes of failure detectors. On the theoretical side it would be interesting to study
the minimal storage and communication effort necessary to solve consensus, since we use
unbounded buffers in our implementation and the bit complexity of the messages we use
is rather high. Also it is necessary to investigate the timing assumptions still further since
in theory smartcards can also be slowed down arbitrarily. In such cases the assumptions of
partial synchrony may not hold and we come close to a truly asynchronous system where
consensus cannot be solved [52]. Investigating realistic models of smartcard-based systems
that reflect this type of attack and still allow TrustedPals to be implemented will further
broaden the applicability of the framework in practice.

In the trusted system however, security modules may not have their own source of
activation (and therefore no realtime clock), so an untrusted host can on the one hand
slow down its smartcard arbitrarily by disturbing the clock speed. On the other hand, the
host cannot speed up the clock of the security module arbitrarily. This still results in a
model of partial synchrony for the trusted system as we now explain.

Consider for example the situation depicted in Fig. 9.1. There a channel directed from
a security module q to a security module p is shown. The correct process q sends heartbeat
messages in constant time intervals to the malicious process p. The usual strategy in this
case is that the receiver p sets a timeout ∆p(q) of p for q. If p does not receive a message
from q within this timeout interval, p suspects q to have failed. Now, if p manipulates its
clock so that its smartcard processes faster and as a result the timeout intervals ∆p(q)
are shortened, p will assume q to have failed until it receives a message from q. It might
happen finitely often that p times-out on q. After each timeout on q ∆p(q) grows, and
eventually the bounds on process speed and message delay hold. Thus, eventually process
p cannot timeout on process q anymore, and the malicious host will have no impact on
the system’s timing assumption.

The inverse scenario is shown in Fig. 9.2. Here, the channel from a malicious host q to
a correct host p is considered. Process q may intentionally withhold a message m and delay
the sending of m for an arbitrarily amount of time. This will cause process p to assume
that q has failed. If q finally sends m, p will not assume q to have failed anymore. This
might also happen infinitely often. Assuming the system to be synchronous or partially
synchronous and that there are no send omissions, the arbitrary delay caused by the
malicious process will violate the timing assumption of the system.

In Chapter 6, as an open problem, we think that it would be interesting to replace the
requirement of a correct majority in our second transformation with a failure detector Σ
[39] that will also be sufficient. Apart from that, it may be possible to give more specific
transformations that are less general, but also less communication expensive than our
transformation.

In special, we would like to expand work in Chapter 7 on protocol simulation with
fewer processors in adversarial structure models. First of all, it would be useful to have
as well simulations for protocols with fractional thresholds instead of only integer ones.
Such thresholds are particularly important to weak leader election [23], k-mutex [76] and
fast paxos [88]. Second, it would be equally interesting to introduce probabilities on the
existence of elements belonging to adversarial structures. Third, a very appealing scenario
which recently has been gaining attention is a hybrid one where processors may be guided
to maximize distinct specific utility functions, instead of the same one, as it is assumed
in secure electronic commerce. Further investigation on the exact meaning of higher level
hierarchy properties and on how precisely such properties relate to existing literature could
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Figure 9.1: Channel directed from a correct process q to a malicious process p.
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Figure 9.2: Channel directed from a malicious process q to a correct process p.
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clarify many open questions, including concerning paxos functioning and optimal efficiency
despite different circumstances. Hence, other types of optimality could be achieved as well
with protocol simulation depending on the assumptions present in the given adversary
structure model.

Last, we would join a recent trend [119], and would thrive to develop in the near future
fast heuristics to find most efficient quoruns given a survivor set system (or equivalently,
a fail-prone system) and a minimal set of properties required to solve a problem. Such
heuristics could, for instance, be inspired from existing ones in combinatorial optimization
such as local search, simulated annealing, branch and bound, or a combination of any of
those or other techniques, nowadays also useful in scheduling american and european sport
competitions.
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