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ABSTRACT

The Combinatorics of Functional Composition and Inversion

A Dissertation Presented to the Faculty of the
Graduate School of Arts and Sciences of

Brandeis University, Waltham, Massachusetts

by Susan Field Parker

This thesis is a generalization of a result of Carlitz, Scoville and Vaughan on
sequence enumeration [CSV]: Let A be an alphabet and let L be a subset of A×A;
the elements of L and its complement L̄ are called links. Then if

∑∞
n=0 fnx

n is
the generating function for sequences a1a2 · · · an with ai in A all of whose links are

in L (that is, with each aiai+1 in L), then
(∑∞

n=0(−1)nfnx
n
)−1

is the generating

function for sequences a1a2 · · · an all of whose links are in L̄. In this work, the
objects of study are ordered trees rather than sequences and the reciprocal of a
generating function is replaced by the compositional inverse. We label the internal
vertices of an ordered tree with elements of some alphabet A and its leaves with
some indeterminate x. In this setting, a set L of links is defined to be a set of
ordered triples (α, β, l); (α, β, l) is a link of a tree T if there is a vertex v in T
such that v is labeled with α and the lth child (counted from left to right) of v
is labeled with β. The basic result is that the generating function for trees all of
whose links are in some set L is the compositional inverse (as a power series in x)
of the generating function, with alternating signs, for trees all of whose links are in
L̄.

The primary application of this inversion theorem involves the study, for n ≥ 0,
of the nth iteration polynomial pn(k) of certain power series f(x) which arise in
counting trees with restricted links. When pn(k) is a polynomial in k of degree at
most n, there is a polynomial An(t) of degree at most n defined by

∞∑

k=0

pn(k)tk =
An(t)

(1 − t)n+1
.

We find a combinatorial interpretation of the coefficients of An(t) for the formal

power series f(x) = x + xm and f(x) =
x

1 − xm−1
, where m ≥ 2. In the latter

case, when m = 2, pn(k) = kn and An(t) is the classical Eulerian polynomial,
whose coefficients count permutations of [n] according to descents (occurrences of
π(i) > π(i + 1)).
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CHAPTER 0

INTRODUCTION

0.1 Background

The theory of permutation and sequence enumeration plays an important role in
the study of enumerative combinatorics. An important contribution to this theory
was made by Carlitz, Scoville and Vaughan in [CSV] in 1976: Let A be an alphabet
and let L be a subset of A×A. Let L̄ be the complement of L in A×A; the elements
of L and L̄ are called links. If

∑∞
n=0 fnx

n is the generating function for sequences
a1a2 · · · an with ai in A all of whose links are in L (that is, with each aiai+1 in L),

then
(∑∞

n=0(−1)nfnx
n
)−1

is the generating function for sequences a1a2 · · · an all

of whose links are in L̄. In his 1977 Ph.D. thesis, Gessel [G] studied the theorem
of Carlitz, Scoville and Vaughan at length, and showed that much of the theory of
permutation and sequence enumeration can be derived from it.

This thesis is a generalization of the theorem of Carlitz, Scoville and Vaughan,
where the objects of study are ordered trees rather than sequences and where the
reciprocal of a generating function is replaced by the compositional inverse. The
result is an inversion theorem which reduces to the theorem of Carlitz, Scoville and
Vaughan when the trees are unary.

After proving the inversion theorem, this work goes on to explore some of its
applications. The primary one involves a problem which has historically been of
considerable interest to combinatorialists. It is well-known (see, e.g., [S2], p. 204)
that if pn(k) is a polynomial in k of degree at most n, then there is a polynomial
An(t) of degree at most n defined by

∞∑

k=0

pn(k)tk =
An(t)

(1 − t)n+1
.

The classical example of this occurs when pn(k) = kn and An(t) is the Euler-
ian polynomial, whose coefficients count permutations of [n] according to descents
(occurrences of π(i) > π(i + 1)). The question often arises whether, given some
polynomial pn(k), one can find an analogous combinatorial interpretation of the
coefficients of the polynomial An(t). We address this question when pn(k) is an
“iteration polynomial”, that is, when pn(k) is the coefficient of xn in the kth iterate
of some formal power series f(x).

1
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0.2 Summary of results

In Chapter 1, we give a generalization of the theorem of Carlitz, Scoville and
Vaughan: Let A be an alphabet and to each α in A associate a positive integer
δ(α) called the degree of α. Let T be an ordered tree with vertex set V , and let X
be an indeterminate not in A. We attach letters to the vertices of T by means of a
map λ : V → A such that

(1) the degree of λ(v) equals the out-degree of v, for each internal vertex v of
T ,

(2) λ(v) = X if and only if v is a leaf of T .

We say that λ letters the vertices of T . Each tree T in some set T of ordered
trees is then weighted by xk times the product of the letters attached to its internal
vertices, where k is the number of leaves of T . In this setting, a set L of links is
defined to be a set of ordered triples (α, β, l), where 1 ≤ l ≤ δ(α); (α, β, l) is a link
of a tree T if there is a vertex v in T such that v is lettered with α and the lth child
of v is lettered with β.

The fundamental result, called the Inversion Theorem, is as follows. Let T be
a set of ordered trees. Then the generating function for trees in T all of whose
links are in a given set L is the compositional inverse (as a power series in x) of the
generating function, with alternating signs, for trees in T all of whose links are in
the complement of L.

In Chapter 2, we take an alphabet A = {α1, α2, . . . , } such that δ(αi) = m for
each i, and we put a linear ordering on A by αi < αj if and only if i < j, for
each i, j in N. For each k ≥ 0, we let Lk be the set of all links formed from the
set {α1, α2, . . . , αk }. We consider several examples of a subset Lk of Lk with the
property that the generating function for trees with links restricted to the set Lk is
the kth iterate of some formal power series f(x). Now if

f(x) = x +
∞∑

i=1

cix
(m−1)i+1

is a formal power series, where r ≥ 1, then

f<k>(x) =

∞∑

n=0

pn(k)x(m−1)n+1,

where pn(k) is a polynomial in k of degree at most n. Since pn(k) is a polynomial
in k of degree at most n, we can define a polynomial Pn(t) in t of degree at most n
by

∞∑

k=0

pn(k)tk =
Pn(t)

(1 − t)n+1
,

and we can ask if there is a combinatorial interpretation for the coefficient Pn,j of
tj in Pn(t).

For the formal power series f(x) = x+ xm and f(x) =
x

1 − xm−1
, where m ≥ 2,

we find such an interpretation as follows. We start with a set Ωn of positive integers
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of length n, and if γ = c1c1 · · · cn belongs to Ωn we define the spaces of γ to be
the integers 0, 1, . . . , n. We think of space i as lying between ci and ci+1, for
1 ≤ i ≤ n− 1, with space 0 lying to the left of c1 and space n lying to the right of
cn. We call the spaces 1, 2, . . . , n the proper spaces of γ. We then define a map
s : Ω → 2N to be a function which attaches to each sequence γ in Ωn a subset of the
set of proper spaces of γ which includes n; we call s(γ) the s-descent set of γ and
call an element of s(γ) an s-descent of γ. Moreover, we define a barred sequence on
γ to be a sequence of positive integers and bars formed from γ by inserting bars in
some of the spaces of γ. Let bn(k) be the number of barred sequences on elements
of Ωn with at least one bar in each s-descent and with k bars. We show that
pn(k) = bn(k), and this gives us a combinatorial interpretation for the coefficient
Pn,j of tj in Pn(t): Pn,j is the number of sequences in Ωn with exactly j s-descents.

Suppose that m = 3 and n = 2 and that for every k ≥ 0 we let Lk = { (αi, αj , 1) :
1 ≤ i, j ≤ k }; then the generating function f(x) for trees with links restricted to
L1 is

f(x) =
x

1 − x
,

and the generating function for trees with links restricted to Lk is

f<k>(x) =
x

1 − kx
=

∞∑

n=0

knxn+1,

so pn(k) = kn, and in this case Pn(t) is the classical Eulerian polynomial.

Let T
(Lk)
n be the number of trees with n internal vertices and links restricted to

Lk; then pn(k) is the number of trees in T
(Lk)
n . Since pn(k) = bn(k), we are able

to define a bijection between T
(Lk)
n and the set of barred sequences on elements of

Ωn with at least one bar in each s-descent and with k bars. Moreover, for each T

in T
(Lk)
n , we define a set called the t-descent set of T . We then find a subset of

T
(Lk)
n , whose elements are called reduced trees, and we define a descent-preserving

bijection between this subset and the set Ωn.
In Chapter 3, we look at q-analogues of some of the iteration polynomials studied

in Chapter 2. We begin with a formal power series

f(x) = qx +

∞∑

i=1

cix
(m−1)i+1;

as in Chapter 2 we can write

f<k>(x) =
∞∑

n=0

pn(k, q)x(m−1)n+1,

where pn(k, q) is a q-analogue of a polynomial of degree at most n. We then show
that pn(k, q) defines a polynomial Pn(t, q) in t of degree at most n by

∞∑

k=0

pn(k, q)tk =
Pn(t, q)∏n

i=0(1 − q(m−1)i+1t)
.



4

We find a combinatorial interpretation of Pn(t, q) by again counting barred se-
quences in Ωn, but this time we weight each sequence by a certain power of q.
Moreover, if γ belongs to Ωn, we define the s-index of γ to be the sum of the s-
descents of γ. We find that Pn(t, q) counts sequences in Ωn according to the number
of s-descents and the s-index.

If
f(x) =

qx

1 − x
,

then the polynomial Pn(t) counts permutations of [n] according to descents and the
major index, so Pn(t) is a q-analogue of the Eulerian polynomial.
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CHAPTER 1

THE INVERSION THEOREM

1.1 Definitions and notation

A directed graph (or digraph) G is a pair (V,E), where V is a finite set whose
elements are called vertices and E is a finite set of ordered pairs of elements of V
called edges. If (u, v) is an edge of G, we say that it leaves u and enters v; we
also say that u and v are adjacent vertices and that each of them is incident with
(u, v). If G = (V,E) and G′ = (V ′, E′) are two directed graphs, then G and G′ are
isomorphic if there is a bijection ψ : V → V ′ such that for all u, v in V , (u, v) is in
E if and only if (ψ(u), ψ(v)) is in E′.

A path of length n from v0 to vn in a digraph G is a sequence v0, v1, . . . , vn of
n+ 1 vertices such that (vi−1, vi) is an edge of G for each i in [n]. A path is simple
if no vertex is repeated. If v is any vertex of G, the in-degree of v is the number of
edges entering v and the out-degree of v is the number of edges leaving v; the degree
of v, denoted by deg v, is the sum of its in-degree and its out-degree.

A rooted tree T is a directed graph with a distinguished vertex, called the root
of T , such that

(1) the root of T has in-degree zero,
(2) every other vertex of T has in-degree one,
(3) if v is any vertex of T , there is a unique simple path from the root of T to

v.

Figure 1 gives an example of a tree. An arrow from one vertex to another
indicates an edge leaving the first vertex and entering the second.

Figure 1

Henceforth, we shall follow the convention of drawing trees with the root at the
top and the edges directed downward, so we will omit the arrows from our drawings.

If (u, v) is an edge of a tree T , then u is called the parent of v and v a child
of u. If there is a path from u to v, then u is said to be an ancestor of v and

5
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v a descendent of u. The vertices of T with at least one child are called internal
vertices; those with no children are called leaves. The height of T , denoted by htT ,
is the length of the longest simple path in T which begins at the root; note that if
T consists of a single vertex, then htT equals zero.

A subtree of a tree T is a tree T ′ such that

(1) each vertex of T ′ is a vertex of T ,
(2) each edge of T ′ is an edge of T ,
(3) each child of a vertex of T ′ is also a vertex of T ′.

A principal subtree of a tree T is a subtree T ′ of T whose root is a child of the root
of T .

We define a rooted ordered tree inductively to be a rooted tree whose principal
subtrees have been linearly ordered and are themselves rooted ordered trees. Let T
and T ′ be two rooted ordered trees with vertex sets V and V ′, respectively. Then
T and T ′ are isomorphic as ordered trees if they are isomorphic as unordered trees
via a bijection ψ : V → V ′ which is also order-preserving.

Unless otherwise stated, we will assume, in a drawing of an ordered tree T , that
the children of any vertex of T are linearly ordered from left to right. (See Figure
2.)

T1 and T2 are isomorphic as unordered trees but not as ordered trees.

Figure 2

Let {T1, T2, . . . , Tn} be a set of ordered trees; we call such a set a forest of ordered
trees. An ordered n-tuple (T1, . . . , Tn) of ordered trees is called an ordered forest of
ordered trees. If n = 0, we call the resulting forest the empty forest. Notice that we
do not require the vertex sets of the trees in a forest (or an ordered forest) to be
disjoint; in other words, if F = (T1, . . . , Tn) is an ordered forest with Ti = (Vi, Ei)
for i in [n], then Vi ∩ Vj is not necessarily empty when i �= j.

1.2 The Operation of substitution

Let T = (V,E) be an ordered tree with m leaves, v1, v2, . . . , vm. Suppose
that F = (T1, . . . , Tn) is an ordered forest of ordered trees such that for each i in
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[n], Ti = (Vi, Ei). We define an operation, called the substitution of F into T and
denoted by T ∗ F , as follows:

(1) if m = n and if for each i, j in [m], Ti has root vi, V ∩ Vi = {vi}, and
Vi ∩ Vj = ∅ whenever i �= j, then T ∗ F is the ordered tree U = (V ′, E′),
where V ′ = V ∪

⋃m
i=1 Vi and E′ = E ∪

⋃m
i=1 Ei,

(2) otherwise, T ∗ F is undefined.

Figure 3a gives an example of the substitution of a forest into a tree.

When the forest F = (T1, T2) is substituted into the tree T , the result is

the tree U . So U = T ∗ F .

Figure 3a

If U = T ∗ F , then we call the ordered pair (T, F ) a factorization of U. Clearly,
an ordered tree may have more than one factorization. Figure 3b shows an another
factorization of the tree U showed in Figure 3a.
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The forest G contains the trees S1, S2, and S3; (S,G) is another

factorization of U .

Figure 3b

We can use the definition of the operation of substitution of a forest into a tree
to define a similar operation on two ordered forests. Let F = (T1, . . . , Tn) and
G = (S1, . . . , Sm) be two ordered forests of ordered trees, with Ti = (Vi, Ei) for
each i in [n] and Sj = (V ′

j , E
′
j) for each j in [m]. Suppose that each Ti has ri leaves,

which we denote by vi1, vi2, . . . , viri . Intuitively speaking, the substitution of G
into F , denoted by F ∗G, is, when it is defined, the ordered forest that results from
substituting the first r1 trees of G into T1, then substituting the next r2 trees of G
into T2, etc. We define F ∗G more formally as follows:

(1) if r1 +r2 + · · ·+rn = m and if for each i in [n] and j, k in [ri], Sr1+···+ri−1+j

has root vij , Vi∩V ′
r1+···+ri−1+j = {vij}, and V ′

r1+···+ri−1+j∩V ′
r1+···+ri−1+k =

∅ whenever j �= k, then F ∗ G = (U1, . . . , Un), where, for each i in [n],
Ui = Ti ∗ (Sr1+···+ri−1+1, Sr1+···+ri−1+2, . . . , Sr1+r2+···+ri),

(2) otherwise, F ∗G is undefined.

Note that if F consists of a single tree T , then F ∗G is just T ∗G. Let F = (S1, S2, S3)
be the ordered forest shown in Figure 3b. Let G = (T1, T2, T3, T4) be the ordered
forest pictured in Figure 4a. Then F ∗G is the ordered forest shown in Figure 4b.

The forest G = (T1, T2, T3, T4)

Figure 4a
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The forest F ∗G

Figure 4b

1.3 Lettering of a tree

We will often want to attach a letter from some alphabet A to each vertex of an
ordered tree T . If T = (V,E), let λ : V → A be a map from the vertex set of T
into the alphabet A; then we say that λ is a lettering of T and that T is a lettered
ordered tree.

Let A = {α1, α2, . . . } be an alphabet and let δ : A → Z+ be a map. Then for
each α in A, we call δ(α) the degree of α. Let T = (V,E) be an ordered tree and let
X be an indeterminate not in A. We will define a special kind of lettering of T by
elements of A∪{X} which we call a degree-matching lettering. Let λ : V → A∪{X}
be a lettering of T . Then λ is degree-matching if

(1) the degree of λ(v) equals the out-degree of v, for each internal vertex v of
T ,

(2) λ(v) = X if and only if v is a leaf of T .

We call the pair (T, λ) a matched A-tree. As an example, let T be the ordered tree
shown in Figure 5.

Figure 5

Suppose that A = {α1, α2, α3, α4} with δ(α1) = 1, δ(α2) = δ(α3) = 2, δ(α4) = 3.
Then (T, λ) is a matched A-tree, where λ is given by
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v1 �→ α2 v6 �→ X
v2 �→ α3 v7 �→ α1

v3 �→ α4 v8 �→ X
v4 �→ X v9 �→ X
v5 �→ X

Note that (T, λ′) is also a matched A-tree, where λ′ is given by

v1 �→ α3 v6 �→ X
v2 �→ α3 v7 �→ α1

v3 �→ α4 v8 �→ X
v4 �→ X v9 �→ X
v5 �→ X

When we wish to emphasize in a diagram that an ordered tree (T, λ) is a matched
A-tree, we will draw it so that each vertex v is replaced by λ(v). (See Figure 6.)

The trees (T, λ) (left) and (T, λ′)

Figure 6

1.4 The R-algebra A of formal sums of ordered forests

Let A = {α1, α2, . . . , } be an alphabet each of whose elements has a degree as-
signed to it, and let V be a set of vertices. Let T be the set of all matched A-trees
trees with vertices in V and let F be the set of all ordered forests of trees in T.
Note that F contains the empty forest, which we denote by F0. We can define mul-
tiplication in F by juxtaposition: if F = (T1, T2, . . . , Tn) and G = (S1, S2, . . . , Sm)
belong to F, then we define FG to be the ordered forest (T1, . . . , Tn, S1, . . . , Sm).
Since FF0 = F0F = F for any F in F, F is a free monoid.

Let T̄ be the set of all isomorphism classes of lettered ordered trees in T and
let F̄ be the set of all isomorphism classes of forests in F. The multiplication that
we defined on F is in fact well-defined on the isomorphism classes of elements of F,
that is, if F̄ and Ḡ belong to F̄, then F̄ Ḡ equals FG. Since F̄ F̄0 = F̄0F̄ = F̄ for
any F̄ in F̄, F̄ too is a free monoid.
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Let R be a commutative ring and let A be the set of all formal sums
∑̄
F∈F̄

cF̄ F̄ ,

where cF̄ is in R. Multiplication in A is defined by(∑
F̄∈F̄

cF̄ F̄

)(∑
Ḡ∈F̄

dḠḠ

)
=

∑
F̄ ,Ḡ∈F̄

cF̄ dḠ F̄ Ḡ.

Note that this operation is associative. If we define scalar multiplication by elements
of R in the obvious way, then A becomes an associative R-algebra.

Recall that if F and G belong to F, we can define F ∗G if the number of leaves
in F equals the number of trees in G and if the vertex sets of the trees in F and
G intersect in a certain way. If we are considering isomorphism classes of elements
of F, only the former condition matters to us. So if F̄ and Ḡ belong to F̄, we can
define the substitution of Ḡ into F̄ , which we denote by F̄ ∗ Ḡ, as follows:

(1) if there is some F in F̄ and some G in Ḡ such that F ∗G is defined, then
F̄ ∗ Ḡ = F ∗G,

(2) otherwise, F̄ ∗ Ḡ is undefined.

In other words, if F̄ = (T̄1, T̄2, . . . , T̄n) and Ḡ = (S̄1, S̄2, . . . , S̄m), and if each Ti in
T̄i has ri leaves, then F̄ ∗ Ḡ is defined if

∑n
i=1 ri = m.

We can use this definition to define another operation on A. If φ =
∑̄
F∈F̄

cF̄ F̄ and

γ =
∑̄
G∈F̄

dḠḠ are any two elements of A, then we define the substitution of γ into

φ, denoted by φ ∗ γ, to be

φ ∗ γ =
∑

F̄ ,Ḡ∈F̄
F̄∗Ḡ defined

cF̄ dḠ F̄ ∗ Ḡ.

Recall that an ordered tree T can be considered as the ordered forest containing
the single tree T . Let τ =

∑̄
F∈F̄

aF̄ F̄ be an element of A such that aF̄ equals zero

unless each forest in F̄ contains a single tree. We may rewrite τ as τ =
∑̄
T∈T̄

aT̄ T̄ .

Let B be the subset of A containing all elements of this form; then we define an
operation on B as follows. If τ =

∑̄
T∈T̄

aT̄ T̄ and σ =
∑̄
S∈T̄

bS̄S̄ are in B, then the

composition of τ and σ, denoted by τ [σ], is defined to be

τ [σ] = τ ∗ (1 − σ)−1.

Since
(1 − σ)−1 =

∑
n≥0

σn =
∑
n≥0

∑
F̄∈F̄

F̄=(S̄1,S̄2,...,S̄n)

bS̄1
bS̄2

· · · bS̄n
F̄ ,

we have
τ [σ] = τ ∗

∑
n≥0

∑
F̄∈F̄

F̄=(S̄1,S̄2,...,S̄n)

bS̄1
bS̄2

· · · bS̄n
F̄ .
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1.5 The image of A in R[[α1, α2, . . . , X]]

Let T be a tree in T with n vertices, where n ≥ 1. We wish to associate with T
a word ωT in (A ∪ {X})∗ of length n. To do this, we first define a total ordering
on the vertices of T called postorder . It is defined recursively as follows. Let r be
the root of T and let τ1, τ2, . . . , τk be the principal subtrees of T , listed in the
order defining T as an ordered tree. Let ord(T ) be a listing of the vertices of T in
postorder; then ord(T ) = ord(τ1), ord(τ2), . . . , ord(τk), r. For example, if T is the
tree shown in Figure 5, then ord(T ) = v4, v5, v2, v6, v9, v7, v8, v3, v1.

Since T is a matched A-tree, each vertex of T has an element of A∪{X} attached
to it by a degree-matching lettering λ. If ord(T ) = v1, v2, . . . , vn−1, r, then we
define ωT to be the word λ(v1)λ(v2) · · ·λ(vn−1)λ(r). For example, if we take the
tree T shown in Figure 5, lettered with the lettering λ as shown on the left in Figure
6, then ωT = XXα3XXα1Xα4α2.

Note that any tree T in T is uniquely determined by ωT , up to isomorphism.
Hence we can associate with any element T̄ in T̄ a unique word ωT̄ in (A∪ {X})∗:
ωT̄ simply equals ωT , where T is any element of T̄ .

If F = (T1, T2, . . . , Tm) belongs to F, then we can define a total ordering of the
vertices of F by ord(F ) = ord(T1), ord(T2), . . . , ord(Tm). If for each i in [m], Ti

has ni vertices, then we can associate with F a word ωF in (A ∪ {X})∗ of length
n1 + n2 + · · · + nm by ωF = ωT1ωT2 · · ·ωTm . (See Figure 7a.) Clearly, if F and G
are two elements of F, then ωFG = ωFωG. Since F is uniquely determined by ωF ,
up to isomorphism, we can associate with any element F̄ in F̄ a unique word ωF̄

in (A ∪ {X})∗; as before, ωF̄ equals ωF , where F is any element of F̄ . Moreover,
ωF̄ Ḡ = ωFG = ωF̄ωḠ.

Let G = (S1, S2, . . . , Sr) be in F. If F ∗ G is defined, then ωF∗G is obtained by
replacing the first X in ωF by ωS1 , the second X in ωF by ωS2 , and so on. (See
Figure 7b.)

Let Â be the R-algebra of all formal sums
∑̄
F∈F̄

cF̄ωF̄ . Since each F̄ in F̄ corre-

sponds uniquely to a word ωF̄ in (A ∪ {X})∗ and since ωF̄ωḠ = ωF̄ Ḡ, for each F̄ ,

Ḡ in F̄, the R-algebra A is isomorphic to Â, with the isomorphism ρ : A → Â given
by ∑

F̄∈F̄

cF̄ F̄
ρ�→

∑
F̄∈F̄

cF̄ωF̄ .

Let φ̂ =
∑̄
F∈F̄

cF̄ωF̄ and γ̂ =
∑̄
G∈F̄

dḠωḠ be two elements of Â. We define the

substitution of γ̂ into φ̂, denoted by φ̂ ∗ γ̂, to be

φ̂ ∗ γ̂ =
∑

F̄ ,Ḡ∈F̄
F̄∗Ḡ defined

cF̄ dḠ ωF̄∗Ḡ.

Since

ρ

∑
F̄∈F̄

cF̄ F̄ ∗
∑
Ḡ∈F̄

dḠḠ

 = ρ

 ∑
F̄ ,Ḡ∈F̄

F̄∗Ḡ defined

cF̄ dḠ F̄ ∗ Ḡ
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=
∑

F̄ ,Ḡ∈F̄
F̄∗Ḡ defined

cF̄ dḠ ωF̄∗Ḡ

=
∑
F̄∈F̄

cF̄ωF̄ ∗
∑
Ḡ∈F̄

dḠωḠ

= ρ

∑
F̄∈F̄

cF̄ F̄

 ∗ ρ

∑
Ḡ∈F̄

dḠḠ

 ,

ρ preserves the operation of substitution.

The forests F = (T1, T2, T3) (top) and G = (S1, S2, S3, S4, S5); ωF = XXα1Xα3XXα3α4

and ωG = XXXα2XXXα4Xα3Xα3Xα1.

Figure 7a
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The forest F ∗G; ωF∗G = XXXα2Xα1XXα4α3Xα3Xα3Xα1α3α4.

Figure 7b

1.6 The image of A in R[[a1, a2, . . . , x]]

Notice that the algebra Â is a power series algebra in the non-commuting vari-

ables α1, α2, . . . , X. Let Ã = {a1, a2, . . . , x} be a set of commuting variables

and let Ã = R[[a1, a2, . . . , x]] be the power series algebra in these variables. Then

we can define a homomorphism η : Â → Ã by X
η�→ x and αi

η�→ ai, for each
i, such that η preserve infinite sums. Then, for each T̄ in T̄, η(ωT̄ ) is a mono-
mial in the commuting variables a1, a2, . . . , x. If T̄ has rT̄ leaves, we will write
η(ωT̄ ) as mT̄x

rT̄ , where mT̄ is a monomial in the variables a1, a2, . . . . Hence∑̄
T∈T̄

aT̄ωT̄
η�→

∑̄
T∈T̄

aT̄mT̄x
rT̄ . If F̄ = (T̄1, T̄2, . . . , T̄n), then ωF̄ = ωT̄1

ωT̄2
· · ·ωT̄n

, so

ωF̄
η�→ mT̄1

mT̄2
· · ·mT̄n

xrT̄1
+rT̄2

+···+rT̄n . We denote mT̄1
mT̄2

· · ·mT̄n
xrT̄1

+rT̄2
+...rT̄n

by mF̄x
rF̄ ; then

∑̄
F∈F̄

cF̄ωF̄
η�→

∑̄
F∈F̄

cF̄mF̄x
rF̄ .

If Ḡ = (S̄1, S̄2, . . . , S̄m) and if F̄ ∗ Ḡ is defined, then (since the elements of of the

algebra Ã commute) ωF̄∗Ḡ
η�→ mT̄1

· · ·mT̄n
mS̄1

· · ·mS̄m
xrS̄1

+···+rS̄m , which equals
mF̄mḠx

rḠ . So

η

∑
F̄∈F̄

cF̄ωF̄ ∗
∑
Ḡ∈F̄

dḠωḠ

 = η

 ∑
F̄ ,Ḡ∈F̄

F̄∗Ḡ defined

cF̄ dḠ ωF̄∗Ḡ


=

∑
F̄ ,Ḡ∈F̄

F̄∗Ḡ defined

cF̄ dḠ mF̄mḠx
rḠ .
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Let ρ̃ = η ◦ ρ. Then ρ̃ : A → Ã is a homomorphism that preserves infinite sums

and
∑̄
F∈F̄

cF̄ F̄
ρ̃�→

∑̄
F∈F̄

cF̄mF̄x
rF̄ . Moreover,

ρ̃

∑
F̄∈F̄

cF̄ F̄ ∗
∑
Ḡ∈F̄

dḠḠ

 =
∑

F̄ ,Ḡ∈F̄
F̄∗Ḡ defined

cF̄ dḠ mF̄mḠx
rḠ .

Recall that B is the subset of A consisting of all elements of the form
∑̄
T∈T̄

aT̄ T̄ .

So ρ̃(B) is the subset of Ã consisting of all elements of the form
∑̄
T∈T̄

aT̄mT̄x
rT̄ .

We can think of elements of ρ̃(B) as power series in x, so the usual operation of
composition is defined in ρ̃(B).

Lemma 1.6. Let τ =
∑̄
T∈T̄

aT̄ T̄ and σ =
∑̄
S∈T̄

bS̄S̄ be elements of B. Then ρ̃
(
τ [σ]

)
=

ρ̃(τ) ◦ ρ̃(σ).

Proof. Recall that

τ [σ] = τ ∗
∑
n≥0

σn

= τ ∗
∑
n≥0

∑
F̄∈F̄

F̄=(S̄1,S̄2,...,S̄n)

bS̄1
bS̄2

· · · bS̄n
F̄ .

Denote bS̄1
bS̄2

· · · bS̄n
by bF̄ . Then

τ [σ] =
∑
n≥0

∑
T̄∈T̄, F̄∈F̄

F̄=(S̄1,S̄2,...,S̄n)
T̄∗F̄ defined

aT̄ bF̄ T̄ ∗ F̄ .

For each n ≥ 1, let T̄n be the set of trees in T̄ with n leaves. Since the substitution
of the empty forest into any T̄ in T̄ is undefined, we can write

τ [σ] =
∑
n≥1

∑
T̄∈T̄n

F̄=(S̄1,S̄2,...,S̄n)
T̄∗F̄ defined

aT̄ bF̄ T̄ ∗ F̄ .

So

ρ̃
(
τ [σ]

)
= ρ̃


∑
n≥1

∑
T̄∈T̄n

F̄=(S̄1,S̄2,...,S̄n)
T̄∗F̄ defined

aT̄ bF̄ T̄ ∗ F̄


=

∑
n≥1

∑
T̄∈T̄n

F̄=(S̄1,S̄2,...,S̄n)
T̄∗F̄ defined

aT̄ bF̄ mT̄mF̄x
rF̄ .



16

On the other hand,

ρ̃(τ) ◦ ρ̃(σ) =
∑
T̄∈T̄

aT̄mT̄x
rT̄ ◦

∑
S̄∈T̄

bS̄mS̄x
rS̄ .

Since ρ̃(σ)(0) = 0,

∑
T̄∈T̄

aT̄mT̄x
rT̄ ◦

∑
S̄∈T̄

bS̄mS̄x
rS̄ =

∑
T̄∈T̄

aT̄mT̄

(∑
S̄∈T̄

bS̄mS̄x
rS̄
)rT̄

=
∑
T̄∈T̄

∑
S̄1,S̄2,...,S̄rT̄

aT̄mT̄ bS̄1
· · · bS̄rT̄

mS̄1
· · ·mS̄rT̄

x
rS̄1

+···+rS̄rT̄ .

But rT̄ is the number of leaves of T̄ , so this last expression may be written as

∑
n≥1

∑
T̄∈T̄n

F̄=(S̄1,...,S̄n)

aT̄mT̄ bS̄1
· · · bS̄n

mS̄1
· · ·mS̄n

xrS̄1
+···+rS̄n ,

which equals ∑
n≥1

∑
T̄∈T̄n

F̄=(S̄1,S̄2,...,S̄n)
T̄∗F̄ defined

aT̄ bF̄ mT̄mF̄x
rF̄ .

So ρ̃
(
τ [σ]

)
= ρ̃(τ) ◦ ρ̃(σ).

1.7 The links of an ordered tree

From now on, we will primarily be interested in the letters attached to the vertices
of a tree and in the relationship among these letters. These do not vary among the
trees in an isomorphism class T̄ in T̄. Therefore, in order to simplify our notation
we will simply refer an element T̄ of T̄ as T , and we will write T for T̄. Similarly,
we will write F for F̄ and F for F̄.

Let L = {(α, β, n) : α, β ∈ A and n ∈ Z+ with 1 ≤ n ≤ δ(α)}. We call the
elements of L links. If (T, λ) is a matched A-tree in T and T contains an edge
(u, v) such that λ(u) = α, λ(v) = β and v in the nth child of u (the children of any
vertex in T being counted from left to right), then we say that (α, β, n) is a link of
T and that (α, β, n) is the link of T associated with the edge (u, v). (See Figure 8.)
Note that if (u, v) is an edge of T such that v is a leaf of T , then there is no link
associated with (u, v). Moreover, if htT = 0 or htT = 1, T has no links.
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The links of the tree T are (α1, α2, 1), (α1, α3, 2), (α2, α3, 1) and (α3, α1, 1).

They can be pictured as the trees of height one showed below T .

Figure 8

If L is any subset of L, we define T(L) to be the set of elements of T all of whose
links are in L and F(L) to be the set of all ordered forests of trees in T(L). Let
L = L − L; then we define T(L) and F(L) analogously. Note that T(L) and T(L)

both contain all trees in T of height zero or one.

For any tree T in T, we define the size of T , denoted by |T |, to be the number
of internal vertices of T . If S = (S1, S2, . . . , Sn) is an ordered forest of trees in T,
then the size of F is |F | = |S1| + |S2| + · · · + |Sn|. Recall that B is the subset of
the algebra A consisting of all elements of the form

∑
T∈T

aTT . Let τ =
∑
T∈T

aTT be

an element of B such that

aT =

{
1 if T ∈ T(L)

0 if T /∈ T(L),

and let σ =
∑
S∈T

bSS be an element of B such that

bS =

{
(−1)|S| if S ∈ T(L)

0 if S /∈ T(L).

Note that we can write τ as
∑

T∈T(L)

T and σ as
∑

S∈T(L)

(−1)|S|S.
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1.8 The Inversion Theorem

Theorem 1.8 (The Inversion Theorem). Let L be a subset of L. Let τ =∑
T∈T(L)

T and σ =
∑

S∈T(L)

(−1)|S|S. Then τ [σ] = t1, where t1 is the tree consisting of

a single vertex.

Proof. Let Θ = { θ : θ = T ∗ F for some T in T(L) and some F in F(L) }. Let

�( θ) = {(T, F ) : T ∗ F = θ, T ∈ T(L), F ∈ F(L) }. We call the elements of �(θ)
L-L factorizations of θ. Then

τ [σ] =
∑

T∈T(L), F∈F(L)

T∗F defined

(−1)|F | T ∗ F

=
∑
θ∈Θ

θ
∑

(T,F )∈�(θ)

(−1)|F |.

We will show that
∑

(T,F )∈�(θ)

(−1)|F | equals 0 if θ �= t1 and equals 1 if θ = t1.

Let θ be an element of Θ with vertex set V . If u, v are any two internal vertices
of θ such that (u, v) is an edge of θ, then there is a link in L associated with (u, v)
which belongs to one of L or L. Therefore we may think of each edge of θ which is
not incident with a leaf as being labeled with an L or an L.

Note that θ may be considered as the Hasse diagram of a poset. With this in
mind, we define a cut of θ to be a subset C of V such that C is an antichain of θ
and every minimal element of θ is less than or equal to some element of C. If C is
a cut of θ, let IC = {v ∈ V : v ≥ u for some u in C} and let JC = {v ∈ V : v ≤
w for some w in C}. If v is in IC , we say that v lies above C and if it is in IC −C,
we say that it lies strictly above C. Similarly, if v is in JC , it lies below C and if it
is in JC −C, it lies strictly below C. If (v, v′) is an edge of θ and v, v′ both belong
to one of IC , IC −C, JC , or JC −C, then we also say that (v, v′) lies above, strictly
above, below or strictly below C, respectively. Note that (IC −C) ∩ (JC −C) = ∅.
Lemma 1.8. Any vertex of θ that is not in a cut C of θ lies strictly above C or
strictly below C.

Proof. Let C be a cut of θ and let v be a vertex of θ that is not in C. Suppose that
v is not in IC − C. Then there is no u in C such that v > u. Now there is some
minimal element x of θ such that x ≤ v. Since C is a cut, there is some y in C
such that x ≤ y. Since v and y are both ancestors of x and since the ancestors of a
vertex in a tree form a chain, y and v must be comparable. So either y > v, y < v,
or y = v. The last two are impossible by assumption, so v < y. Hence v belongs to
JC − C.

Note that it follows from Lemma 1.2 that any edge of θ lies above C or below C.
We define a good cut of θ to be a cut C such that every edge labeled L lying

above C is incident with an element of C and such that every labeled edge lying
below C is labeled with an L. We also define the order of a cut C, denoted by o(C),
to be the number of vertices lying strictly above C.
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To prove the theorem, it suffices to show that if θ has more than one vertex, then

(1) there is a bijection between L-L factorizations of θ and good cuts of θ,
(2) there is an involution on good cuts of θ that changes the order by ±1.

For if these conditions hold, then each L-L factorization (T, F ) of θ corresponds

uniquely to another L-L factorization (T̃ , F̃ ), with |F | − |F̃ | = ±1. So if θ �= t1,∑
θ∈Θ

θ
∑

(T,F )∈�(θ)

(−1)|F | = 0.

If θ = t1, then the only factorization of θ is (t1, t1) and |t1| = 0, so∑
t1

∑
(T,F )∈�(θ)
T∗F=t1

(−1)|F | = t1 · (−1)0 = t1.

Let C be the set of good cuts of θ. We define a bijection f : �(θ) → C as follows.
If (T, F ) is in �(θ), let f

(
(T, F )

)
be the set of leaves of T ; call this set C. Clearly

C is a cut of θ. Suppose that (u, v) is an edge of θ lying above C; then (u, v) is an
edge of T . Since T is in T(L), (u, v) can be labeled with an L only if v is a leaf of
T , that is, only if v is in C. Now suppose that (u, v) is an edge of θ lying below
C; then (u, v) is an edge of some tree in F . Since F is in F(L), each such edge is
labeled with a L or is incident with a leaf of θ. So if (u, v) is labeled, it must be
labeled with an L. Hence, C is a good cut.

Conversely, let C ′ be a good cut of θ. Then every vertex of θ not in C ′ lies
strictly above C ′ or strictly below C ′. Those lying strictly above C ′ are the internal
vertices of a tree T ′ whose leaves are the elements of C ′. Those lying strictly below
C ′ are the non-root vertices of an ordered forest F ′ of trees whose roots are the
elements of C ′. Hence, (T ′, F ′) is a factorization of θ. Since C ′ is a good cut, it is

clear that T ′ is in T(L) and that F ′ is in F(L), so (T ′, F ′) belongs to �(θ). It is easy
to see that the correspondence C ′ �→ (T ′, F ′) defines f−1.

Next we define an involution g : C → C such that if g(C) = C̃, then o(C) −
o(C̃) = ±1. Let C be in C. Descend from the root of θ, always taking the left-most
edge labeled with L, until there are no more edges labeled with L. Suppose we end
at vertex v. Since the edge entering v is labeled with an L, v cannot be a leaf of θ. So
v has children w1, w2, . . . , wn, where n ∈ Z+. For each i in [n], there is a minimal
element x of θ such that x ≤ wi < v. Since C is a cut of θ, there is some y in C such
that x ≤ y. Hence, since θ is a tree, y belongs to the unique chain containing wi

and v. Since C is a good cut, we cannot have y < wi, for then (v, wi) would be an
edge lying above C labeled with an L but not incident with an element of C. If v is
the root of θ, clearly we cannot have y > v. If v has parent u, we still cannot have
y > v, for then (u, v) would be an edge lying below C labeled with an L. So y = v
or y = wi. Since C is an antichain, for each i in [n] we have that either v belongs to
C or wi belongs to C. Hence, C contains v or C contains all of w1, w2, . . . , wn. If
C contains v, let g(C) = C ′, where C ′ = C − {v} ∪ {w1, w2, . . . , wn}. If C contains
w1, w2, . . . , wn, let g(C) = C ′′, where C ′′ = C − {w1, w2, . . . , wn} ∪ {v}. Clearly,
g2(C) = C, so g is an involution. Moreover, o(C ′) = o(C)+1 and o(C ′′) = o(C)−1.
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If (T, F ) belongs to �(θ) and f
(
(T, F )

)
= C, then o(C) = |T | and |F | = |θ|− |T |,

so |F | = |θ| − o(C). Suppose that g(C) = C̃ and that C̃ = f
(
(T, F )

)
. Then

|F | − |F̃ | =
(
|θ| − o(C)

)
−

(
|θ| − o(C̃)

)
= o(C̃) − o(C) = ±1. This proves the

theorem.

Recall that rT is the number of leaves of a tree T .

Corollary 1.8. Let β(x) =
∑

T∈T(L)

mTx
rT and β =

∑
S∈T(L)

(−1)|S|mSx
rS . Then β

and β are functional inverses, that is,
(
β ◦ β

)
(x) = x.

Proof. Both β(x) and β(x) belong the the R-algebra Ã. Recall that the homomor-

phism ρ̃ : A → Ã is given by∑
F∈F

cFF
ρ̃�→

∑
F∈F

cFmFx
rF .

Let τ =
∑

T∈T(L)

T and σ =
∑

S∈T(L)

(−1)|S|S belong to the subset B of A. Then

β(x) = ρ̃(τ) and β(x) = ρ̃(σ), so
(
β ◦ β

)
(x) = ρ̃(τ) ◦ ρ̃(σ). By Lemma 1.1, ρ̃(τ) ◦

ρ̃(σ) = ρ̃
(
τ [σ]

)
. The Inversion Theorem tells us that τ [σ] = t1, where t1 is the tree

consisting of a single vertex. Since ρ̃(t1) = x,
(
β ◦ β

)
(x) = x.

1.9 Some simple applications of the Inversion Theorem

In this section, we give some simple applications of the Inversion Theorem. In
each case, we take a commutative ring R and an alphabet A = {α1, α2, . . . , } such
that each αi has a degree δ(αi) attached to it, and we consider a particular subset
L of the set L of all links formed from elements of A. As in Section 1.7, we let
T(L) denote the set of all matched A-trees whose links are restricted to the set L
and we let T

(L)
n be the subset of trees in T(L) with n internal vertices. We let

Ã = { a1, a2, . . . , } be a set of commuting variables and we let β(x) be the image
of

∑
T∈T(L)

T in R[[a1, a2, . . . , x]] under the homomorphism ρ̃ defined in Section 1.6.

Therefore

β(x) =
∑

T∈T(L)

mTx
rT ,

where mT is a monomial in R[[a1, a2, . . . , ]] such that mT contains ji factors of ai if
and only if T has ji vertices lettered with αi, and where rT is the number of leaves
of T . Similarly, β(x) is the image of

∑
S∈T(L)

(−1)|S|S under ρ̃, so

β(x) =
∑

S∈T(L)

(−1)|S|mSx
rS .

For our first application, let A = {α }, where δ(α) = 1. Then the set L of all
links formed from elements of A contains the single link (α, α, 1). Let L = L and
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let L = ∅. All trees in T(L) have the form shown on the left in Figure 9. There are

only two trees in T(L), and they are shown on the right in Figure 9.

Figure 9

Note that Ã = { a }. Clearly

β(x) = x + ax + a2x + a3x + · · · =
∞∑

n=0

anx =
x

1 − a
,

and

β(x) = x− ax,

and it is obvious that β and β are compositional inverses.

Notice that this is a special case of the theorem of Carlitz, Scoville and Vaughan,
in which A = {α }, L = A × A = { (α, α) : α ∈ A}, L = L and L = ∅. The
generating function for sequences of elements of A all of whose links are in L is

f(x) =

∞∑
n=0

αnxn,

the generating function, with alternating signs, for sequences all of whose links are
in L is

g(x) = 1 − αx,

and f(x) = (g(x))−1. If we set x = 1, β(x) = f(x) and β(x) = g(x). So, as
mentioned earlier, the Inversion Theorem reduces to the Reciprocity Theorem of
Carlitz, Scoville and Vaughan when the trees involved are unary.

Next, let A = {α } as in the previous example, but let δ(α) = 2. Then L =
{ (α, α, 1), (α, α, 2) }. Once again, let L = L. Then L = ∅, and the only two trees

in T(L) are shown in Figure 10.
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Figure 10

Hence
β(x) = x− ax2,

and we can use Lagrange inversion to find that

β(x) =
∞∑

n=1

1

n

(
2n− 2

n− 1

)
an−1xn

=
∞∑

n=0

1

n + 1

(
2n

n

)
anxn+1.

This is what we would expect for β(x), since the number of trees in T
(L)
n is the

number of ordered binary trees on n internal vertices. This number is the nth
Catalan number, 1

n+1

(
2n
n

)
.

Finally, we generalize by taking A = {α }, where δ(α) = m for some m ≥ 1.
Then L = { (α, α, 1), . . . , (α, α,m) }, so L contains m links. Suppose that L contains

k of those links, for 0 ≤ k ≤ m. Then counting trees in T
(L)
n is the same as counting

k-ary ordered trees on n internal vertices. There are 1
(k−1)n+1

(
kn
n

)
= 1

n

(
kn
n−1

)
such

trees (see, e.g., [GJ], p. 112), so

β(x) = x +
∞∑

n=1

1

n

(
kn

n− 1

)
anx(m−1)n+1.

Similarly,

β(x) = x +
∞∑

n=1

(−1)n
1

n

(
(m− k)n

n− 1

)
anx(m−1)n+1,

and β and β are compositional inverses.
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CHAPTER 2

ITERATION POLYNOMIALS

2.1 Definitions and Notation

If π = π1π2 · · ·πn is a permutation of [n], we define the spaces of π to be the
integers 0, 1, . . . , n. We think of space i as lying between πi and πi+1, for 1 ≤ i ≤
n− 1, with space 0 lying to the left of π1 and space n lying to the right of πn. We
call the spaces 1, 2, . . . , n the proper spaces of π. (The empty permutation has one
space, which is not proper.) A descent of π is a proper space i such that πi > πi+1

or the space n for n > 0. The Eulerian number An,j is the number of permutations
of [n] with j descents; for each n ≥ 0, An,j is the coefficient of tj in the classical
Eulerian polynomial An(t). The latter may be defined by

∞∑
k=0

kntk =
An(t)

(1 − t)n+1
=

∑n
j=0 An,j t

j

(1 − t)n+1
.

In this chapter, we define the links of our trees in a slightly different way from
Chapter One. Let A = {α1, α2, . . . } be an alphabet such that degαi = m for each
i and let L be the set of all possible links formed from elements of A. For each
k ≥ 0, let Lk be the set of links in L formed from the set {α1, α2, . . . , αk }.

2.2 The kth iterate of a formal power series

We start by considering a certain sequence of subsets of L. Let m = 2. For each
k ≥ 0, let Lk = { (αi, αj , 1) : 1 ≤ i, j} ∩ Lk; then Lk = { (αi, αj , 1) : 1 ≤ i, j ≤ k }
and its complement in Lk is the set Lk = { (αi, αj , 2) : 1 ≤ i, j ≤ k }. The links in

Lk and Lk may be pictured as in Figure 1.

The links in Lk may be pictured as on the left and those in Lk as on the right.

Figure 1

The images of
∑

T∈T(Lk)

T and
∑

S∈T(Lk)

(−1)|S|S in R[[a1, a2, . . . , ak, x]] will be de-

noted by βk(x) and βk(x). Note that L0 is empty; T (L0) and T (L0) each contain

23
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one tree, that consisting of a single vertex. If we set a1 = a2 = · · · = ak = 1, it is
easy to see that for k ≥ 1,

βk(x) =
∞∑

n=0

knxn+1 =
x

1 − kx

and

βk(x) =
∞∑

n=0

(−1)nknxn+1 =
x

1 + kx
,

while β0(x) = β0(x) = x. The Inversion Theorem confirms the (obvious) fact that
βk(x) and βk(x) are compositional inverses for all k ≥ 0.

Note that β0(x) = x, β1(x) =
x

1 − x
, and for each k ≥ 1, β1(x)◦βk−1(x) = βk(x).

Now if f(x) is any formal power series, the iterate of order k of f , denoted by f<k>,
is defined as follows:

f<0> = x, f<1> = f, f<2> = f ◦ f, . . . , f<k> = f ◦ f<k−1>.

So

βk(x) =

(
x

1 − x

)<k>

.

Let O(xj) denote some unspecified formal power series in which every term is
divisible by xj . Then it is straightforward (see, e.g., [P], pp.42–44) to show that if
f(x) is a formal power series and f(x) = x + O(xr+1), for r ≥ 1, then [xd]f<k> is
a polynomial in k of degree at most �d−1

r �. In the previous example, for instance,

f(x) =
x

1 − x
, r = 1 and the coefficient of xn+1 in f<k> is kn. As mentioned

earlier,
∞∑

n=0
kntk =

An(t)

(1 − t)n+1
, and the coefficient of tj in An(t) is the Eulerian

number An,j .

2.3 The case (x + x2)<k>

2.3.1 Introduction

Next we consider a different sequence of subsets of L. Again, let m = 2. Let
the alphabet A be linearly ordered by αi < αj if and only if i < j, for each i,
j in N, and for each k ≥ 0 let Lk = { (αi, αj , q) : q ∈ [2], i > j ≥ 1 } ∩ Lk.
Then Lk = { (αi, αj , q) : q ∈ [2], k ≥ i > j ≥ 1 } and its complement in Lk is

Lk = { (αi, αj , q) : q ∈ [2], k ≥ j ≥ i ≥ 1 }. For example, the two links on the left

in Figure 2 belong to Lk, while the two on the right belong to Lk.
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Figure 2

Any tree in T(Lk) either has root αi, where i < k, or has root αk. Hence we get
the recurrence

∑
T∈T(Lk)

T =
∑

T∈T(Lk−1)

T + αk

( ∑
T∈T(Lk−1)

T

)2

for k ≥ 1.

So if we set a1 = a2 = · · · = ak = 1, we get that βk(x) = βk−1(x) + (βk−1(x))2 for
k ≥ 1. Since β0(x) = x and β1(x) = x + x2, it follows that

βk(x) = (x + x2)<k>.

Therefore, βk(x) is again the kth iterate of a formal power series. In this case,
β1(x) = x + x2 = x + O(xr+1), where r equals 1. So for each k ≥ 0 we can write

βk(x) =
∞∑

n=0

pn(k)xn+1,

where pn(k) is a polynomial in k of degree at most n; we call pn(k) the nth iteration
polynomial of x + x2. It is well known (see, e.g., [S2], p. 204) that if pn(k) is a
polynomial in k of degree at most n, then we can define a polynomial Pn(t) in t of
degree at most n by

∞∑
k=0

pn(k)tk =
Pn(t)

(1 − t)n+1
.

We would like to know whether the coefficient Pn,j of tj in Pn(t) has a combinatorial
interpretation analogous to that of the Eulerian number An,j .

2.3.2 A recurrence for the iteration polynomial pn(k)
Note that pn(k) is the number of trees in T(Lk) with n + 1 leaves (and hence

n internal vertices). For each k ≥ 0, p0(k) counts the tree consisting of a single
vertex, lettered with an X, so p0(k) = 1. Clearly pn(0) = 0 for all n > 0. The
following lemma gives a recurrence for pn(k) for n ≥ 0, k > 0.

Lemma 2.3.2. pn(k) =
n∑

i=�n−1
2 �

(
i + 1

n− i

)
pi(k − 1) for n ≥ 0, k > 0.

Proof. Since βk(x) = (x + x2)<k>, βk(x) = βk−1(x) ◦ (x + x2), so
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βk(x) =

∞∑
i=0

pi(k − 1)(x + x2)i+1

=

∞∑
i=0

pi(k − 1)

i+1∑
j=0

(
i + 1

j

)
xj+i+1

=

∞∑
i=0

2i+1∑
n=i

pi(k − 1)

(
i + 1

n− i

)
xn+1 (by setting n = j + i)

=

∞∑
n=0

n∑
i=�n−1

2 �

pi(k − 1)

(
i + 1

n− i

)
xn+1 (by changing the order of summation).

Since βk(x) =
∞∑

n=0
pn(k)xn+1, equating coeffcients gives the desired result.

2.3.3 Counting sequences by s-descents
We need some additional definitions. Let Ω be a set of finite sequences of positive

integers, and for each n ≥ 0, let Ωn be the set of sequences in Ω of length n. Let
γ = c1c2 · · · cn belong to Ωn. We define the spaces and proper spaces of γ exactly as
we did for the permutation π. Now let s : Ω → 2N be a function which attaches to
each sequence γ of length n a subset of the set of proper spaces of γ which includes
n; we call s(γ) the s-descent set of γ and call an element of s(γ) an s-descent of γ.

Let n ≥ 0. Suppose we wish to count the elements of Ωn according to s-descents;
one of the easiest ways to do so is as follows. Let γ = c1c2 · · · cn be in Ωn. We
define a barred sequence on γ to be a sequence of positive integers and bars formed
from γ by inserting bars in some of the spaces of γ. For example, if γ = 14173,
then ||1|41|7|||3| is a barred sequence on γ. Let Bn be the set of barred sequences
on elements of Ωn with at least one bar in each s-descent. Let Bn,k be the set of
elements of Bn with k bars, and let bn(k) = |Bn,k|.

Lemma 2.3.3.
∞∑
k=0

bn(k)tk =
Dn(t)

(1 − t)n+1
, where Dn(t) =

n∑
j=0

Dn,j t
j and Dn,j is

the number of sequences in Ωn with j s-descents.

Proof. If γ is in Ωn, let d(γ) be the number of s-descents of γ. Note that there
are n+ 1 spaces in γ into which bars may be inserted. Since every element of Bn,k

can be obtained uniquely from some γ in Ωn by first inserting a bar into each of
the d(γ) s-descents of γ and then inserting k − d(γ) bars arbitrarily into the n + 1
spaces of γ,

∞∑
k=0

bn(k)tk =
∑
γ∈Ωn

td(γ) (1 + t + t2 + · · · )n+1

=

∑n
j=0 Dn,j t

j

(1 − t)n+1
.
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The basic idea of this proof goes back to MacMahon, in his investigations of the
“Lattice Function” and “Permutation Functions” [M2].

2.3.4 A combinatorial interpretation for Pn(t)
Let Ω be the set of all finite sequences γ = c1c2 · · · cr of positive integers such

that 1 ≤ ci ≤ i for each i. For each n ≥ 0, let Ωn be the set of elements of Ω
of length n. If γ = c1c2 · · · cn belongs to Ωn, we define the s-descent set of γ to
be s(γ) = { i ∈ [n] : ci ≤ ci+1 or i = n }. Let Bn be the set of barred sequences
on elements of Ωn with at least one bar in each s-descent. Let Bn,k be the set of
elements of Bn with k bars and let bn(k) = |Bn,k|.
Theorem 2.3.4. bn(k) = pn(k), for all n ≥ 0, k ≥ 0.

Proof. For each k ≥ 0, b0(k) counts the sequence consisting only of k bars, so
b0(k) = 1. Since every barred sequence in Bn,k must have a bar in its final space,
bn(0) = 0 for all n > 0. Now suppose that γ̄ belongs to Bi,k−1 for some i such that
0 ≤ i ≤ n; then γ̄ is a barred sequence on some sequence γ = c1c2 · · · ci with k − 1
bars and with at least one bar in each s-descent of γ. We can construct an element
of Bn,k from γ̄ by choosing n− i integers ci+1, ci+2, . . . , cn such that 1 ≤ cj ≤ j for
each j that satisfies i + 1 ≤ j ≤ n and such that cj > cj+1 for each j that satisfies
i + 1 ≤ j ≤ n − 1. If we choose an (n − i)-element subset of [i + 1] and arrange

it in decreasing order we will have a set of the desired form. There are
(
i+1
n−i

)
ways

to choose such a set. If we insert the sequence ci+1ci+2 · · · cn after the final bar of
γ̄ and put a bar in space n of the resulting sequence, we have an element of Bn,k.
Since each sequence in Bn,k can be constructed in this way from a unique sequence
γ̄ in Bi,k−1 for some i such that 0 ≤ i ≤ n, we have

bn(k) =
n∑

i=0

(
i + 1

n− i

)
bi(k − 1).

Since
(
i+1
n−i

)
= 0 if i < 	n−1

2 
, we can rewrite this as

bn(k) =
n∑

i=�n−1
2 �

(
i + 1

n− i

)
bi(k − 1).

Therefore bn(k) and pn(k) satisfy the same initial conditions and the same re-
currence, so bn(k) = pn(k).

Theorem 2.3.4 and Lemma 2.3.3 together give us a combinatorial interpretation
for the numbers Pn,j . Since

∞∑
k=0

pn(k)tk =

∑n
j=0 Pn,j t

j

(1 − t)n+1

and since pn(k) is the number of sequences in Bn,k, Pn,j is the number of sequences
in Ωn with j s-descents. So for n > 0, Pn,j is the number of sequences c1c2 · · · cn
such that 1 ≤ ci ≤ i for each i in [n] with exactly j−1 values of i such that ci ≤ ci+1.
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Table 1 gives values for Pn,j for 0 ≤ n, j ≤ 8.

n\j 0 1 2 3 4 5 6 7 8
0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2 0 0 2 0 0 0 0 0 0
3 0 0 1 5 0 0 0 0 0
4 0 0 0 10 14 0 0 0 0
5 0 0 0 8 70 42 0 0 0
6 0 0 0 4 160 424 132 0 0
7 0 0 0 1 250 1978 2382 429 0
8 0 0 0 0 302 6276 19508 12804 1430

The numbers Pn,j

Table 1

2.3.5 A bijection between linked trees and barred sequences Let T
(Lk)
n

be the set of trees in T(Lk) with n internal vertices; then Theorem 2.3.4 implies

that for each n ≥ 0 and k ≥ 0, there is a bijection φn,k : Bn,k → T
(Lk)
n . We now

give an explicit description of such a bijection. First we make a definition: if a leaf
of tree T is the ith leaf to appear when ord(T ) is read from right to left, then we
call it the ith leaf of T .

Let γ̄ be in Bn,k; then γ̄ is a barred sequence on some γ = c1c2 · · · cn with k bars
and at least one bar in each s-descent. We define φn,k(γ̄) inductively. If n = 0,
we define φn,k(γ̄) to be the tree consisting of a single vertex, lettered with an X.
If n > 0, let γ̄′ be the element of Bn−1,k obtained by deleting cn from γ̄. Let
T ′ = φn−1,k(γ̄

′). Note that T ′ has n leaves and recall that 1 ≤ cn ≤ n. Let l be
the number of bars to the left of cn in γ̄. We construct φn,k(γ̄) from T ′ by first
replacing the cnth leaf of T ′ with a vertex v lettered with αk−l and then adding
two children to v, each lettered with an X.

For example, let γ̄ = 1|21|||3||4||. Then n = 5, k = 8, l = 6 and γ̄′ = 1|21|||3||||.
The tree T ′ on the left in Figure 3 is φ4,8(γ̄

′); the tree T on the right is φ5,8(γ̄).

Next we define a map ψn,k : T
(Lk)
n → Bn,k; we leave it to the reader to show that

ψn,k = φ−1
n,k for each n ≥ 0, k ≥ 0. Let T be in T

(Lk)
n ; then T has n internal vertices,

each lettered with an element of {α1, α2, . . . , αk}, where α1 < α2 < · · · < αk. Let
αm be the smallest letter to appear in T . We define ψn,k(T ) inductively. If n = 0,
we define ψn,k(T ) to be the barred sequence consisting of k bars. If n > 0, let v
be the last vertex lettered with αm to appear in ord(T ) (read in the usual way,
from left to right). Let T ′ be the tree obtained from T by deleting the children of v
(which must be leaves of T ) and replacing the letter αm attached to v with an X.
Then ψn−1,k(T

′) is a barred sequence γ̄′ on some c1c2 · · · cn−1 with k bars. Now
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the vertex v is the ith leaf of T ′, for some i in [n]. We construct ψn,k(T ) from γ̄′ by
letting cn = i and inserting it into γ̄′ so that there are k −m bars to its left. Since
1 ≤ m ≤ k, it is always possible to do this and still have a final bar in the resulting
sequence.

The trees T ′ (left) and T

Figure 3

For example, suppose T is the tree shown on the right in Figure 4. Then n = 7,
k = 8 and m = 1, and T ′ is the tree shown on the left in Figure 4. Moreover,
ψ6,8(T

′) = γ̄′ = 1|21|||4||2|3|, while ψ7,8(T ) = γ̄ = 1|21|||4||2|31|.

The trees T ′ (left) and T

Figure 4
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2.3.6 The t-descent set of a tree and reduced trees
The existence of the bijection ψn,k between T

(Lk)
n and Bn,k suggests that it may

be possible to associate to each tree T in T
(Lk)
n a “descent set” S in such a way

that S equals the s-descent set of the sequence corresponding to T under ψn,k. We
define such a set S as follows:

Suppose that T is in T
(Lk)
n and that for each j in [k] there are qj vertices of T

lettered with αk−j+1; we will denote these vertices by vq1+···+qj−1+1, vq1+···+qj−1+2,
. . . , vq1+···+qj , in the order in which they appear in ord(T ). Then we define the
t-descent set of T to be { i ∈ [n] : vi+1 precedes vi in ord(T ) or i = n }.

For example, suppose that T is the tree shown on the left in in Figure 5. If we
label the internal vertices of T in the manner described above, the result is the tree
shown on the right in Figure 5.

Using this labeling of the vertices of T , and ignoring the leaves of T , we get that
ord(T ) = v4v2v7v6v5v3v1, so the t-descent set of T is { 1, 3, 5, 6, 7 }. Notice that
ψ7,8(T ) = 1|21|||4|2|2|4| and that the s-descent set of 1214224 is { 1, 3, 5, 6, 7 }. In

fact, if T belongs to T
(Lk)
n and the internal vertices of T are labeled in the above

manner, and if ψn,k(T ) = γ̄, where γ̄ is a barred sequence on γ = c1c2 · · · cn in Ωn,
then vi+1 precedes vi in ord(T ) if and only if ci ≤ ci+1. So i is a t-descent of T if
and only if it is an s-descent of γ.

Figure 5

We now ask if we can find a descent-preserving bijection between matched A-
trees with n internal vertices and (unbarred) sequences γ = c1c2 · · · cn in Ωn. The

natural way to proceed would appear to be to use the bijection ψn,k : T
(Lk)
n → Bn,k

defined in Section 2.3.4 and then remove the bars from ψn,k(T ), for each T in T
(Lk)
n .

The difficulty with this, however, is that given any k ≥ |s(γ)|, we can find at least
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one tree in T
(Lk)
n which will correspond to γ. For example, Figure 6 shows two trees

in T
(L8)
3 and one in T

(L2)
3 , all of which correspond to the sequence 121. Suppose,

however, that given any sequence γ in Ωn, we can find the unique tree T which
corresponds under ψn,|s(γ)| to the barred sequence on γ which has a bar in space i
if and only if i is an s-descent of γ. Then we can define a bijection, in the manner
described above, between this subset of the set of matched A-trees and Ωn.

Figure 6

Let T be a matched A-tree, and let d(T ) be the cardinality of the t-descent set
of T . We will say that T is a reduced tree if

(1) λ(v1) = αd(T ),
(2) λ(vi+1) = λ(vi) − 1 whenever i is a t-descent of T ,
(3) λ(vi+1) = λ(vi) whenever i is not a t-descent of T .

Note that the first two trees (from left to right) in Figure 6 are not reduced, whereas
the third is reduced.

It is clear from the definition of a reduced tree that given any n ≥ 0 and any
subset S of [n] containing n, there is a unique reduced matched A-tree with n

internal vertices and with t-descent set S. Moreover, T belongs to T
(L|S|)
n and it

follows from the definition of ψn,|S| that there is a bar in space i of ψn,|S|(T ) if and
only if i is a t-descent of T . Recall that this implies that there is a bar in space i
of ψn,|S|(T ) if and only if i is an s-descent of the underlying sequence. Therefore,
given any sequence γ = c1c2 · · · cn in Ωn with s-descent set s(γ), there is a unique

reduced tree T in T
(L|s(γ)|)
n such that ψn,|s(γ)|(T ) is the barred sequence on γ having

a bar in space i if and only if i is in s(γ). Hence we can remove the bars from our
sequences and we have a descent-preserving bijection between the set of reduced
matched A-trees with n internal vertices and the set Ωn.

2.3.7 Generalization to (x + xm)<k>

Now let m be an arbitrary positive integer; we can generalize the above discussion

to m-ary trees. For each k ≥ 0, let L
(m)
k = { (αi, αj , q) : q ∈ [m], i > j ≥ 1 } ∩ Lk;

then L
(m)
k = { (αi, αj , q) : q ∈ [m], k ≥ i > j ≥ 1 }. We denote the image of



32 ∑
T∈T

(L
(m)
k

)

T in R[[a1, a2, . . . , ak, x]] by β
(m)
k (x). If we set a1 = a2 = · · · = ak = 1,

then an argument similar to that used in the case m = 2 gives us the recurrence

β
(m)
k (x) = β

(m)
k−1(x) + (β

(m)
k−1(x))m, for k ≥ 1. Since β

(m)
0 (x) = x and β

(m)
1 (x) =

x + xm,

β
(m)
k (x) = (x + xm)<k>.

In this case, x + xm = x + O(xr+1), where r = m− 1, so we can write

β
(m)
k (x) =

∞∑
n=0

p(m)
n (k)x(m−1)n+1,

where p
(m)
n (k) is a polynomial in k of degree at most n; for each k ≥ 0, n ≥ 0, p

(m)
n (k)

is the number of trees with links in L
(m)
k with n internal vertices and (m− 1)n + 1

leaves. As in the binary case, p
(m)
0 (k) = 1 for each k ≥ 0 and p

(m)
n (0) = 0 for all

n > 0. Moreover, we have the recurrence

p(m)
n (k) =

n∑
i=�n−1

m �

(
(m− 1)i + 1

n− i

)
p
(m)
i (k − 1) for n ≥ 0, k > 0.

Let Ω(m) be the set of all finite sequences γ = c1c2 · · · cr of positive integers such

that 1 ≤ ci ≤ (m − 1)i− (m − 2) for each i; for each n ≥ 0, let Ω
(m)
n be the set of

elements of length n. As before, we define the s-descent set of γ = c1c2 · · · cn to be

s(γ) = { i ∈ [n] : ci ≤ ci+1 or i = n }. Let B
(m)
n be the set of barred sequences on

elements of Ω
(m)
n with at least one bar in each s-descent and let B

(m)
n,k be the set of

elements of B
(m)
n with k bars. If we let b

(m)
n (k) = |B(m)

n,k |, then a proof similar to

that of Theorem 2.3.4 establishes that p
(m)
n (k) = b

(m)
n (k). Therefore, if we write

∞∑
k=0

p(m)
n (k)tk =

P
(m)
n (t)

(1 − t)n+1
,

where P
(m)
n (t) =

n∑
j=0

P
(m)
n,j tj , then P

(m)
n,j is the number of sequences in Ω(m) with

j s-descents. So for n > 0, P
(m)
n,j is the number of sequences c1c2 · · · cn such that

1 ≤ ci ≤ (m− 1)i− (m− 2) for each i in [n] with exactly j− 1 values of i such that
ci ≤ ci+1.

Since p
(m)
n (k) = b

(m)
n (k), there is a bijection φ

(m)
n,k : B

(m)
n,k → T

(L
(m)
k )

n for each
n ≥ 0, k ≥ 0. The definition of φn,k given earlier can easily be extended to a

definition of φ
(m)
n,k for any m ≥ 2. So for each m ≥ 2, we get a descent-preserving

bijection between reduced trees in T
(L

(m)
k )

n and (unbarred) sequences of integers
c1c2 · · · cn with 1 ≤ ci ≤ (m− 1)i− (m− 2).
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2.4 The case

(
x

1 − xm−1

)<k>

2.4.1 Introduction

In this section we consider another sequence of subsets of L. As before, let
A = {α1, α2, . . . , } be an alphabet such that degαi = m, for each i, and let A be
linearly ordered as in Section 2.3.

For each k ≥ 0, let

L
(m)
k =

(
{ (αi, αj , q) : q ∈ [m− 1], i > j ≥ 1 } ∪ { (αi, αj ,m) : i ≥ j ≥ 1 }

)
∩ Lk.

So

L
(m)
k = { (αi, αj , q) : q ∈ [m− 1], k ≥ i > j ≥ 1 } ∪ { (αi, αj ,m) : k ≥ i ≥ j ≥ 1 }.

A typical tree in T
(L

(3)
k )

n is shown in Figure 7.

Figure 7

Let β
(m)
k (x) be the image of

∑
T∈T

(L
(m)
k

)

T in R[[a1, a2, . . . , ak, x]]. It is easily seen

that

β
(m)
k (x) = β

(m)
k−1(x) +

(
β

(m)
k−1(x)

)m−1 · β(m)
k (x).

Now each tree in Tn
(L

(m)
1 ) has the form shown in Figure 8 (where there are n vertices

lettered with α1), so

β
(m)
1 (x) = x + xm + x2m−1 + · · · =

x

1 − xm−1
.
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Since β0(x) = x,

β
(m)
k (x) =

(
x

1 − xm−1

)<k>

.

In this case,
x

1 − xm−1
= x + O(xr+1), where r = m− 1, so we can write

β
(m)
k (x) =

∞∑
n=0

r(m)
n (k)x(m−1)n+1,

where r
(m)
n (k) is a polynomial in k of degree at most n and counts trees with links in

L
(m)
k with n internal vertices and (m−1)n+1 leaves. Since r

(m)
n (k) is a polynomial

in k of degree at most n, we can define a polynomial R
(m)
n (t) of degree at most n

by

∞∑
k=0

r(m)
n (k)tk =

R
(m)
n (t)

(1 − t)n+1
.

Figure 8

2.4.2 A reccurrence for r
(m)
n (k)

Clearly, r
(m)
0 (k) = 1 for all k ≥ 0 and r

(m)
n (0) = 0 for all n > 0. For k > 0, n ≥ 0

we have the following reccurence for r
(m)
n (k).

Lemma 2.4.2. r
(m)
n (k) =

n∑
i=0

(
n + (m− 2)i

(m− 1)i

)
r
(m)
i (k − 1).
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Proof. Since β
(m)
k (x) =

(
x

1 − xm−1

)<k>

, β
(m)
k (x) = β

(m)
k−1(x) ◦ x

1 − xm−1
, so

β
(m)
k (x) =

∞∑
i=0

r
(m)
i (k − 1)

(
x

1 − xm−1

)(m−1)i+1

=
∞∑
i=0

∞∑
j=0

(
j + (m− 1)i

(m− 1)i

)
r
(m)
i (k − 1)x(m−1)(i+j)+1

=
∞∑

n=0

n∑
i=0

(
n + (m− 2)i

(m− 1)i

)
r
(m)
i (k − 1)x(m−1)n+1 (by setting n = i + j).

Since β
(m)
k (x) =

∞∑
n=0

r
(m)
n (k)x(m−1)n+1, equating coefficients gives the desired result.

2.4.3 A combinatorial interpretation for R
(m)
n (t)

Let Ω(m) be the set of all finite sequences γ = c1c2 · · · cr of positive integers such

that 1 ≤ ci ≤ (m − 1)i− (m − 2) for each i; for each n ≥ 0, let Ω
(m)
n be the set of

elements of length n. If γ = c1c2 · · · cn belongs to Ω
(m)
n , we define the s-descent set

of γ to be s(γ) = { i ∈ [n] : ci ≥ ci+1 − (m − 2) or i = n }. Let B
(m)
n be the set of

barred sequences on elements of Ω
(m)
n with at least one bar in each s-descent. Let

B
(m)
n,k be the set of elements of B

(m)
n with k bars and let b

(m)
n (k) = |B(m)

n,k |.

Theorem 2.4.3. r
(m)
n (k) = b

(m)
n (k), for all n ≥ 0, k ≥ 0.

Proof. For each k ≥ 0, b
(m)
0 (k) counts the sequence consisting only of k bars, so

b
(m)
0 (k) = 1. Since every barred sequence in B

(m)
n,k must have a bar in its final space,

b
(m)
n (0) = 0 for all n > 0. Now suppose that γ̄ belongs to B

(m)
i,k−1 for some i in [n];

then γ̄ is a barred sequence on some γ = c1c2 · · · ci with k− 1 bars and at least one

bar in each s-descent of γ. We can construct an element of B
(m)
n,k from γ by choosing

n − i positive integers ci+1, ci+2, . . . , cn such that 1 ≤ cj ≤ (m − 1)j − (m − 2)
for each j that satisfies i + 1 ≤ j ≤ n and such that cj < cj+1 − (m − 2) for
each j that satisfies i + 1 ≤ j ≤ n− 1. The number of ways to choose such a set of
integers is the number of subsets {x1, x2, . . . , xn−i } of [(m−1)n−(m−2)] such that
xj < xj+1− (m−2) for each j in [n− i−1], which, if we let zj = xj− (j−1)(m−2),
is the same as the number of subsets { z1, z2, . . . , zn−i } of [n + (m− 2)i]. So there

are

(
n + (m− 2)i

n− i

)
=

(
n + (m− 2)i

(m− 1)i

)
ways to choose the integers ci+1, ci+2, . . . ,

cn. If we insert the sequence ci+1ci+2 · · · cn after the final bar of γ̄ and put a bar in

space n of the resulting sequence, we have an element of B
(m)
n,k . Since each sequence

in B
(m)
n,k can be constructed in this way from a unique sequence γ̄ in B

(m)
i,k−1 for some
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i such that 0 ≤ i ≤ n, we have

b(m)
n (k) =

n∑
i=0

(
n + (m− 2)i

(m− 1)i

)
b
(m)
i (k − 1).

Since r
(m)
n (k) and b

(m)
n (k) satisfy the same initial conditions and the same recur-

rence, they are equal.

So it follows from Theorem 2.4.3 and Lemma 2.3.3 that if R
(m)
n (t) =

n∑
j=0

R
(m)
n,j tj ,

then R
(m)
n,j is the number of sequences in Ω

(m)
n with j s-descents. So for n > 0, R

(m)
n,j

is the number of sequences c1c2 · · · cn such that 1 ≤ ci ≤ (m−1)i− (m−2) for each
i in [n] with exactly j − 1 values of i such that ci ≥ ci+1 − (m− 2).

Table 2 gives values for R
(3)
n,j for 0 ≤ n, j ≤ 6.

n\j 0 1 2 3 4 5 6
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
2 0 1 3 0 0 0 0
3 0 1 15 12 0 0 0
4 0 1 55 169 55 0 0
5 0 1 183 1470 1713 273 0
6 0 1 588 10488 29220 16515 1428

The numbers R
(3)
n,j

Table 2

2.4.4 A bijection between linked trees and barred sequences

Since r
(m)
n (k) = b

(m)
n (k), there is a bijection ρ

(m)
n,k between B

(m)
n,k and Tn

(L
(m)
k ) for

all k ≥ 0, n ≥ 0. Let T belong to Tn
(L

(m)
k ). We define another total ordering on

the vertices of T ; it is defined recursively as follows. Let r be the root of T and let
τ1, τ2, . . . , τm be the principal subtrees of T , listed in the order defining T as an

ordered tree. Let õrd(T ) be a listing of the vertices of T in this total order; then

õrd(T ) = õrd(τ1), õrd(τ2), . . . , õrd(τm−1), v0, õrd(τm). For example, if T is the

tree shown in Figure 9, then õrd(T ) = v4, v6, v2, v7, v3, v1, v5.
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Figure 9

Here we define the ith leaf of T to be the ith leaf to appear in õrd(T ) (read in
the usual way, from left to right). If we substitute this for the definition of the ith

leaf of a tree T used in the construction of φ
(m)
n,k in the previous section, the result

defines the bijection ρ
(m)
n,k .

For example, if we take m = 3, the tree in Figure 10 corresponds under ρ
(3)
9,7 to

the barred sequence 13||138||6|9|2|1|.

Figure 10

2.4.5 Stirling permutations and inverse descents
The case m = 3 provides an interesting combinatorial interpretation for these

sequences. A Stirling permutation is a permutation π = π1π2 · · ·π2n of the multiset
{ 12, 22, . . . , n2 } such that if i < j < k and πi = πk, then πj ≥ πi. Stirling
permutations were first studied by Gessel and Stanley in [GS]. The permutation
24421331, for example, is a Stirling permutation of the multiset { 12, . . . , 42 }. We
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say that i is an inverse descent of a Stirling permutation π = π1π2 · · ·π2n if some
i + 1 occurs to the left of some i in π. For example, if π = 14422133 its inverse
descents are 1 and 3.

Let Q be the set of all Stirling permutations, and for each n ≥ 0 let Qn be
the set of all Stirling permutations of the multiset { 12, . . . , n2 }. If π is in Qn, we
define the spaces 0, 1, . . . , 2n of π just as we did for ordinary permutations. Every
permutation π in Qn can be obtained uniquely by choosing a permutation π′ in
Qn−1 and inserting two consecutive n’s into π′. There are 2n− 1 spaces into which
the n’s may be inserted. Hence each Stirling permutation π in Qn corresponds
uniquely to a sequence θ(π) = c1c2 · · · cn of integers such that for each i in [n],
1 ≤ ci ≤ 2i − 1, that is, 1 ≤ ci ≤ (m − 1)i − (m − 2) with m = 3; the integer ci
in θ(π) signifies that two consecutive i’s were inserted into space ci − 1 during the
construction of π. For example, if π = 14422133, θ(π) = 1252. It is easily seen
that i is an inverse descent of π if and only if two i + 1’s are inserted into π to
the left of some i, so i is an inverse descent of π if and only if ci ≥ ci+1 − 1 (that
is, if ci ≥ ci+1 − (m − 2)) in θ(π). Therefore, counting Stirling permutations of
{ 12, . . . , n2 } by inverse descents is equivalent to counting sequences c1c2 · · · cn such
that 1 ≤ ci ≤ 2i − 1 according to s-descents, where we define the s-descent set of
c1c2 · · · cn to be { i ∈ [n] : ci ≥ ci+1 − 1 or i = n }. So for each j in [n], there are

R
(3)
n,j Stirling permutations with exactly j − 1 inverse descents.
We can generalize this interpretation. Let r ≥ 1; we define a multipermutation

of the multiset { 1r, 2r, . . . , nr } to be a permutation π = π1π2 · · ·πrn such that
if i < j < k and πi = πk, then πj ≥ πi (see [P], p. 3). As before, i is an
inverse descent of π if some i + 1 occurs to the left of some i in π. An argument
analogous to that used in the case r = 2 shows that we can count multipermutations
according to inverse descents by counting sequences θ(π) = c1c2 · · · cn with 1 ≤ ci ≤
ri− (r− 1) according to s-descents, where we define the s-descent set of θ(π) to be

{ i ∈ [n] : ci ≥ ci+1 − (r − 1) or i = n }. Then for each j in [n], there are R
(r+1)
n,j

multipermutations of { 1r, 2r, . . . , nr } with exactly j − 1 inverse descents.
Note that if r = 1, a multipermutation of {1r, 2r, . . . , nr} is just a permutation

of [n]. In this case,

β
(r+1)
k (k) = β

(2)
k (k) =

(
x

1 − x

)<k>

=
x

1 − kx
,

so r
(2)
n (k) = kn. Since

∞∑
k=0

kntk =

∑n
j=0 An,j t

j

(1 − t)n+1
, the polynomial R

(2)
n (t) is the Euler-

ian polynomial. Therefore descents and inverse descents have the same distribution
on permutations of [n]. We note that if r = 1, then i is an inverse descent of a
permutation π if and only if it is a descent of π−1. This explains the origin of the
term inverse descent.

2.4.6 Reduced trees and Stirling permutations
Suppose that for each j in [n] there are qj vertices of T lettered with αk−j+1;

we will denote these vertices by vq1+···+qj−1+1, vq1+···+qj−1+2, . . . , vq1+···+qj in the



v9
v8

v 1

v
3 v6 v2

v4 v7 v
5

XX

X X

α 5

α 4
α

3
X Xα

1
α

2

XXXXXX X XX XX X X

α
5

α 4 α 3

α 4

39

order in which they appear in õrd(T ). As we did before, we define the t-descent set

of T to be { i ∈ [n] : vi+1 precedes vi in õrd(T ) or i = n }.
If we label the internal vertices of the tree in Figure 10 in the manner described

above, we get the tree shown in Figure 11. Since õrd(T ) = v9v8v3v4v6v1v7v5v2,
the t-descent set of T is { 2, 5, 7, 8, 9 }, which is the s-descent set of the sequence

131386921. It is easy to see that, as before, if γ̄ belongs to B
(m)
n,k , then i is an

s-descent of γ if and only if it is a t-descent of ρ
(m)
n,k (γ̄).

If we define a reduced tree exactly as we did earlier, we again have a descent-
preserving bijection between the set of reduced matched A-trees with n internal

vertices and (unbarred) sequences in Ω
(m)
n . Consequently, there is a bijection be-

tween the set of reduced matched A-trees with n internal vertices and multipermu-
tations of the multiset { 1m−1, 2m−1, . . . , nm−1 } with the property that i in [n] is a
t-descent of a reduced tree if and only if it is an inverse descent of the corresponding
multipermutation.

Figure 11

Figure 12
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For example, if we reduce the tree shown in Figure 10, we get the tree shown in
Figure 12, which corresponds to the sequence 131386921. The latter corresponds to
the multipermutation π = 993983441661772552. As expected, the inverse descent
set of π is { 2, 5, 7, 8, 9 }, which is the t-descent set of tree.

2.5 The general case

2.5.1 Introduction
Next we look at a generalization of the example we’ve been considering. Let p

be an integer such that 1 ≤ p ≤ m. We define a set of links L
(m,p)
k by

L
(m,p)
k =

(
{ (αi, αj , q) : 1 ≤ q ≤ p, i > j ≥ 1 }

∪ { (αi, αj , q) : p + 1 ≤ q ≤ m, i ≥ j ≥ 1 }
)
∩ Lk.

Then

L
(m,p)
k = { (αi, αj , q) : 1 ≤ q ≤ p, k ≥ i > j ≥ 1 }

∪ { (αi, αj , q) : p + 1 ≤ q ≤ m, k ≥ i ≥ j ≥ 1 }.

(Note that in the previous example, we had p = m− 1.) If we let β
(m,p)
k (x) denote

the image of
∑

T∈T
(L

(m,p)
k

)

T in R[[a1, a2, . . . , ak, x]], then

β
(m,p)
k (x) = β

(m,p)
k−1 (x) + (β

(m,p)
k−1 (x))p (β

(m,p)
k (x))m−p.

Since β
(m,p)
0 (x) = x,

β
(m,p)
1 (x) = x + xp (β

(m,p)
1 (x))m−p.

Moreover,

β
(m,p)
1 (β

(m,p)
k−1 ) = β

(m,p)
k−1 + (β

(m,p)
k−1 )p (β

(m,p)
1 (β

(m,p)
k−1 ))m−p = β

(m,p)
k (x),

so
β

(m,p)
k (x) = (β

(m,p)
1 (x))<k>.

Note that if T belongs to T(L
(m,p)
1 ), then any vertex in T has q children, where

0 ≤ q ≤ m− p. So for each n ≥ 0 there is a bijection between Tn
(L

(m,p)
1 ) and the set

of (m− p)-ary trees with n internal vertices. Hence (see, e.g., [GJ], p. 112)

β
(m,p)
1 (x) =

∞∑
n=0

1

(m− p)n + 1

(
(m− p)n + 1

n

)
x(m−1)n+1.
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So

β
(m,p)
k (x) =

( ∞∑
n=0

1

(m− p)n + 1

(
(m− p)n + 1

n

)
x(m−1)n+1

)<k>

.

As before, for each k ≥ 0 we can write

β
(m,p)
k (x) =

∞∑
n=0

r(m,p)
n (k)x(m−1)n+1,

where r
(m,p)
n (k) is a polynomial in k of degree at most n and, moreover, where

r
(m,p)
n (k) is the number of trees with links in L

(m,p)
k with n internal vertices and

(m − 1)n + 1 leaves. Since r
(m,p)
n (k) is a polynomial in k of degree at most n, we

can define a polynomial R
(m,p)
n (t) of degree at most n by

∞∑
k=0

r(m,p)
n (k)tk =

R
(m,p)
n (t)

(1 − t)n+1
.

2.5.2 A recurrence for r
(m,p)
n (k)

It is clear that for each k ≥ 0, r
(m,p)
0 (k) = 1, and for each n > 0, r

(m,p)
n (0) = 0.

Lemma 2.5.2. We have the following recurrence for n ≥ 0, k > 0:

r(m,p)
n (k) =

n∑
i=0

(m− 1)i + 1

(m− p)n + (p− 1)i + 1

(
(m− p)n + (p− 1)i + 1

n− i

)
r
(m,p)
i (k − 1).

Proof. Since

β
(m,p)
k (x) = β

(m,p)
k−1 (x) ◦

 ∞∑
j=0

1

(m− p)j + 1

(
(m− p)j + 1

j

)
x(m−1)j+1

 ,

we have that

β
(m,p)
k (x)

=

∞∑
i=0

r
(m,p)
i (k − 1)

 ∞∑
j=0

1

(m− p)j + 1

(
(m− p)j + 1

j

)
x(m−1)j+1

(m−1)i+1

. (∗)

If we apply Lagrange inversion (see, e.g., [CO], p. 153) to the functional equation

β
(m,p)
1 (x) = x + xp(β

(m,p)
1 (x))m−p,
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we get that for any s in Z+

(β
(m,p)
1 (x))s =

∞∑
l=0

s

s + (m− p)l

(
s + (m− p)l

l

)
xs+(m−1)l.

Hence

(β
(m,p)
1 (x))(m−1)i+1

=

∞∑
l=0

(m− 1)i + 1

(m− 1)i + (m− p)l + 1

(
(m− 1)i + (m− p)l + 1

l

)
x(m−1)i+(m−1)l+1.

So

(∗) =
∞∑
i=0

r
(m,p)
i (k − 1)

∞∑
l=0

(m− 1)i + 1

(m− 1)i + (m− p)l + 1

×
(

(m− 1)i + (m− p)l + 1

l

)
x(m−1)i+(m−1)l+1. (∗∗)

Setting n = i + l gives us

(∗∗) =
∞∑
i=0

∞∑
n=0

r
(m,p)
i (k − 1)

(m− 1)i + 1

(m− 1)i + (m− p)(n− i) + 1

×
(

(m− 1)i + (m− p)(n− i) + 1

n− i

)
x(m−1)n+1.

If we change the order of summation and equate coefficients, we get

r(m,p)
n (k) =

n∑
i=0

(m− 1)i + 1

(m− p)n + (p− 1)i + 1

(
(m− p)n + (p− 1)i + 1

n− i

)
r
(m,p)
i (k − 1).

2.5.3 A combinatorial interpretation for R
(m,p)
n (t)

For each n ≥ 0, let Ω
(m,p)
n be the set of sequences γ = c1c2 · · · cn such that

1 ≤ ci ≤ (m − 1)i − (m − 2) for each i in [n]. We define the s-descent set of γ to

be s(γ) = { i ∈ [n] : ci ≥ ci+1 − (p− 1) or i = n }. Let B
(m,p)
n be the set of barred

sequences on elements of Ω
(m,p)
n having at least one bar in each s-descent, and let

B
(m,p)
n,k be the set of elements of B

(m,p)
n with k bars. Let b

(m,p)
n (k)=|B(m,p)

n,k |.



XX

X X

α 7

α 6

α2 α 5

α 5

α
3

X Xα 1
α

2

XXXXXX X XX XX X X

α
3

43

Theorem 2.5.3. r
(m,p)
n (k) = b

(m,p)
n (k) for all n ≥ 0, k > 0.

Proof. We prove the theorem by defining a bijection ρ
(m,p)
n,k between B

(m,p)
n,k and

Tn
(L

(m,p)
k ). Let T be a tree in Tn

(L
(m,p)
k ); we define a total ordering on the vertices of

T as follows. Let r be the root of T and the λ1, λ2, . . . , λm be the principal subtrees

of T , listed in the order defining T as an ordered tree. Let õrd(p)(T ) be a listing of

the vertices of T in this total order; then õrd(p)(T )=õrd(p)(λ1), . . . , õrd(p)(λp), r,

õrd(p)(λp+1), . . . , õrd(p)(λm). In the previous example, we defined a bijection ρ
(m)
n,k

between B
(m)
n,k and Tn

(L
(m)
k ); if we replace the total ordering on the vertices of trees

in Tn
(L

(m)
k ) used in that definition with the total ordering just defined, we get a

bijection ρ
(m,p)
n,k between B

(m,p)
n,k and Tn

(L
(m,p)
k ).

Once again, it follows from Theorem 2.5.3 and Lemma 2.3.3. that if R
(m,p)
n (t) =

n∑
j=0

R
(m,p)
n,j tj , then R

(m,p)
n,j is the number of sequences in Ω

(m,p)
n with j s-descents.

So for n > 0, R
(m,p)
n,j is the number of sequences γ = c1c2 · · · cn such that 1 ≤

ci ≤ (m − 1)i − (m − 2) for each i in [n] with exactly j − 1 values of i such that
ci ≥ ci+1 − (p− 1).

Figure 13

Notice that if p = m, then the set of links L
(m,m)
k is the set we considered in

section 2.3.7, namely L
(m,m)
k = { (αi, αj , q) : 1 ≤ q ≤ m, k ≥ i > j ≥ 1 }, and

β
(m,p)
1 (x) is simply the polynomial x + xm. In this earlier example, we defined a

bijection φ
(m)
n,k between trees with links in L

(m,m)
k and barred sequences on sequences

γ = c1c2 · · · cn with 1 ≤ ci ≤ (m− 1)i− (m− 2) and with at least one bar in each
s-descent, where the s-descent of γ = c1c2 · · · cn is { i : ci ≤ ci+1 or i = n }. In
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this section, on the other hand, we defined the bijection ρ
(m,p)
n,k between the same

set of trees and the the set of barred sequences on sequences γ = c1c2 · · · cn with
1 ≤ ci ≤ (m− 1)i− (m− 2) and with at least one bar in each s-descent, where the
s-descent set of γ = c1c2 · · · cn is { i : ci ≥ ci+1 − (m − 1) or i = n }. So there is a
descent-preserving bijection between these two sets of barred sequences.

Let m = 3. Then the tree in Figure 13 corresponds under φ
(3)
9,7 to the se-

quence 1 | 1 | 5 2 || 6 5 | 12 11 | 17 |, whereas it corresponds under ρ
(3,3)
6,5 to the sequence

1|3|16||47|25|1|; both sequences have s-descent set { 1, 2, 4, 6, 8, 9 }.
2.5.4 Complementary links and the s-ascent set

If L
(m,p)
k is the set of links defined above, then

L
(m,p)

k = { (αi, αj , q) : 1 ≤ q ≤ p, 1 ≤ i ≤ j ≤ k }
∪ { (αi, αj , q) : p + 1 ≤ q ≤ m, 1 ≤ i < j ≤ k }.

We let β
(m,p)

k (x) denote the image of
∑

S∈T
(L

(m,p)
k

)

S in R[[a1, a2, . . . , ak, x]]. Since

β
(m,p)

k (x) equals (β
(m,p)
k (x))<−1> for each k > 0, we have in particular that

β
(m,p)

1 (x) = (β
(m,p)
1 (x))<−1>,

and we can use Lagrange inversion to get that

β
(m,p)

1 (x) =
∞∑

n=0

(−1)n
1

pn + 1

(
pn + 1

n

)
x(m−1)n+1.

So

β
(m,p)

k (x) =

( ∞∑
n=0

(−1)n
1

pn + 1

(
pn + 1

n

)
x(m−1)n+1

)<k>

.

Notice that if we ignore the alternating signs in β
(m,p)

1 (x) we see that it is just

β
(m,m−p)
1 (x). This makes sense, since clearly there is a bijection between the set of

trees with links in L
(m,p)

k and the set of trees with links in L̃
(m,p)
k = { (αi, αj , q) :

1 ≤ q ≤ p, k ≥ i ≥ j ≥ 1 } ∪ { (αi, αj , q) : p + 1 ≤ q ≤ m, k ≥ i > j ≥ 1 }.
As we did before, we may write

β
(m,p)

k (x) =
∞∑

n=0

(−1)ns(m,p)
n (k)x(m−1)n+1,

where s
(m,p)
n (k) is a polynomial in k of degree at most n and where s

(m,p)
n (k) is

the number of trees with links in L
(m,p)

k (or L̃
(m,p)
k ) with n internal vertices. For
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each n ≥ 0, let Ω
(m,p)
n be the set of sequences γ = c1c2 · · · cn such that 1 ≤ ci ≤

(m− 1)i− (m− 2) for each i in [n], and define the s-descent set of γ to be s(γ) =

{ i : ci < ci+1 − (p − 1) or i = n }. It is easy to see that s
(m,p)
n (k) is the number

of barred sequences on elements of Ω
(m,p)
n with at least one bar in each s-descent.

The map ρ
(m,p)
n,k defined above gives a bijection between the set of trees with links

in L̃
(m,p)
k and the set of such barred sequences with k bars.

Since s
(m,p)
n (k) is a polynomial in k of degree at most n, we can define a polyno-

mial S
(m,p)
n (t) of degree at most n by

∞∑
k=0

s(m,p)
n (k)tk =

S
(m,p)
n (t)

(1 − t)n+1
.

As before, if S
(m,p)
n (t) =

∞∑
j=0

S
(m,p)
n,j tj , then S

(m,p)
n,j is the number of sequences γ =

c1c2 · · · cn such that 1 ≤ ci ≤ (m− 1)i− (m− 2) for each i in [n] with exactly j − 1
values of i such that ci < ci+1−(p−1). This suggests Theorem 2.5.4 and its corollary.
First, however, we make a definition: Let n > 0. If a sequence γ = c1c2 · · · cn has
s-descent set S, then the s-ascent set of the sequence γ = c1c2 · · · cn is the set
complement of S in { 1, 2, . . . , n− 1 } ∪ {n }.
Theorem 2.5.4. Let F (x) = x +

∑∞
i+1 cix

ri+1 be a formal power series, where

r ≥ 1. Then F<k>(x) =
∑∞

n=0 fn(k)xrn+1, where fn(k) is a polynomial in k of
degree at most n. Let G(x) = F<−1>(x); then G<k>(x) =

∑∞
n=0 gn(k)xrn+1, where

gn(k) is also a polynomial in k of degree at most n. Let n > 0. We can define a
polynomial An(t) of degree at most n by

∞∑
k=0

fn(k)tk =

∑n
j=0 An,j t

j

(1 − t)n+1
.

It follows that ∞∑
k=1

gn(k)tk = (−1)n
∑n

j=0 An,n−j+1 t
j

(1 − t)n+1
.

To prove the theorem, we need the following lemma (see [S1], pp. 114–115).

Lemma 2.5.4. Suppose that
∞∑
k=0

p(k)tk =
P (t)

(1 − t)n+1
, where P (t) is a polynomial

of degree at most n. Then
∞∑
k=1

p(−k)tk = (−1)n
tn+1 P (1/t)

(1 − t)n+1
.

Proof. Let P (t) = td and use linearity.

Proof of Theorem 2.5.4. Since gn(k) = fn(−k) for each n ≥ 0 and each k ≥ 0,∑∞
k=0 gn(k)tk =

∑∞
k=0 fn(−k)tk, which equals fn(0) + (−1)n

tn+1An(1/t)

(1 − t)n+1
. Since
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n > 0, fn(0) = 0, so we get

∞∑
k=0

fn(−k)tk = (−1)n
tn+1An(1/t)

(1 − t)n+1

= (−1)n
tn+1

n∑
j=0

An,jt
−j

(1 − t)n+1

= (−1)n

n∑
j=0

An,n−j+1t
j

(1 − t)n+1
.

Corollary 2.5.4. Let n > 0 and let fn(k) and gn(k) be as above; fn(k) and gn(k)
define polynomials An(t) and Bn(t) by

∞∑
k=0

fn(k)tj =

n∑
j=0

An,jt
j

(1 − t)n+1

and

∞∑
k=0

gn(k)tj =

n∑
j=0

Bn,jt
j

(1 − t)n+1
.

Then if An,j is the number of sequences γ = c1c2 · · · cn with exactly j s-descents,
Bn,j is the number of such sequences with exactly j s-ascents.

Proof. Since Bn,j equals An,n−j+1, Bn,j is the number of sequences γ = c1c2 · · · cn
with n − j + 1 s-descents and hence with j s-ascents (recall that n is both an
s-descent and an s-ascent).



CHAPTER 3

q-ANALOGUES OF ITERATION POLYNOMIALS

3.1 Introduction

In the previous chapter, we considered several examples of formal power series
f(x) which arose in counting trees with restricted links. In each case we could write

f<k>(x) =
∞∑

n=0

d(m)
n (k)x(m−1)n+1

for some m ≥ 2, where d
(m)
n (k) was a polynomial in k of degree at most n called

the nth iteration polynomial of f . We then focused our attention on finding a

combinatorial interpretation for the polynomial D
(m)
n (t) defined by

∞∑
k=0

d(m)
n (k)tk =

D
(m)
n (t)

(1 − t)n+1
.

In this chapter, we will look at q-analogues of some of the examples we studied

in Chapter 2. We will see if the nth iteration q-polynomial d
(m)
n (k, q) of certain

formal power series f(x) defines a polynomial D
(m)
n (t, q); if so, we will ask if there

is a combinatorial interpretation for the coefficient of tj in D
(m)
n (t, q).

3.2 The kth iterate of f(x) = qx + O(xm)

Let f(x) = qx+O(xm), for some m ≥ 2, where O(xm) denotes some unspecified
formal power series of the form axm + bxm+1 + cxm+2 + . . . . Then we can write

f<k>(x) =

∞∑
n=0

d(m)
n (k, q)x(m−1)n+1,

where d
(m)
n (k, q) is a q-analogue of a polynomial of degree less at most n. Note that

for each n > 0, d
(m)
n (0, q) = 0 and for each k ≥ 0, d

(m)
0 (k, q) = qk.

Let L be the linear transformation on formal power series defined by L(g) = g◦f .
Then L has the property that if g(x) = aix

i+ai+1x
i+1 . . . , then L(g) has no powers

of x less than xi. So, using the basis {x, x2, x3, . . . , }, L can be represented by an
infinite dimensional, lower triangular matrix (Ai,j)i,j=1,2,...,. We denote by [xj ]

47
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the vector (0, 0, . . . , 0, 1, 0 . . . , ) with one in the jth position and zeroes in all other
positions; then by

[∑∞
j=0 cjx

j
]

we mean
∑∞

j=0 cj [x
j ]. Then

[
Lk(x)

]
= Ak ·[x] =

[
f<k>(x)

]
.

Therefore

∞∑
k=0

Ak ·[x] tk =

∞∑
k=0

[
f<k>(x)

]
tk

=
∞∑
k=0

∞∑
n=0

d(m)
n (k, q)[x(m−1)n+1]tk

=
∞∑

n=0

∞∑
k=0

d(m)
n (k, q)tk[x(m−1)n+1].

Now
∞∑
k=0

Aktk =
1

I − tA
, and I − tA is also a lower triangular matrix, so we can

use the following lemma, which follows easily from the formula for the inverse of a
matrix, to find (I − tA)−1.

Lemma 3.2. Let (Bi,j)i,j=1,2,..., be an invertible lower triangular matrix, and let

(Bi,j)
−1 = (Cij). Then, for 1 ≤ l ≤ n, we have

Cn,l =
(−1)n−l

Bl,lBl+1,l+1 · · ·Bn,n
|Bl+i+1,l+j |i,j=0,1,...,n−l−1

and for l > n we have Cn,l = 0.

Let I − tA = (Bi,j)i,j=1,2,..., and let (Ci,j) = (Bi,j)
−1. Notice that the matrix A

has the property that Ai,i = qi for i ≥ 1. Hence Bi,i = 1 − qit, and for 0 ≤ l ≤ n,

Cn,l =
(−1)n−l∏n
i=l(1 − qit)

|Bl+i+1,l+j |i,j=0,1,...,n−l−1
.

Since (I − tA)−1 ·[x] =
∑∞

n=1 Cn,1[x
n], we have that

(I − tA)−1 ·[x] =
∞∑

n=1

(−1)n−1∏n
i=1(1 − qit)

|B2+i,1+j |i,j=0,1,...,n−2
[xn].

Note that An,l is the coefficient of xn in xl ◦ f(x), so An,l is the coefficient of
xn in (f(x))l. Since f(x) = qx + O(xm), the coefficient of xn in (f(x))l is 0 unless
n = (m− 1)k + l for some k ≥ 0. Hence Bn,l = 0 unless n = (m− 1)k + l for some
k ≥ 0, so the matrix (B2+i,1+j)i,j=0,1,...,n−2 has the form
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0 1 − q2t 0 0 . . . 0
0 0 1 − q3t 0 0 . . . 0
...

. . . 0 . . . 0
−Am,1t 0 1 − qmt 0 . . . 0

−Am+1,2t 1 − qm+1t . . . 0
... . . . 1 − qn−1t

−An,1t −An,2t . . . 0




.

It is easy to show that if n = (m− 1)k + 1 for some k ≥ 0, then

(−1)n−1 |B2+i,1+j |i,j=0,1,...,n−2
=

k−1∏
r=0

m−1∏
s=2

(1 − q(m−1)r+st) ·D(m)
k (t, q),

where D
(m)
k (t, q) is a polynomial in t of degree at most k. On the other hand, if

n �= (m− 1)k + 1 for some k, then |B2+i,1+j |i,j=0,1,...,n−2
equals 0. So

(I − tA)−1 ·[x] =
∞∑
k=0

Ak ·[x] tk

=
∞∑

n=0

D
(m)
n (t, q)∏n

i=0(1 − q(m−1)i+1t)
[x(m−1)n+1],

and therefore
∞∑
k=0

d(m)
n (k, q)tk =

D
(m)
n (t, q)∏n

i=0(1 − q(m−1)i+1t)
,

where D
(m)
n (t, q) is a polynomial in t of degree at most n.

3.3 A combinatorial interpretation for the coefficients of D
(m)
n (t, q)

In this section we look at several power series of the form f(x) = qx+O(xm) and
we ask in each case if there is a combinatorial interpretation for the coefficient of tj

in D
(m)
n (t, q). As in Chapter 2, we let Ω be a set of sequences of positive integers,

and for each n ≥ 0 we let Ωn be the set of elements of Ω of length n. If γ is in Ωn,
we define the s-descent set s(γ) to be a subset of [n] containing n.

Recall that if π = π1π2 · · ·πn is a permutation of n, then the descent set D(π)
of π is { i ∈ [n] : πi > πi=1 or i = n }; this permutation statistic motivated the
definition of the s-descent set s(γ) of a sequence γ which we gave in Chapter 2.
Another important statistic of a permutation π is the major index maj(π) of π,
first studied by MacMahon in [M1] and [M2], and defined by

maj(π) =
∑

j∈D(π)

j.
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In a similar spirit, if γ is a sequence in Ωn with s-descent set s(γ), we define the
s-m-index i(γ) of γ to be

i(γ) =
∑

j∈s(γ)

(m− 1)j + 1.

Let n ≥ 0. Suppose we want to count the elements of Ωn according to the number
of s-descents and the s-m-index. As in Chapter 2, we can do this by counting barred
sequences; this time, however, we weight each sequence in a certain way. Let Bn be
the set of barred sequences in Ωn with at least one bar in each s-descent, and let
Bn,k be the set of elements of Bn with k bars. If γ̄ belongs to Bn,k, we weight γ̄ by

qσm(γ̄), where

σm(γ̄) =
∑

i:γ̄ has a
bar in space i

(m− 1)i + 1,

and we let b
(m)
n (k, q) =

∑
γ̄∈Bn,k

qσm(γ̄).

Lemma 3.3.
∞∑
k=0

b
(m)
n (k, q)tk =

G
(m)
n (t, q)∏n

i=0(1 − q(m−1)i+1t)
, where G

(m)
n (t, q) is a poly-

nomial in t defined by G
(m)
n (t, q) =

∑
γ∈Ωn

qi(γ) td(γ).

Proof. Recall that d(γ) is the number of s-descents of a sequence γ. Every element
of Bn,k along with its weighting can be obtained uniquely from some γ in Ωn as
follows: insert a bar into each of the d(γ) s-descents of γ and weight the resulting
barred sequence by ω =

∏
j∈s(γ)

q(m−1)j+1. Then insert k− d(γ) bars arbitrarily into

the n + 1 spaces of γ; for each such bar inserted into space j of γ, for 0 ≤ l ≤ n,
multiply ω by a factor of q(m−1)l+1. Then

∞∑
k=0

b(m)
n (k, q)tk =

∑
γ∈Ωn

(q

∑
j∈s(γ)

(m−1)j+1

td(γ))

× (1 + qt + q2t2 + · · · )(1 + qmt + q2mt2 + · · · ) · · · (1 + q(m−1)n+1t + · · · )

=

∑
γ∈Ωn

qi(γ) td(γ)∏n
i=0(1 − q(m−1)i+1t)

.

3.4 The case (qx + xm)<k>

Recall that in Chapter 2 we looked at the kth iterate of x+ xm; here we look at
a a q-analogue of this example. Let f(x) = qx + xm, where m ≥ 1. Then

f<k>(x) = (qx + xm)<k> =

∞∑
n=0

p(m)
n (k, q)x(m−1)n+1
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for k ≥ 0, where p
(m)
n (k, q) is a the q-analogue of a polynomial of degree at most n,

and we can define a polynomial in t of degree at most n by

∞∑
k=0

p(m)
n (k, q) =

P
(m)
n (t, q)∏n

i=0(1 − q(m−1)i+1t)
.

From Section 3.1 we know that for each n > 0, p
(m)
n (0, q) = 0 and for each k ≥ 0,

p
(m)
0 (k, q) = qk. If we adopt the proof of Lemma 2.3.2 to the present situation, it is

easy to show that we have the following recurrence for n ≥ 0, k > 0:

p(m)
n (k, q) =

n∑
i=�n−1

m �

(
(m− 1)i + 1

n− i

)
p
(m)
i (k − 1, q) qmi−n+1.

Let Ω(m) be the set of all finite sequences γ = c1c2 · · · cr of positive integers such

that 1 ≤ ci ≤ (m− 1)i− (m− 2) for each i. For each n ≥ 0, let Ω
(m)
n be the set of

elements of Ω(m) of length n, and if γ is in Ω
(m)
n define the s-descent set s(γ) to be

s(γ = { i ∈ [n] : ci ≤ ci+1 or i = n }. Let B
(m)
n be the set of barred sequences in Ω

(m)
n

with at least one bar in each s-descent and let B
(m)
n,k be the set of elements of B

(m)
n

with k bars. Let b
(m)
n (k, q) =

∑
γ̄∈Bn,k

qσm(γ̄) and let b̃
(m)
n (k, q) = q−mn · b(m)

n (k, q),

that is, let

b̃(m)
n (k, q) =

∑
γ̄∈B

(m)
n,k

q−mn+σ(γ̄).

Theorem 3.4. b̃
(m)
n (k, q) = p

(m)
n (k, q).

Proof. For each k ≥ 0, b̃
(m)
0 (k, q) counts the sequence consisting only of k bars; since

each of the k bars is considered to be in space 0 of the sequence, the sequence consist-

ing of k bars is weighted by q−m·0+k((m−1)·0+1), which equals qk. So b̃
(m)
0 (k, q) = qk.

Since every barred sequence in B
(m)
n,k must have a bar in its final space, b̃

(m)
n (0, q) = 0

for all n > 0. We know from Theorem 2.3.4 that we can construct any sequence

in B
(m)
n,k from a unique sequence γ̄ in B

(m)
i,k−1, for some i such that 0 ≤ i ≤ n, by

choosing integers ci+1, ci+2, . . . , cn such that 1 ≤ cj ≤ (m − 1)j − (m − 2) for
each j that satisfies i + 1 ≤ j ≤ n and such that cj > cj+1 for each j that satisfies
i+1 ≤ j ≤ n−1, then inserting the sequence ci+1ci+2 · · · cn after the final bar in γ̄,

and finally inserting a bar after cn. We also know that there are
(
(m−1)i+1

n−i

)
ways to

choose the integers ci+1, ci+2, . . . , cn. Note that the sequence ci+1ci+2 · · · cn will
increase the weight of γ̄ by a factor of q−m(n−i) · q(m−1)n+1 = qmi−n+1. Hence

b̃(m)
n (k, q) =

n∑
i=�n−1

m �

(
(m− 1)i + 1

n− i

)
b̃
(m)
i (k − 1, q) qmi−n+1.



52

Since b̃
(m)
n (k, q) and p

(m)
n (k, q) satisfy the same initial conditions and the same

recurrence, they are equal.

Lemma 3.3 and Theorem 3.4 give us a combinatorial interpretation for the poly-

nomial P
(m)
n (t, q):

P (m)
n (t, q) =

∑
γ∈Ω

(m)
n

q−mn+i(γ) td(γ)

= q−mn ·
∑

γ∈Ω
(m)
n

qi(γ) td(γ).

So if P
(m)
n (t, q) =

n∑
j=0

P
(m)
n,j (q)tj , then P

(m)
n,j (q) is a polynomial in q given by

P
(m)
n,j (q) = q−mn

∑
γ∈Ω(m)

n

d(γ)=j

qi(γ).

Table 3 gives P
(2)
n,j (q) for 0 ≤ n, j ≤ 4.

n\r 0 1 2 3 4
0 1 0 0 0 0
1 0 1 0 0 0
2 0 0 2q 0 0
3 0 0 1 5q3 0
4 0 0 0 6q2 + 4q3 14q6

The polynomials P
(2)
n,j (q)

Table 3

3.5 The case

(
qx

1 − xm−1

)<k>

We can analyze the formal power series f(x) =
qx

1 − xm−1
in a similar fashion.

We can write

f<k>(x) =

(
qx

1 − xm−1

)<k>

=
∞∑

n=0

r(m)
n (k, q)x(m−1)n+1,

where r
(m)
n (k, q) is a q-analogue of a polynomial of degree at most n, and we can

define a polynomial R
(m)
n (t, q) in t of degree at most n by

∞∑
k=0

r(m)
n (k, q)tk =

R
(m)
n (t, q)∏n

i=0(1 − q(m−1)i+1t)
.
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Now for all k ≥ 0, r
(m)
0 (k, q) = qk and for each n > 0, r

(m)
n (o, q) = 0. An easy

adaption of the proof of Lemma 2.4.2 gives us the following recurrence for n ≥ 0,
k > 0:

r(m)
n (k, q) =

n∑
i=0

(
n + (m− 2)i

(m− 1)i

)
r
(m)
i (k − 1, q) q(m−1)i+1.

Let Ω(m) and Ω
(m)
n be as in Section 3.4. If γ is in Ω

(m)
n , define the s-descent set

s(γ) to be s(γ = { i ∈ [n] : ci ≥ ci+1 − (m − 2) or i = n }. Let B
(m)
n , B

(m)
n,k and

b
(m)
n (k, q) be as in Section 3.4. Let b̂

(m)
n (k, q) = q−(m−1)n · b(m)

n (k, q), that is, let

b̂(m)
n (k, q) =

∑
γ̄∈B

(m)
n,k

q−(m−1)n+σ(γ̄).

It is straightforward to show that r
(m)
n (k, q) and b̂

(m)
n (k, q) satisfy the same initial

conditions and the same recurrence, so

r(m)
n (k, q) =

∑
γ̄∈B

(m)
n,k

q−(m−1)n+σ(γ̄).

Hence

R(m)
n (t, q) = q−(m−1)n

∑
γ∈Ω

(m)
n

qi(γ) td(γ).

Table 4 gives R
(3)
n,j(q) for 0 ≤ n, j ≤ 3.

n\r 0 1 2 3
0 1 0 0 0
1 0 q 0 0
2 0 q 3q5 0
3 0 q 9q5 + 6q8 12q12

The polynomials R
(3)
n,j(q)

Table 4
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Recall that in Section 2.4.5 we studied the polynomial R
(m)
n (t) =

n∑
j=0

R
(m)
n,j t

j , and

found that the coefficient R
(r+1)
n,j of tj in R

r+1)
n (t) was the number of multipermuta-

tions of the multiset { 1r, 2r, . . . , nr } with exactly j − 1 inverse descents. Let Q
(r)
n

be the set of all multipermutations of the set { 1r, 2r, . . . , nr }. If π belongs to Q
(r)
n ,

let d̃(π) be the number of inverse descents of π and define the inverse index ĩ(π) of
π to be

ĩ(π) =
∑

l is an inverse
descent of π

rl + 1.

Then
R(r+1)

n (t, q) = q−rn
∑

π∈Q
(r)
n

qĩ(π) td̃(π).

So R
(m)
n (t, q) counts multipermutations according to the number of inverse descents

and the inverse index.
Recall that if r = 1, a multipermutation of { 1r, 2r, . . . , nr } is just a permutation

of [n], and that l is an inverse descent of π in Q
(1)
n if and only if l is a descent of

π−1. Hence ĩ(π) = maj(π−1), and so R
(2)
n (t, q) counts permutations of [n] according

to descents and the major index. So R
(2)
n (t, q) is qn times the most well-known q-

analogue of the Eulerian polynomial An(t) (see [CA]).
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