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-‘ABSTRACT
We develop a general theory of enumeration of finite

sequences by generating functions which unifies and extends
many topics previously studied by various ad hoc techniques,

Included in particular are Simon Newcomb's problem and the

combinatorial interpretations of the tangent, secant, and

Eulerian numbers.

Special features of our approach are the following:

1) A combinatorial interpretation for the reciprocal
of a generating function.

2) An explanation of the connection between expo-
nential (and more generally Eulerian) generating
functions, and symmetric functions.

3) A unified approach to determinantal formulas for
sequence enumeration,
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6.
INTRODUCTION

In this thesis we present a unified approach to the
enumeration of permutations and sequences bv generating
functions, The theory we develop allows us to systematize
and generalize a large number of results previously ob-

tained by various ad hoc methods.

The first important result of our subject was

Desiré Andr&'s discovery [7] in 1879 of a combinatorial

interpretation of the integers En defined by

o n
b4
Z E_ o = gec x + tan x ;
n=0 1 nl
En is the number of permutations b1b2"'bn of

{1,2,...,n} satisfying b; < b, > by ...,

The first systematic approach to problems of the kind
we consider here was taken by Major Percy MacMahon, who
worked in the late nineteenth and early twentieth century.
In his "Second Memoir on the Compositions of Numbers" [62]
in 1908, MacMahon solved "Simon Newconmb's proklem," which
may be stated as follows: How many permutations

ble"'bk are there of the nmultiset

kl k2 km
{1 5,2 °,...,m "} (where k = L ki) such that
i
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bi > bi+l for exactly s values of i? MacMahon also
solved the more general problem of counting those
permutations for which bi > bi+1 iff i belongs to

some specified subset of {1,2,...,k-1}.

MacMahon's work on this problem received little
attention in the following forty years, and when
Simon Newcomb's problem again bhecame a subject of interest,

much of MacMahon's work was independently rediscovered

(e.g. [3], [171, [{6]). This unfamiliarity with MacMahon's
work among combinatorialists may be due to the fact that
MacMahon's work is not easy reading; morecver, the
generality of many of MacMahon's formulas, especially

those involving symmetric functions, may leave the casual
reader unconvinced of their usefulness in solving specific
problems. In the writer's opinion, one of MacMahon's
greatest shortcomings was his ignorance of the enumerative
use of exponential generating functions, Manv of MacMahon's
symmetric~function generating funétions for sequences with
repetition reduce to simple exponential generating functions
for the corresponding sequences without repetition., For

example, from a formula on p. 15 of Combinatory Analysis

[64], Vol. 1, one can derive the exponential generating
function for the Stirling numbers of the second kind; from

a formula on p. 212 one can derive the exponential cenerating
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function for the Eulerian polynomials. (The connection
between symmetric functions and exponential generating
functions can be explained by our Theorem 3.5.) MacMahon
was apparently unaware of or uninterested in André's result;
it was not until sixty years later that Carlitz [17]

showed how Andre's formula can be derived from one of

MacMahon's [64, Vol. 1, p. 190].

Little work was done on Simon Newcomb's problem

until 1946, when Irving Kaplansky and John Riordan
investigated the problem from the point of view of roock
polynomials [55]. Riordan developed this approach further

in his 1958 book An Introduction to Combinatorial Analvsis

[71], through which the problem reached a wide audience.

In the late sixties Simon MNewcomb's became a topic
of considerable interest ([24], [37], [38], [60],
{671, [74], and this interest has increased through the
seventies, We note in particular the work of L. Carlitz,
who has been by far the most prolific writer on the
éubject, as a glance at our bibliography (which is not

complete) will show.

The authors of the above-mentioned works have used,
for the most part, the "classical™ method for obtaining
generating functions: one derives a recurrence for the

numbers in question which translates into an algekraic
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or differential equation for their generating function.
In recent years several authors have tried to develop a
"theory" of generating functions, which would explain
more directlv the connection between a comhinatorial

problem and the form of its associated generating function.

A fundamental work in this theory is Gian-Carlo Rota's

1964 paper on M&biussfunctions [76). The relevance of

Pota's paper to our discussion is not the M8bius £unction5per se

put rather the important idea that in studying combinatori;i
objects it is often more productive to work in an algebraic
system {in this case the incidence algebra) associated in

a natural way with these objects, than to reduce every-

thing immediately to statements about integers.

One of the first important results of this new theory
of generating functions was the "exponential formula,"

which may be roughly paraphrased as saving that if
xn
A(x) = I a_ = is the exponential generating function
[++]
x _ Alx) . . . .
I b Sy =e is the exponential generating function

for sets of these objects. BAlthough special cases of the
exponential formula were known as early as 1939 for

permutations {80] and 1953 for graphs [69], a general
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treatment did not appear until the early 1970's when
three different approaches to the exponential formula
were published, those of Doubilet-Rota-Stanley [39],

Bender-Goldman [11], and Foata-Schlltzenberger [43],

The last of these is of special significance to
our discussion. Foata and Schiitzenberger's ocbhject was

to create a "geometric® theory of Eulerian polynomials

which would yield enumerative results about permutations .

as simple consequences of the study of their structural
properties. Although their methods are different from
ours, their guiding principle is fundamental to our

approach,

Our methods are most closely related to those used
in two papers by Richard Stanley. In his 1972 study of
P-partitions [77], Stanley showed how certain partition

problems can be reduced to problems of permutation

enumeration. Our interest here is primarily in permutation

enumeration: we'show, using a similar method, that

certain permutation enumeration problems can be reduced

to more easily solved problems of counting partitions.

In a later paper [79] Stanley showed that permutations

can be counted by M8bius inversion on certain posets,
Moreover, these posets are closely related to the binomial

posets of [39], and thus their M8bius functions can be
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computed by inverting generating functions. This approach
is closely related to our Theorem 4.1, in which Mobius
inversion is replaced by inversion of a slightly different

kind.

Finally, we mention the very recent work of bavid
Jackson and R. Aleliunas [54] and of James Reilly {681,

which has some similarities with the ideas developed here.

— __ _ -We now give an outline of our appreach. In Chapter 1

we discuss the algebraic systems in which we work. In
the traditional approach to generating functions, one

has an analytic function F(z} whose power series
o

expansion p fnzn "generates® the coefficients f

n=0
which are of interest. It has long been recognized

n

(see for example [10]) that the convergence of the

o0

series z fnzn is for many purposes irrelevant, and
n=0
that for many purposes the appropriate algebra to work

in is the aleebra of "formal power series," that is,
[+4]

"formal sums" L fnzn where the fn are arbitrarv.
n=0

It turns out that for our purposes, formal power
series are still not general encugh. We introduce a
more general algebraic system which we eall a counting
algebra. A counting algebra is an algebra in which

o

each element is a "formal sum” X fnzg where the =z

n=0 n
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are "basis elements" whose multiplication is arbitrary
except for some mild constraints. Examples of useful
counting algebras which are not formal power series
algebras are power series algebras in noncommuting

variables and algebras of matrices.,

gince the elements of a general counting algebra
can in no way be considered analytic functions which

Aiirrggggggggughgir coefficients, we have used in the text

the more appropriate term "counting series" instead of

generating function,

In Chapter 2 we introduce our basic combinatorial
*
structure. Given any set P, we may consider the set P
of finite sequences of elements of P. Ve multiply two
*

*
elements of P by juxtaposing them; in this way P

becomes a monoid, the free monoid on the set P. We

*
find it useful to consider certain subsets of P which

we call linear systems. If 5 is a linear system, then

the product of two elements of S is their juxtaposition

if this is in &, otherwise the product is "zero."

From the linear system S we construct in Chapter 3
a counting algebra R[[S]], the set of formal sums of
elements of § with coefficients in the cormutative
ring R. Then to any subset W of S5 we can associate

its total counting series which is simply the sum of its
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elements., Since W is completely determined by its

total counting series, we have passed from a combinatorial
object to an algebraic object with no loss of information.
Less discriminating counting series are obtained as
homomorphic images of the total counting series. Ve
explain in this ﬁay, for example, the connection between

Eulerian counting series and inversions of permutations.

In Chapter 4 we introduce a fundamental object of
our study, the linked set. For simplicity we describe
here the situation in which the linear system is a free
monoid P*. A link is a sequence in P* of length two;
the links of the sequence b

bz...bn are bibi+l for

1
i=1,...,n-1, Now if L is any set of links, we
define the linked set ¢, to he the set of sequences
in P* all of whose links are in L. Let I be the
set of links not in L, Our fundamental result is

that the total counting series for CL is the inverse
of the total counting series for C_ with "alternating
signs™. We give several simple app%ications of this

theorem, then in Chapter 5 we apply it to the enumeration

of sequences by runs of each length.

In Chapter 6 we introduce certain linear svstems
whose elements are associated with paths in digraphs, and

whose counting algebras can be represented as alcebras
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of matrices. Through matrix inversion we are led to
enumeration formulas involving determinants. We consider
first the following problem: given integers

m1 > m, > e >m and M, > M, > ... i M and a subset

- n 1T -2 ~
F of {1,2,...,n-1}, to count sequences b;b,...b ~ of

nl
i i n, < h, < M, i . > b,
integers with m; < b1 < Ll for all i and bj bj+l
iff j € F. Special cases of our result give several

previously unrelated results.

Next we consider sequences with specified beginning
and end segments, and periodic middles. These are
enumerated by inversion of a certain 3 x 3 matrix., For
‘axample, given i, j, and k, we count sequences

ble"'bi+nj+k such that b <b_,, if s £ i

(mod j) and bs > bs+1 if s = i (mod j). Finally

we consider a generalization of André&'s problem: given
an integer n: and a subset F of {1,2,...,n}, to count
sequences b1b2"'bm such that bi > bi+1 iff i is

congruent (mod n) to an element of F.

Given a polynomial pi{n) of degree k, we mav consider

the polynomial B(t} defined by;

(t)
T p(n)tt = B
n=0 (1-t)F*1
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In Chapter 7 we study polynomials p(n)} for which B(t)
has a c0mbinatoriél interpretatibn. First we consider
polynomials p(n) which are chromatic polynomials of
certain graphs. A special case yields the solution to
Simon Newcomb's problem. We then consider the polynomials

ka(n) defined by

2k ©

X n
I pap fn)ts,
koo (RIT 2o T2k

™~ B

{1 - t cosh®x]~1=

ans we show that the corresponding polynomials BZk(t)
count permutations of length 2k by number of peaks

{maxima}.

If blbz“'bn is a sequence of integers, its

greater index is the sum of those i for which

bi > bi+1‘ In Chapter 8 we discuss the greater index
from the point of view of the theory of linked sets.

It follows from our approach that if An(q,p) is the
enumerator for permutations of {1,2,...,n} bv cgreater
index and number of inversions, then An(q,p) = An(p,q).

Finally, we describe how Stanley's theorv of P-partitions

is related to our theorvy.
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CHAPTER 0
NOTATION

Z, [P, N, and @ are the sets of integers, positive
integers, nonnegative integers, and rational numbers.

For neg®, [n] = {1,2,...,n}, and [0] is the empty set, @.

A multiset on a set § = {51'52"“'Sm} is a function
M ¢ 8 N which assigns to each element of S a
"multiplicity." The sum of two multisets Ml and M,
on S is defined by (M1+M2)(si) = Ml(si) + Mz(si}.

We shall think of M as a set with repeated elements
k k
allowed, and shall write {sl l,...,sn N} for m,
where M(si) = ki. We shall alsc use notation such as

{51'51'52} to denote the multiset {512,52}.

Wherever there is a possibility of ambiguity as to
whether sets or multisets are under discussion, the
reader may take it that we refer to sets; we shall

always refer to multisets explicitly as such.

A sequence of length n 1is a function whose domain
is [n]. (All our sequences have finite length except in
our discussion of convergence in Chapter l.) The unique

sequence of length zero is called the emptv sequence; we

denote it by l. By blbz"'bn we mean the sequence 7
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of length n such that w(i) = bi' e say that m is

a permutation of the multiset {bl,bz,...,bn} of

length &(m) = n. The word "permutation” without reference
to a multiset will always mean a permutation of a set.

G

n is the set of permutations of [n].

Our sequences will always be sequences of positive

integers unless the context clearly indicates otherwise.
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CHAPTER 1
COUNTING ALGEBRAS

Let B be a commutative ring with identity. Then

the algebra of formal power series F = B[[ul,uz,...]]

in the indeterminates Uy, 050000 is the set of all

formal sums

ST

C“? I..u u - » B (l)
klk2 1 2 ’

z

k 2...

.—l,k

where the u, are commuting indeterminates, the c¢'s are
arbitrary elements of B, and the sum is over all

kl'kz"'° such that lki # 0 for only finitely many 1,
Note that we allow sums such as uj+u,+..., Multiplication
of two elements of F, and scalar multiplication by
elements of B are defined in the obvious wav: we

multiply term-by-term, using an "infinite distributive

law."

We can give F a topological structure as follows:
[ +]
a sequence {f_ 1},

sTi=1 in F converges to f ¢ F iff

k k
for every mononial a = u; 1uz 2... the coefficient of o
in fi equals the coefficient of a in £ for all
sufficiently large i. Then with this topology the

expression {1l) considered as an infinite series
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converges to the correct value, and the "infinite
distributive law" is egquivalent to the assertion that
multiplication in F and scalar multiplication by

elements of B are continuous,

The traditional theory of generating functions
takes place in the context of an algebra of formal power
series as just described. However we shall find it
useful to consider a more general algebraic system which

we call a counting algebra.

It will be convenient to fix permanently as our ring
of scalars the ring R = Q[[p,q,t,tl,tz,...]] with the

topology described above.

Wow let A be an (associative) R-algebra with
identity 1 which is free as an R-module, and let S
bhe a basis for A, To avoid certain irrelevant topological
technicalities, we assume that & 1is countable. Then
the structure of A 1is completely determined by the

structure constants el 8 £ R for which af = I ey Y

r
for all ¢, € S. Note that for fixed o and 8,
e = 0 for all but finitely many Y.

Let us now assume that the following three conditions

held:
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(i) 1l e s

(ii) For each ¥y e §, el,s = 0 for all but finitelv
many pairs (o,B).

(iii) There exists a rank function r : 8 = N such
that if e o # 0, then r(y) = r(a) + r(g); and r(a) > 0

for o e 8 - {1}.

We define A to be the set of all formal sums

-Lf equ for ¢, ¢ R, Then A can be identified with
QES '

the set RS of functions from S to R, and thus can
be given the product topoclogy: if f(l) = I c(l)a
2 o
aeSs
and £ = I c,o then {f(l)};=l converges to f in A

QES

iff {cél)}:zl converges to ¢, in R for each «a € S.

Now A has a natural R-module structure, and we can

~

define multiplication in A by

(£ coa)(I dB8)= £ ( £ e cd)y.
acs © BeS B ¥YeS a,BeS @,B o8
Condition (ii) assures that the inner sum on the right

contains only finitely many nonzero terms.

~

It is easy to see that A becomes an R-algebra in
which 2 can be identified with the subalgebra of

elements of the form I c o where T 1is a finite
aeT
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subset of S.

1.1. Definition. A counting algebra is a pair

(ﬁ,s)‘ constructed as above and satisfying conditions (i),
(i}, and (iid) above; We call S the basis of A.

We shall-often refer to the counting algebra (i,s)
simply as g, when the basis is understood.

Our concern with the topological properties of
counting algebras is to provide a rigorous foundation for
the liﬁiting operations we will want to perform in them.
The actual verification that these operations are legiti-
mate in specific instances is straightforward and will
generally be omitted.

As examples, we prove the fellowing two propositions.

1.2. Proposition. Let £ be any element of the
counting algebra A. Then z (tf)n converges to
-1 n=9
{(1-tf)

(n)

Proof. For fixed a ¢ S5, let C, be the coefficient

of o in £°. Then the coefficient of o in T (t6)P  is

-} n=0
z tnc;n) which converges in R whatever the values of
n=0

It is then easy to see that (1-tf) I (tf)n = 1.
b n=0 <

C(n).
&

1.3. Proposition. Let £f be any element of A of
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[}

the form 3 c,d. Then Z f' converges to (1-£)"1,
aeS-{1} n=0 -

~

Proof. Let r be a rank function for A whose
existence is guaranteed by condition (iii). Then for

) (=]
o € &, the coefficient of o in I f? ig the coefficient
n=0
r{a) o

of o in r f". Thus r £8 converges, and as hefore,
n=0 n=>0.

(1=f) & £ = 1,
- n=0 -
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CHAPTER 2
LINEAR SYSTEMS

*
2.1, Definition. For any set P, P is the set
of sequences of elements of P (including the empty

*

sequence, i). For m = ble"'bm' G = CyCg...C, E P,

i *
we define m*g to be the sequence bl...hmcl...cn.

*
2.2. Definition. Let S bhe a subset of P . An
element m of s5-{1} is a prime of S5 if = = o*f, with

o, € S, implies 7 = o or w = B. We say that 8 is

a linear system if the following three properties holds

(i) 1 ¢ s

(ii) Everv element of S-{1} has a unique expression

in the form ﬂl*wz*...*wn vhere the w. are primes,

{iii) 1If ﬁl*ﬂz*...*wn € S wvhere the w, are primes,

then ﬂj*...*ﬂk €S for 1 <3j <k <n.
The rank r{a) of o € 8 is the number of primes
in the prime factorization of «, with r(l) = 0,
Examples of linear systems:
(a) Seaquences of positive intecgers.
(b) Sequences of positive integers of even length.

{c) Permutations of positive integers.
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(d) Paths in a digraph, considered as seqguences of

edges,

Note that in examples (a}, (c¢), and (d) we have
r(a) = 2{a), where 2(a) is the length of «, and in

(b)) we have 2ria) = 2{a).

Now let us assume that "O" is a symbhol not in S.
We define a multiplication on & U {0} as follows:
For o,B £ & we define of to he oaxf if oa*f € S

r

and oB = 0 otherwise; o0 =00 =0 for a e £ U {0}.

2.3. Proposition. Let S be a linear system,

Then for all o,8,y € s v {0}, a(8y) = (aB)y.

Proof, If a(B8y) £ 8 then «a**y € S. Thus by (ii)
and (iii), a*B € 8, so (aB)y € S. Similarly
(aB)Y € S implies o(By) = {(aB)y. If neither (aB)o

nor oaf{fog) 4is in S then both are O.

Ve now give two constructions that will be useful

later. PFirst let V be a subset of S-{L}. By Vk

we mean the set of all nonzero products ViVge eV with

v, € Vi v? = 1}

write v* for

By a slight abuse of notation we

vi, Now if everv element of V*-{i}

-
1C s

3 . » L] *
has a unique factorization into elements of V, then V

is a linear svstem, Note that in general the rank
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*
function of V differs from that of S.

It is often convenient to consider sequences
divided into sections by bars, e.q., |23|716]|4. 1In our
applications we will want to treat the bar as an actual
element of the sequence, rather than as a punctuation
mark. Thus the "barred sequence" given above will be an
element of P*, where P =@ Y{|}. To avoid the
typographical difficulties of expressions such as "1+|",
we shall use the symbol "#" instead of "|": however, we

still call it a bar.

Now let S be a linear system, with prime set P,
in which the symbol "#" does not occur. We define the
linear system S @ # to be the set of those sequences in
(p U 4" of the form ﬂl*nz*...*ﬂk, where each 1, is
either a prime of S or a bar, and such that when all
bars are removed, an element of § remains. It is clear
that S ® # so defined is a linear svstem, and its primes

are those of S together with #. We call the elements

of S @& # barred sequences,

The following combination of the abkove two constructions
will be very useful, Let & be a linear svster and let
V be any subset of S. Let W be the subset of S @ %

consisting of all elements of the form #a for some a € V.
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Then W* is a linear system whose primes are in

one-to-one correspondence with the elements of V.
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CHAPTER 3
COUNTIMNG SERIES

1. The Total Algebra

Let S be a linear system and let R be the ring
Q[[p,q,t,tl,...]]. Let A bhe the set of all formal

sums: oL C O with c, € R, such that c, # 0 for only
aeS

finitely many values of a. Then the multiplication
defined on S u {0} in Chapter 2 extends by linearity

to an associative multiplication on A, Then if we
define scalar multiplication by elements of R 1in the
obhvious way, A bhecomes an R-algebra which is free

as an R-module, with basis S. It is easily verified that
A satisfies conditions (i)}, (ii), and (iii) of Chapter 1,
and can therefore be extended to the counting algebra R

of all formal sums- z Cydr with basis S. We call A
aES

the total algebra of S and denote it by R{[[S]].

Remark. It follows from condition (iii) of the
definition of linear system that if £ 1is a linear
system with prime set P, then RI[[S]] is a quotient algebra
of PR[[P*]]. And in fact our fundamental result ahout
total algebras of linear svstems, Theorem 4.1, need only

be proved for the special case of free monoids. The
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generalization to arbitrarv linear systems, though
algebraically insubstantial, is nevertheless useful in

actually solving problems.

3.1. Definition. If V is any subset of S, its

total counting series is T(V}) = I «o.
aev

Note that V is completelv determined by its total

counting series.

3.1. Proposition, Let S be a linear svstem

and let P bhe the set of primes of S. Then

r(s) = [L- r(nlt.
Proof. [l - I(P)1™F = 1 (r(» 1™ by Proposition 1.3.
n=0

This equals T€S) by unique factorization.

2. Counting Algebras

Useful information about a subset V of S can
often be obtained by considering the image of T (V)
under some homomorphism from a subalgebra of R{[S]]
containing T(V} +to some other counting algebra B,

We call such a B2a countina algebra for S. If £ is

the image of T{(V) in B, we write T(V) » f and we

call f the counting series for V in B. In manv

cases the homomorphism R[[S]] - B will be clear from
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the context and will not be described explicitly.

In this and the next two sections we discuss some
of the most important counting algebras for the linear
system @P* of sequences of positive integers. The total
algebra R[[?*]] is the R-algebra of formal power series
in the noncormuting indeterminates "1," "2," etc, 7o
avoid confusion we shall often write Xl’ Xz, «ss for
1, 2, ... in this context. Thus “Xl + 32“ represents
the element of R{[{P*]] which might otherwise be denoted

by the misleading expression "1+2,"

One of the simplest and most useful counting alaebras
for ©* is the algebra RI[x;, X,, c.«]] o0f formal
power series in the {(commuting) indeterminates Xir Ror eeey
which we sometimes write as R([[x]]. Then the homororphism
R[[S]} » R[{x]] is determined by Xi woR and continuity,
(Henceforth we shall assume that all homomorphisms

between counting algebras are continuous,)

3. Reduced Seguences
Let a = byb,...b € P* and let {bysbyseeesb} =

{cl,cz,...,ck} (as sets) where c; < ¢, < ... < .

Then the reduction of o, which we denote by red (o) is
obtained by replacing each occurrence of cy in a
with i. For example, red (33173} = 22132. If red (o) =

we say that a 1is reduced.
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Let o and B be reduced sequences of lengths

2(z) = m and 2(8) = n, We define their reduced product

@d3f to be the set of all reduced seguences hlb2“'bm+n

such that red (bj...b ) = a and red (bm+l'°'bm+n) = B.
Now for any reduced sequence a, let <a> € R{[P*]]
be the sum of all sequences in P* whose reduction is a.

Let Sym (P*) be the subalgebra of R[[P*]] generated

by all such <a>,., The following is straightforward,

3.2. Proposition. Svm (P*) 1is a power series

algebra with basis {<a>|e is reducedl, and

< ><B> = I <Yy,
YeaoRB

We introduce here two important sets of elements of

Sym (P*).

3.3. DPefinition.

Hn = X Xi Xi ...Xi
L i < <
1981580082 1 2 n
and
An = z Xi Xi ...Xi s with Ho = Ao =1,
il>12>...>in 1 -2 n .

The images of H, and An in R[[x]], which we
denote by h, and a s are the complete homegeneous

symmetric functions and the elementaryv symmetric functions
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of the xi.

mwo homomorphic images of Sym (P*) are of special
interest to us. The first is the algebra of symmetric
functions in the commuting variables Xyr Xor eoee
which is the image of Svm (P*) in R{[[x]]. Less obvious
is the second, the algebra of Eulerian counting series,

which we now discuss,

4, Eulerian Counting Series

3.2. Definition. For n e P we define [n]n

to be 1 + p + pz + ... t pn-l

, and for n e P we
define n!ﬁ to he [1]p[2]p...[n]p, with Olp = 1,

we define the p-binomial (or Gaussian) coefficient
(m+n) !
B

m+<+ n . ‘
( n ) to be m! _nl!
P P P

It is traditional to use g where we have used p;
however, we wish to reserve q for another situation in

which its use is also traditional.

3.3. Definition. The algebra of Eulerian countina

series is the counting algebra R[[2]] with basis

=<}

e
lg? .
‘p n=0

Thus an Fulerian counting series is naturally
© n
expressed in the form 1 £ 2., Vlote that on

“n nl
n=0 D
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setting p = 1, [n]p becomes n, so n!p becomes n!
and FEulerian counting series become exponential counting

series,

3.4, Definition. Let o = blbz"'bn be a seqguence.

An inversion of o is a pair {i,j) with i < 94 and

1

h, > bj. The inversion number ITI(a)}) of o is the numher

of inversions of o,

The important connection between Eulerian counting
series and inversions of permutations is given by the

following theoremnm.

3.5. Theorem. The map

£{a)
YT if o is a permutation,
P

<> Vo pI(a) Z

<g> » 0, otherwise,

extends by linearity and continuity to a homomorphism

Sym (P*) -+ R[{z]]. (Recall that Z(z) is the length of co.)

Theorenm 3.5 allows us to extract from the total
counting series for a set of sequences which is "svmmetric,”

the counting series for permutations by number of

n

inversions. Note that the image of Hn is ET

Q) i
that of An is p 5T °

p

and
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To prove Theorem 3.5 we regquire several lermas.
Recall that {gn, is the set of reduced permutations

of length n.

3.6. Lemma. (Rodrigues [73])

z pI(a) = n! .

ae B p

Proocf. Ve proceed by induction on n. The lerma
is true for n=0 and n =1, For n > 1 every
permutation in Gjrl can be obtained uniquely from some
permutation in (ynrl by inserting "n" in any of
n possible positions., The number of new inversions
created is equal to the number of integers to the
right-of the inserted "n." Thus

T pI(a)

OE [ z pI(G) ]

n e & n-1

174

(Ll +p+ ... + pnﬂl)

3.7. Lemma. Iet o and B bhe reduced permutations

of lengths m and n, respectively. Let [o,B] = (a°8)n(;nwn‘
Then
5 pI(Y) - pI(a)+I(Bi (Mt
ve[a,B) m p’

Proof. Let vy = b1b2"'bmclc2"'°n be an element

of f[o,Bl. Then the inversions of ¥y can be grouped into
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three classes: those involving two b's, those involving
two c's, and those involving a b and a c¢. The numbers
of inversions in the first and second classes are clearly
I{a) and I(R)}. The number of inversions in the third
class depends only on the sets {bl,...,bm} and
{cl,...,cn} and not on the particular permutations

o and B. Thus for each m and n in N there is a

polynomial B_ (p) such that for all o € G’m and

m,
B € Gn,
I(y) I(a)+I{R)
L P =p B (p) .
yela,B] m,n

How every ¥ € @,m-i- is in f[«,B] for some unique

n
asG’m and Bagn,thus
5 pI('Y) - 7 5 pI("()
YO in el vela,B]
BeGn
B RGPS
ael '
BEG .
=8 (0 ¢t p'yr 5 ptB)y,
' ae T BeG _

Thus by Lemma 3.6, (m+n)!p = Bm'n(p)m!pn!p, whence the

lemma follows.
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Proof of Theorem 3.5. We need only show that

for ne% ,BE Grﬂ we have

m
g pItY) 2570 oI (@) z" pI(P) 2"
{m+n] ! n! 1 !
yve[a,B] AR ™p "p

which follows immediatelv from Lerma 3.7%

Remark. That inversions of permutations and sequences
are related to p-binomial coefficients has long been known
{11, (151, (421, {65]); however, the first systermatic
use of Eulerian counting series in enumeration of
permutations by inversions was made recently by Stanley [79].
We note that Eulerian counting series arise in the study
of vector spaces over finite fields [50]. A connection
between vector spaces over finite fields and inversions
of permutations can be derived from a correspondence of
¥nuth (57]}; we hope to elaborate on this connection else-

where,
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CHAPTER 4
THE INVERSIOH THFOREM

1. Linked Sets

Let S be a linear svstem and let P be its set
of primes. For any subsets V and W of § let
viWw = {oB]la € Vv and B € W}. Ve call the elements of p?
links. 1If wlnz...ﬂn is the prime factorization of
o € S then the links of o are the links T4l for
i=1,2,...,n-1. Note that if =x(a) < 2, o has no
links. (Recall that r{a) is the number of primes in

the prime factorization of «.)

Let I bhe any subset of P2. Ve define CL to he

the set of elements of S all of whose links are in L,
Note that C,; contains all elements cf S of rank 0 or 1.
I1If CC s is of the form CL for some L C P2 then we
call € a linked set. HNote that in this case L is
uniquely determined bv C.

Mow let C be a linked set in S, so C = C for

— 2 —
some L E Pz. Tet L =P -1, and let C =C

If Vv is any subset of S, we define its alternating

counting series to be
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Tw) = 1 (-1)T®y
e AAY

4,1, The Inversion Theoremn.

Let € be a linked set in &, Then
r()T@ = 1.

e prove Theorem 4.1 with the help of the following

lerma:

4.2, Lemma. If v € CC and Y # 1 then there are

exactly two factorizations vy = alBl = u282 with

@, ¢ C and B, € C. Moreover, r(Bl) - r(BZ) = + 1,

Proof. The assertion is clearly true for =xr(a) = 1.

Otherwise a has a prime factorization TyMgeaaly with
n > 2, Then for some k, with 1<< k < n, T 1" € C
iff 2 < i < k. Then the two factorizations of Yy are

(Myeeem _dmeeam ) and (myoam ) (my yoeem ).

Proof of Theorem 4.1. We have

TOT@E = £ (DFP®ag = 1 v 2 (1B pue by
QEC YECE aB='Y
BeC aeC

BeCT

the lemma, the last sum is zZero for <y # 1l; it is clearlv
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A result equivalent to Theorem 4.1 has bheen ohtained
independentlv by Carlitz, Scoville, and Vauchan [32];
similar (but somewhat more complicated) reasoning has
been used by Robinson [72] and Cartier and Foata [34] on
other enumeration problems involving inversion of

counting series.

2. A Simple Example

*
Let C be the set of nondecreasing seguences in [P .

Then C is a linked set: its links are seguences blbz

with by < b,. Thus € 1is the set of (strictly)

decreasing sequences, The total counting series of C

o0 0

and € are given by T(C) = T H_ and T(C)= I &,,
n n
n=0 n=0
thus from the Inversion Thecrem we get
=] oo n l
I H =[1 (-1} An] . {1)

n=0
The image of (1) in RI[[x]] is the well-known svmmetric
function identity

o© Lo ]

£ h o=[I (1% 17t

n=0 n=0

The image of (1) in the algebra of Eulerian series is

more interesting., There is one reduced permutation of

length n in C for each n; it has no inversions.
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There is one reduced permutation of length n in C;
it has (2) inversions. Thus the Eulerian image of (1)

is the well-known identity

n = ;) _n
Z_ =131 (-1%?
P n=0 P

N8
)

n=0

3., VWaves

A wave [l6] is a sequence of positive integers with
adjacent entries unegual. Let € be the set of waves.
Then C is a linked set and € is the set of sequences

all of whose elements are egual. Thus

T@ =1+ = I (-7 =1+ I ¥ (1+ xi)'l. 50
T i=1 n=1 i=1
o
ree) = [1+ T X, (1+x) 1171,
T *

Then the image of T(C) in RI[I[x]] is

X

(L + 11%—]—1, a result of Carlitz [16]. See
i

o«
z
i=1
also [40].

4, Pairs of Sequences

In this section we consider the problem of counting

pairs of sequences (blbz...bn, clcz...cn) with the

< i < i , > .
property that for 1 < i <n either b, > b, , or
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c; > Ci41 {or both}.

In order to rephrase the problem in a form to which
our theorv applies, let us define ., to be the set of
ordered pairs 2 of positive integers, written vertically.

x
Then an element of P, can be represented in the form

By by ees by

Cy €y eee Cp (1)

*
How let C be the linked set in Pz of elements

of the form (1) such that for each i, b,> b,,, or
cy > ci+1. Then C consists of those elements of the
form (1) for which b1 < b2 £ eee £ bn and

¢y e, < ees < Cpe Then the Inversion Theorem leads

to the following two theorems, detailed proofs of which

we omit.

4.2. Theorem. Let g(xlgxzpost? Yl;Y2'|-- )

= I xu .o V.V, ese¥ where o has the form (1}.
aeC blbe xbn €17 €2 “n

Let hn' be the complete homogeneous symmetric function

of degree n in VyeYorees, Then

g(xl,xz,...: VyrYoree-s Y= (-1) hnhn'] .

n=0
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4.3, Theorem, For ¥y € C of the form (1), let

2
it

ble"'bn and let g = C1CgeeaC Let

=)
tl

{y € Cle and B are reduced permutations}. Then

2{¥) o n

I(a) T(R) A n z -1

I p q = [ & {~1)
yeD [k(v)]!plﬁ(v)]!q -

related results can be found in [(31], [32], and

[791.
5. Up-Down Sequences

An up-down sequence is a sequence blb2"‘bn with
bl < b2 > b3 $ by ees In this section we consider
up-down sequences of even length, Let P be the set

*
of sequences in P of the form blb2 where bl < by
*
Then P is a linear system with prime set P, Now

*
let 1. be the set of links of P of the form

blb2b3b4 where bl < b2 > b3 < b4. Then C = C

L
is the set of up~-down sequences of even length, and €
is the set of nondecreasing sequences of even length,

Thus

T(C) = & H

r(c)

n
8
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Then the image of T(C) in R[[x]] is [ I (-l)nhzn]
n=0

as first obtained (in a somewhat different form) by

Carlitz [19]. See alsoc Stanlev [79]. The Eulerian
2n
= 1

n —
TfﬁTT_] as
P

counting series for € is [ I (-1)
n=0

first shown by Stanley [79]. The spec¢ial case p =1,

in which the series reduces to sec z, is due to

André [7}.

If o = blb2"'b2n is an up~down permutation, we

define the top line of a to be the sequence
b2b4...b2n. Prohlens involving enumeration of
permutations with respect to the top line have been
considered by Carlitz in [18] and [23].

We consider here the problem of counting up-down per-
mutations of length divisible bw four whose top lines

are up-down. (There does not seem to be a simple

solution to the analogous problem for sequences,)

ILet C be the set of up-down permutations

b1b2"'b4n whose top lines are up-down, that is,
(1) boser € boie2 0 < i< 2n-1

(ii) by 2 b2i+1 1 <i<2n-1

(iii) bgisn < b4i+4 0 <i<n-1

(iv) by, > byie2 1 <i<n-1,

-1
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These conditions are illustrated bv the following

diagram:

Note that the dotted lines are superfluous, i.e.,

conditions (i) and (ii) mayv be replaced by

(11")  bysyn > Pyisg 0 <i<n-=-1.

Now let S be the set of all permutations of
length divisible by four satisfving conditions (i'),
(ii') and (iii). Then S is a linear system and ©
is a linked set in S. ThHe elements of € are perrmu-
tations ble"'b4n satisfyinog {(i'), (ii'), (iii), and

the condition b4i < b4i+2' l1<i<n-=-=1. The
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conditions on € are represented bv the following

diagram:

How let F_{p) = z I{a) zuz o 3
n' _ P and let
aeCN ©4n
G { — I () 1 .
n p) = I_ P . Ve leave it to the reader to
aeC O @4n

verify that

411 41’1 -1
Z r (P) TZ_T__ [ E (-1) G (p) -Fr—_T_] ’
=0 =0

whence a simple counting arqument vields

© 4n
z
4.4, Theorem. r F_(p) T
n=0 P
o n n B -1 4n
= [ (=1) {n: [41+l] [4i+2] }TZ—T——J .
n=0 i=0

Analogous results for perriutations of lengths not
divisible by four may be cbtained by the methods of

Chapter 6.
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6. A Lattice Path Problem
In this section we prove the following theorem:

4,5, Theorem. For fixed ke P and r e M, let
9n be the number of lattice paths in the plane from
the origin to the point (n, rn + k = 1), using unit

horizontal and vertical steps, which never pass below

the line v = rx nor ahove the line vy =rx + Fk -1

r
n=0 n=0 n

where we adopt the convention that () = 0 for a < 0,

a
h
To prove Theorem 4,5 we.consider the following
problem: how many sequences h1b2"'bn are there with

each bi g [k] and satisfving

(i) bi < bi+l + r?

To solve this problem, let S = [k]* {the set of
sequences of elements of [k]) and let C bhe the
subset of S satisfying condition (i}. Then C 1is a
linked set in S and C consists of those sequences

. . N
satisfving bi bi+1 + .

NHow let €, be the number of sequences in C of

length n. Since all sequences in € are decreasing,
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e, is the number of n-element subsets T of [k] such

that i, e T implies |i-j| > r. It is then easily

seen that e_ = (k - r(n—l)).

bl + Y
n n It follows from the

Inversion Theorem that if fn is the number of elements

of C of length n, then

e n_ ;. _ynk - rin-1), n,-1
nio £,z = [nio (~1)" ( n yz'] .

7o prove Theorem 4.5 we need only show that fn = G
which we do bv exhibiting a bijection between the elements
of € of length n and the paths which are counted bv

In

Let ble"‘bn be an element of C. HNHow let

c; = bi+l #+ri-1 for i=20,1,...,n-1, Then

condition (i) is equivalent to the condition ¢, £ %4
and the condition 1 < bi < ¥ is equivalent to the
condition ri < Sy <ri+ k-1, To the seguence

ble"'bn we now correspond the path through the lattice

points (0,0), (0,c4), (L,e5), (1,61), (2,61)....,
(n—l,ch_l),(n,cn_l),(n,nr + k -1). It is easy to see
that this correspondence is a bijection with the required

properties.

Problems invelving lattice paths which lie between
two lines of slope 1 are discussed in [48] and [52], but

even in this case our formula seems to be new,



47,
CHAPTER 5
FURTHER APPLICATIOMS QF THE IWNVERSIOH THEOREM
l. Runs

5.1. Definition., Let o = bth"'hn be an element

*
of P . A run (or nondecreasing run) of o is a maximal

nondecreasing subsequence of a of the form bibi*l"‘bﬁ'

The enmpty sequence has no runs.
It is clear that every sequence has a unigue

factorization into runs,

In this section we give a complete answer to the
problem of counting sequences by runs of each possible

length., Some related results are given in sections 7

and 8 of [54].

5.2, Theorem, Let 6 be the linear operator

[++] [e-]
. n T
which takes nio c,2 to nEO cnﬂn for ch £ R, Let
© *
g(z) = L tnzn. For a P , let me be the number of
n=1
my m,
runs of o of length i. Then z atl t2 tea =

aep*®

{61 (1+g(z)) 11171

Before proving THeorem 5,2 we need two definitions.
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5.3, Definition. If a = blbz"'bn is a seguence,

we define the spaces of o to ke the integers 0,1,2,...,n.
e think of space i as lying between bi and bi+l for

1 <i<n-=-1, with space 0 lvinc to the left of by

and space n to the right of bn‘ In particular, the
phrase "insert a bar in space i" means "insert a bar
between bi and bi+l'“ etc., In this section we will

‘be concerned only with spaces 0,1,...,n-1, which we

call the proper spaces of a. (The empty seguence has

one space, which is not proper.)

5.4, Definition. A fall of o 1is a proper space i
such that bi+1 begins a run, that is, i =0 or

bi > bi+1'

the numher of falls.

Thus the number of runs of o is egual to

Proof 9£ Theorenm 5.2, ILet V be the suhset of

P* ® # consisting of all elements of the form #a
where a 1is a nonempty nondecreasing segquence in w*.
Then V* is a linear system with prime set V., ILet
C be the linked set in V* vhose links afe of the form
$#a#B such that the laét entry of a 1is greater than the
first entrv of B. Then C 1is the set of those elements

*
of P ® # which are obtained by inserting a bar in

*
each fall of an element of £ .
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How T is the linked set in V  whose links-are
of the form #a#B, where the last entry of o 1is less
than or equal to the first entry of B; in other words,
@B is nondecreasing. Thus C consists of the empty
sequence together-with those elements of P* @& # which
are obtained from a nonemptv nondecreasing sequence in
m* by first inserting a bar in space 0 and then inserting

a bar in any number of the other proper spaces.

* L 3
We now define a homomorphism R[[V ]] = RI[[P ]] by

o -+ atg(a). Then under this homomorphism, #ul#az...#ak
goes to ala2"'akt2(ai?t£(a2)“'tliak)' Now let
G(c), G(T), and E(@ be the images of T(C), Tr(C), and

f(E) under this homomorphism. To prove Theorem 5.2 we
need onlv evaluate G(C}, which by the Inversion:.Theorem

is equal to @17t

It is clear that G(C) = § £ H where
nn
n=0
_ ™

fn b E v’n(ml'mzfl..'mn)tl ncut

mh
n and
ml"..,mn

wn(ml,...,mn) is the number of compositions (ordered

partitions) of n into my 1l's, m, 2's, etc. Then
the fn satisfy

=0

T fnzn = [1 - g(z))"%

n=0
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oo
T tnzn. Thugs if 8 is the linear

n=1

where q{z)

o

operator that talkes z cnzn to

n=0 n

c.B_,
0 nn

I} 1 8

then

G(C) = 8[(1 - g(z))—l]. Now since each t; represents

one prime in V: to go from G{(C) to G(C) we need

only change each ti to -ti, which has the effect of
replacing g(z) by -g(z). Thus

T = 0[(1 + g(z))™Y], whence G(C) = {8[(1 + g(z))~1117%,

completing the proof.
2. Examples

We give here some applications of Theorem 5.2
which (except for the last) are obtained by specializing
the parameters tl'tZ""- Note that in these examnles

we can obtain symmetric-function, Eulerian, and exponential

n n
Z
— and  —

counting series by changing Hn to hn’ =T =T

respectively in the expression for G(C).

Example 1. To count sequences by number of runs,

without recard to their lencgths we set tl = t2 = ... = t.
Then g{{z) =t z | so [1 + g(z)]_l = (1 + £ = )"l

-z ! ]_z
-t l-ymamy s Lot I (-e"ThEN s

n=1
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Gy » (L -t I (1-6)"7tm 17t (1)

n=1

A formula closelv related to the syvmmetric-function

analogue of (1) was given by MacMahon [64, Vol., 1, p. 212].

[+.=] "n
Setting ef(z) = I %T— , the Eulerian analogue of (1)
n=0 "'p
s n-1 z° ,-1 l] ~--t
is [l - t Z (l-t) Fi_] = T - tE[(l-t) ZT r which
n=1 p

is equivalent to a formula of Stanley [79]. Setting
p = 1 vields the exponential counting series

1 -t
1 - te " H2

for the Eulerian polvnomials, apparentlvy

first given bv Riordan {[701].

Example 2. To count sequences in which everv run

has length d, we set t4 =1, ti =0 for i # d. Thus
g(z) = zd, so (1 + g(Z)]"l = I (-1)nznd, SO
n=0
G(C) - [ = (~l)and]—l. The corresponding exponential
n=0

series is due to Carlitz [17], [21]. See alsoc Stanley [79].

Example 3, To count sequences in which everv run

has length less than k, we set tl = t2 = ves = tk-l =1,

ti = 0 for i > k. Then 1 + gflz) =1+ z + ,.. +‘zk_l =
k ’d

%E%-. Thus [l+g(z)] - E—EE =1=-2z + zh - zk+l + z2k .

1-2
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so G(C) » [1 -1, +H -H + 11

o= Hpgy FHpp = Hypy bl

The corresponding exponential counting series is due to

David and Barton [36, pp. 156-157].

Lxample 4. To count sequences with everv run of

length at least two, set 'tl = 0, ti =1 for i > 2,
2 2
4 l-z+
Then 1 + g{z) =1+ y= = 1-zz y SO
-1 1-z 1-2° 2 3. .5
[1 + g(z)] = = =1~z —27 4+ 27 + ...,

1—z+z2 1+z3

-1
so G(C) » [l - Hy - Hy + Hg + Ho - Hg ...1 7.

Lxample 5. To count sequences in which every run

has odd length, set ty = t3 = tg = ... = 1,

3 5

t2 =ty =tg= ... = 0. Then g{(z) = z + z7 + z7 + ...
z -1 l+z-z2 -1 1-22
l-2 1-2 l+z=-2

=1 - —— = 1+ T (-1)nFnzn, vhere Fa is the

l+z-2z n=]1

nth Fibonacci number, (El =1, F, =1, F =F 4+ TF .)

Thus G(C) » (1 + £ (-1 m 171,
n=1 nn

Example 6. To count sequences of 1's and 2's only,

we map Xi + 0 for i > 2, If we further map Xl » X

and X2 » v, where x and y are commuting indeterminates,



n+l n+l
then we have H_ » =+ &P lv F oene + yn = X -y .
n k. X = v
n xn+l _ vn+1
Thus 6(z") » Xy , S0 by linearity we have

for any power series f(z),

8l (z)] » —= S[xf(x) - yE(y)]. Thus

-1 1 X v
8[(1-1'9(2)) ]H'x_v[lig(x) -l+g(§’T]' 50

X ¥ -1
(e} » (x-y) ly 3oy - Ty

3. Counting Waves by Falls

In this section we count waves (sequences with
adjacent entries unequal) according to the number of

falls.

Let ¥ be the subset of P* ® # consistino of all
elements of the form #o where o is a nonempty
(strictly) increasing sequence in .P*. Let C be the
linked set in W* whose links are of the form #a#8
where the last entrv of o is greater than the first
entry of R. Then the elements of ¢ are waves with
bars in their falls; evaluating T{C) will solve our

problemn,.

5.3. Theorem,

= 8

r) = {1 -# T (1+x)(1+#x)7117 -,
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Proof. Ve define a level of the sequence

b1b2"‘b to be a space 1 such that bi = b {Then

n i+l’
1 <i<n=1l.,) Now the links of C are of the form
$a#8 where the last entry of o is less than or equal
to the first entry of 8. Thus the nonempty elements
of € are those elements of W* obtained from a
nonempty nondecreasing sequence in P* by inserting a

bar in space 0, in everv level, and in any numher of

the other proper spaces.

We now claimn that

r@ = (L+ #)7h@ + 4w, (1)

w

where B = 'Hl (1 + Xi)(i - #Xi)-l. To see this, observe
that B islzhe total counting series for the set D

of barred sequences obtained from a nondecreasing
sequence by inserting a bar in every level, and then
inserting a bar in any number of the other proper spaces.
Now C consists of the empty sequence together with

those nonempty elements of D which begin with a bar.

Thus T(C) - l-= #{1l + #)'l(B - 1), whence (1) follows.

*
Now since the rank of an element of W is the
number of bars in it, to get T(C) from T(C) we need

only change # to =-# in (1). Thus
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rE = 1-H"HL-§ T

1

LY xr _1
(L + X)) (1 + #x)77),

1

whence the theorem follows bv the Inversion Theorem,

5.4, Corollary., Under the homomorphism

*
R{[P & #]] + RI{x]] induced by # » t, X, » x5, we

have

An equivalent result was given by Carlitz [16].
we call the expression on the right side of (2)

gl{t;xy,%y,...) then Carlitz's counting series is

x[g(%; le,xzz,...) - 1]

(1 + yzi) - .H (1 + yzi)
i=1

oo

(1 + y2,) =y I (1 + xz.)
A i=1 .

(==}

-
(=

X
1

By similar reasoning we can count sequences by

levels and falls. (See [16] and [53].)

(2}

If
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CHAPTER 6
MATRICES
l. G-Systems

In this chapter we consider certain linear svstems
associated with digraphs (directed graphs) whose total
algebras- ean-be represented as algebras of matrices.
Application of the Inversion Theorem to these linear
systems leads to formulas involving matrix inversion,
and we are thus led to solutions of enumeration problems

expressed as determinants and quotients of determinants.

Let G be a digraph on the vertices VyeVorsessVge
Then the edges of G are ordered pairs of vertices, Ve
write (i,j) for the edge (vi,vj). For each edge e
of G, let P be a set of sequences. If e = (i,3j), we
may write Pij for Py, Let P be the set of all
pairs (m,e) where e 1is an edge of G and 7 ¢ Pe' and
let S5 be the subset of P* of all sequences
(ﬂl,el)(wz,ez)...(wn,en) such that elez...gn is a path

in G. (We include in S the empty sequence.) It is clear

that S8 1is a linear system with prime set P.

Given an element o = (ﬂl,el)(ﬂz,ez)...(ﬂn,en) in 8,
let a be the sequence ﬂl*ﬂz*...*ﬂn {recall that the

stars denote juxtaposition) and for o # 1 let El(a)
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be the ordered pair (i,j} such that €185...8 is a path

n
from v, to vj. (We leave E(l) wundefined, although

we may think of it as being all pairs (i,i).)

6.1. Definition. The linear svstem S as defined
above is a G-system if for a,8 € § - {1}, ¢ = 8 and

E{a) = E(B) implies a = B.

If W is any subset of the G-system S, let Wij
be the set of all nonempty sequences o such that

E(a) = (i,j), together with the empty sequence 1 iff
lew and i=3. It follows from the definition of

a G-system that W is uniquely determined by the sets
Wij' Note that this notation is consistent with our
earlier use of the notation Pij' Ve will sometimes, .
by abuse of notation, refer to elements of Sij as
elements of S.

Now let P ={JP, and let B be the R-algebra of
sxs matrices with Zntries in RI[[P*]]l. Ve define the
map * ¢ S + B as follows: For a e S = {1}, Xa}
is the matrix with @ in the (i,5) positidn, where
(i,j) = E{e), and with zeroes elsewhere; and A(l) is
the sxs identity matrix., We extended X by linearity

(and continuity) to a map R[[S]] = B. Then the

following theorem is immediate.
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6.2. Theorem, The map A is an isomorphism from

R[[S}] onto a subalgebra of B.

In view of Theorem §.2, for any W C 5 we shall
identify T (W) with its image in B. Then by our con~-

ventions, P(Wij) is the (i,j) entry of T(W).

In applying Theorem §.2 we shall use implicitly
the fact that a homomorphism between two algebras induces
a homomorphism between the corresponding sxs matrix

algebras.

We shall use the following notation: (fi.}S denotes

the sxs matrix whose (i,j) entry is fij; Ifijls denotes
the corresponding determinant,

2, Restricted Seguences
In this section we prove a theorem that generalizes

several previously unrelated results.

*

&.3. Definition. Let a be a sequence in P

The fall set of o is the set of nonzero falls of a.

§.4. Definition. For integers m,M we define

H {(m,M) = I K. . oeX.
n ‘ . L e i % i
mf}li}zi...i;nﬁﬂ 1 2 m

with HO(m,M) = 1 and Hn(m,M) =0 for n < 0,
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Ve write I_(M) for H_{(1,M), and we let h, (m,M)

and hn(M) be the images in R[[x]] of Hn(m,M) and

Hn(M).
6.5, Theorem. Let m 2my > .. 2 ™, and
Ml > M2 2 eee 2 Mn be integers and let
F = {f2 <Sfy3< .02 } be a subset of [n-1], with

f1 = 0 and fS+1 = n, Then the number of permutations

n, n
biby...b, of the multiset {1 1,2 2,...} satisfving

my < bi < Mi for each i, and with fall set F, is the

nl n2

coefficient of Xy "Xy Tae in

Ih {m M ). (1)

Proocf. Let G be the digraph

—
Vi V3 V3 Ve Vatl

We define a G-system S by taking Pj j+1 to be the
r

set of nondecreasing sequences o = b.b,...b
172 fj+l-fj

satisfying

(*) P . <b. <M

for each i. It will be convenient to set bi = df i
J
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then a becomes df.+1df.+2"‘df. and (%)
j+1
becomes mi < di < Mi' It is clear that this con-

struction does in fact yield a G-system,

Now let C be the linked set in S such that

Cij is the set of seguences
df_+1 df.+2 .o df_ for 1 £1<3j<s +1 such that
i i 3j
dk > dk+l if k eF
6. <4, if k ¢F.

Then Eij is the set of nondecreasing seguences

df.+1"‘df. in 8.
1 ]

We now claim that P(Eij) = Hfj_fi(mfi+l,ij).

To see this, we observe that Eij is the set of

sequences df +l"'df satisfying
i 3
{i) dk < dk+1
(ii) m, < dk < Mk

for fi + 1 <k < f.. But since mny >m

>
3 -

ves 2 M and

2 - 'n

My 2 My > .., > M

> > M, condition (ii) can be replaced by

the condition ﬁfi+1'£ dk < ij for fi +1<k < fj'
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whence our claim follows,

Thus by the Inversion Theorem,

_ ({ovyi-3 -1
ry = ((-1) Hfj_fi(mfi+l,mj))s+l. Now the total

counting series for sequences dle"‘dn in C 1is

r(c ). Applving the formula for the inverse of a
1,n+l
matrix to the image of T (C) in the algebra of matrices
over R[[i]]' we get
(-1)5) (-1) 3%y

{m M ) |

as the image in RI[[x]] of T(Cl,n+l)’ This is easily

seen to be equal to the expression given in the statement

of the thecremn.

6.6. "Corollarv. If we set each x; =1 in
Theorem 6.5, the determinant becomes

M -1
f541

Proof. When we set each X, = 1, hk(m,M) becomes

the number of ways of choosing k elements, with repetition,

from an M-m+l element set, which is (M -mn+ k).
k
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If we set m, = 1 and let M, be infinite for all i,

then (1) becomes

£o-f; s (2)

as obtained by MacMahon {62}, [64, Vol. 1, p. 200],

The image of (2) in the algebra of exponential counting

series is

1 F. . =f.
» i+l i

(3)
(fi+1-fi)l

s

|3
where by convention, %T =0 for k < 0. Now (3} is
n !

equal to N %T’ where N is the number of permutations

in Gn with fall set F. Thus

1
1T, .-f.)1
+1 £y

j i*”

N = nl . (4)

s

as also found by MacMahon (62], [64, Vol. 1, p. 190], who

apparently did not realize it could be derived from (2).

Formulas equivalent to (4) were independently
rediscovered by Niven [67] and Carlitz [17]. See also

[S]I [1230

Equation (4) is closely related to a result of

Forcade [47] on paths in tournaments, which we now describe.
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We may define a tournament T on [n] to be a subset of

[n]1x[n] such that

(i) Por all i,j € [n) with i # 3, (i,3) ¢ T iff
(j,i} ¢ T.

{ii) For all i e [n], (i,i) £ T. Given a permutation

ble"'bn of [n], we may define its T-fall set to be the

set of those i for which (bi’bi+l) £ T. BAccording
to a theorem of Redei, for any tournament T on [n},

the number of permutations of [n] with empty T-fall set
is odd. It follows that for any set F < [n-1], the
parity of the number of permutations of [n] with T-fall
set F is independent of T, and thus is the parity of N
given by (4). In particular, if N is odd, then for
any tournament T on [n] there exists a permutation of

of [n] whose T-fall set is F.
3. Inversion Sequences

6.7. Definition. Let o = b1b2"'bn be a reduced
. permutation. Let ¢, = card {ili < j and b, > bj} for
1 <i <n., Then we call Inv(a) = C1Cp-e.Cp the inversion

sequence of a.

For example, the inversion sequence of 614352 is

613221, Note that if Inv{a) = €1€9-.-Cp then & has
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n
I {c.,-1l) inversions.
. i
i=]
It is clear that
(*) 1< cy <n-1i+1,

and that any sequence ¢,C,...c, satisfying (*) is the

n

inversion sequence of a unique vermutation in n- Note
that the falls of Inv(c) are the same as those of a.

Now let wlo) = x ixcz...xcn, whexre Invia) = CyCgeeaCp

Applying Theorem 6.5 we have

6.8. Theorem. Let K be the set of permutations
in G with fall set F < [n-1]. Then

£ wla) = |h

_e (n=£f. .+ _, (6)
ack £. £. j+1 s

+1 i
where £, and s are as in Theorem 6.5,

1
n == £,
Gz %)
r
f- - fi

j+1 s

setting x; =1 in (6) vields

which is easily seen to be equal to (4), Setting X, = pi-l

i

(so that w(c} = pI(a)) vields (n - f )
£

. - £,
+1

] lPS '

a result of Stanley [79]. (This formula can also be

derived analogously to formula (4).)
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= =

Setting X, = i, so that w{n) = Cir vields

i=1

IS(n-fi+1,n—fj+1+l)|s, where S(m,k) is the Stirling

number of the second kind. These numbers are related

to the "H-Eulerian numbers" of [78].

4, Nondecreasing Sequences,

Theorem 6.5 can easily be dualized: we may define
the "non-fall set"™ of a sequence of length n to be the
set of those spaces in {n-1] which are not falls. Then

i i < < . < < M, < . <
given integers m; < m, < ... < m, and M, <M, < .., <M

we can find the counting series for sequences b.b b

12... n

satisfying m, < bi < M. with given non~fall set, We

i
state here only the most interesting special case, that

in which the non-fall set is all of [n~1l]. The proof,

which we omit, is analogous to that of Theorem 6.5.

6.9. Theorem. ILet my < My < wee < m, and

Ml < Mz L oees < Mn be integers. Then the number of

1 2... n
m, <b. <M., for 1l <i<n and which are permutations
1i="i="i K™ kL
of the multiset {1 1,2 2

nondecreasing sequences b.b b which satisfy

rees} is the coefficient of
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where ak(m,M) = o I . Xy Ko eeoXy
Mz;1>12>...>1k3m 1 72 k
.10, Corollary. If we set each X; = 1 in

Theorem 6.9, the determinant becomes
(?i - mj + %)
j - i+ 1

A result equivalent to Corollary § .10 was obtained

n

by Kreweras (59, p. 55}. See also [25), [49], and [66].

5. Inverse Identities

5.11. Theorem. Let Mi be positive integers such

that M, £ My £ eee S Mg and sqch that Mj - Mi < Jj-i

for 1 < i< j < s. Then £ (-1)371a,
- - - i<y<k ]

{1 if i=k
0 if i<k. (Here i and k are fixed and we sum on j.)

Proof. (Sketch) with the terminology of the proof
of Theorem §.5, let §;; be the set’of sequences
didi+1"'dj-1 with 1 < di < Mi. Let C be the linked

set of strictly increasing sequences in S, Note that if

\_di < diq € eee < dj then d; i dj - {j-i)., Thus
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d. < Mj implies c; < Mj - {j-i) < M;, so the conditions

c, < ci+l < ses < cj and ck < Mk for all k

may be replaced by the conditions

) 3 .o a < - s < 2.
cl < c1+1 < cJ and cJ < Mj

The theorem then follows on taking the image of the

equation T(C)T(T) =1 in RI[x]].

The most important special case of Theorem .11
is that in which M, = i+l, Here the theorem reduces to
a resuit~bf Comtet [35] which includes as special cases
inverse identities for binomial coefficients, p-binomial
coefficients, Stirling numbers, and central factorial

numbers.
6. Sequences with Initial and Final Segments

In this section we consider sequences with specified

initial and final segments, and periodic middles.

Let G be the following digraph.
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6.12. Theorem. Let S be a G-system and let C

be a linked set in S. Then

(a) T(Cy,) = T ™"

(B) T(Cy,) = = T(T,T(C, ™"

(€) T(C,q) = = TUT,,) TIT(T,,)

(@ TUCyy) = T3 - T€,TE,,) ' T(E,,).

Proof. Compute the inverse of the matrix

L TRy TRy
0 0 1 :

A result similar to Wheorem 6.12 has been used by
Jackson and Aleliunas in counting permutations by maxima

and minima {54, §§10-12],

‘6.13, Theorem., Let i,j, and k be nonnegative
integers with j >0 and i,k < j. For n >0 let
ui+nj+k be the number of sequences of elements of [m]

b, <b_,, if s ¥ 1 (mod j)

b_>b

s e+l if s = i (mod 3j).



X . Then

0 rmo+ - 1- .
U=z (-1)“:’\ )xnj]—l.
n=0 nj

(b) If i>0, k=0,

™ Mm+n . . o« m+n-=-1
U= [x (-1)"( )x”’”],-/[ L t-n“( ) x"1.

(e) 1£f i=0,%k >0,

e m+ n . oo m+n-=-1 .
u=1:2 (-1)"( )x“?’*klft z (-1)“( ) K,
n=0 nj + k n=0 nj

(@4 xf 4i>0, %k >0,

U= I (-1)"

(m + n +1
n=0

) xi+nj+k
i+nj+k

oo m+ n \ . co m+n -1 .
-z (-N“( ) I g (-n”® )x‘”]‘l
n=0 i+ nj n=0 nj

oo mn+n .
o[z (-1)“( )xn3+k].
n=0 nj + k
" Proof. Let S5 be the G-system with prime set P such
that =912' P22' and P23 are the sets of -inereasing:nc
sequences of elements of [m] of lengths i, j, and k,

respectively, Let C be the linked set in S such that
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C12' Coar Cogs and C13 are respectively sequences of the

forms blbz“‘bi+nj' bi+1bi+2"'bi+njf bi+lbi+2"‘bi+nj+k'
and ble"‘bi+nj+k such that

b, <b_, if s £ i (mod 3)

b, > b, if s =i (ﬁod j).

Let ﬁiz be the image in R[[x]] of T(Elz) where

we take X, » x, and similarly for ?22, 553, and ¥

13°
- n+l i+nj
Then V,, = nio(—l) Vi+ni¥ , where Viing 18
the number of sequences blb2"'bi+nj such that

by <b_,y if s £ i (mod j)

Wb < b_,.

Now for such a sequence, let r be the number of
occurrences of b5 = bs+1. Then the sequence contains
i+ nj~-r different elements, which can be chosen from

‘m
{m} in ( ‘) different ways. Given a choice
i+nj-r

of these i + nj - r elements, the sequence is determined
by specifying those y values of s for which bS = bs+l'
Since there are n possible such values of s, this can

be done in (2) ways. Thus



ul ) n m+n
V. ., = ):{ ( ) = ( )p
1+nj r‘i +nj-r r

i+ nj

by Vandermonde's convolution. By similar reasoning we

find that
® n(m+n- 1 %.
¥,, = & (=1} ( x
22 .
n=0 nij

<

L m+n .
_é3 - ¥ (_1)n+1( )xnj+k
n=0 nj + k

V.. = 1 (-1)"

(m+n+1
13 n=0

) (itni+k
i+nj+k

The theorem then follows from Theorem §.12.

The case Jj = 2 of Thegrem 6.13 was obtained by

Carlitz and Scovilie [26],

By similar reasoning we derive the following theorem,
which solves a special case of a more general problem we

consider in the next section,

{.G.lﬁ;r“Theorem;' Letf}i,:j;iandﬁkm;befgonnegativese::
intégerséwifh' >0 and i, k < j. Iet B be the total

. . r *
counting series for sequences ble"'bi+nj+k“E p* for

n > 0 such that

b, <b

< if s # i (mod j)

s+l

b >b if s = i (mod j).



et ¥_ = 1L (-l)anj+r. Then
n=0
(a) If i=%k=0, then B = ¥, 7.
(b) If i>0, k=0, then B = wiwo'l.
() If 1i=0, k>0, then B = ¥, 1V,

v

(@ If i>0,k >0, then B=1Y¥, - ¥V —ly

Note that this generalizes the result of André {7}
mentioned in the introduction. The exponential counting

series corresponding to (a), (b), and (c) were found by

Carlitz {171, 121].
7. Sequences with Periocdic Pattern

In this section we count sequences whose run-lengths
are periodic. More specifically, let m be a positive
integer and let F be any subset of {0} U [m~1]., Then
we want to f£ind the counting series in R[[x]] for
sequences whose fall set consists of those integers
(in the appropriate range) which are congruent {mod m)

to elements of F.

We find it convenient to classify these sequences
according to their length (mod m}. Although we do not
give an explicit formula for the general case (such a

formula is possible, but would be awkward to write down),
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the method we describe here easily vields the solution

in anvy particular case,

We first consider the special case in which 0 ¢ F
and the length of the sequence is congruent (mod m) to

an element of F.

let F = {fl'fZ"”'fs}' where

0 = £, < £y € e < fs <m, Let G be the digraph

Let & -be the G-system whose prime set P is given

by P(Pi,i+1] = He _¢ for 1 < i< s, and

i Tie-l

. Now let

1 _ fj - fi for i
ij

fj - fi +m for i > j.

A
(.
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et C be the linked set in & such that

T(C..) = z H »
1] n=0 dij+mn
Then if we set
=1 for 1 <7
v,., =
1]
j=i+s for 1 >3 ,
we have

>

V. .
T@E..) = (-1) 19 ¢ (-1)"5m
=0

ij di.+mn'

n J

Now F(Clj) is the total counting series for sequences
of length congruent to fj (mod m) whose falls are those
spaces congruent (mod m) to an element of F, Thu? F(Cl.)
is an entry of the inverse of the known matrix T(&), and
its homomorphic image in any cormutative counting -algebra

can be explicitly expressed as a cquotient of determinants.

We give an example. Let m=9 and Fr = {0,2,3,7},

o3

so s =4, LlLet ¢ = I

H .
k n=0 9n+k

Then



% % ¢ -0y
_ —0 o -3 &
G - 7 0 1 5
®  ~% % "%

-0, 0, -0 WA

-z

How let ¢k
n=0

hgo4y.» Then the image in R{[x]]

of F(Clz), which counts sequences of lencth congruent

to 2 (mod 9) with falls congruent to 0, 2, 3, 7 (mod 9), is

il




76.

The analogous formulas for exponential counting

series are due to Richard Stanley (unpublished),

In the general cédse, we mavy wish to begin and end
our sequence with a "nonperiodic" segment. For simplicity,
we describe here only a typical éxample, which illustrates

the general case,

We want to count sequences whose run-lengths have
the pattern 2, 5, 4, 5, 4, ..., 5, 4, 3, Let G be

the digraph.

(5)

(4)

Here the numbers in parentheses indicate run~lengths. We

define a G-system S with ppime set P by P(Plz) = H,,

T(P23) = H 1‘_(;1’3%) = H,, and T(P

5¢ 34) = H3.

Let ¢P and ¢P be as in the previous example.
Then if we let C be the linked set of nondecreasing
sequences in S, the answer to our problem is given by

the image in RI[x]] of the (1,4) entry of I(C). ¥e have



rL e 0y O30\
0 4, 65 4
o ¢, b, s
00 0 1 /.

r(T)

Then the image of T(T) in RI[[x]] is

1 -9 ¢~
0 99 "5 9
0 -d, ¢ 93 j
0 0 0 1

Thus the desired counting series is

~62 47 "9 * g %30
- | % ¢ bg % b5 g
b, 0y =0 0, 0q 93
1 -4 %7 4y ) ®g ¢5 '
0 ¢4, b5 og 6, %
0 -6, by =4,
0 .0 0 1

From the same matrix we find that the counting series
series in R[[x]] for sequences with run-length pattern

5, 4, 5, 4, ..., 5, 4 is
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¢g 9% %4 99

and the counting series for sequences with run-length

patterm 2, 5, 4, 5, 4, ..., 5, 4 is

-6 ¢7 =930

o R S N b2 %
0 0 1 4 b ’

%o o3 ) %0 45

s % ¢y %

and so on. FEulerian counting series are obtained analogously.

Carlitz and Scoville [27], [30] have found the expo~-

nential counting series corresponding to the digraph

(2)

(2) (2)

(3)
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CHAPTER 7
GENERALIZED EULERIAN POLYNOMIALS
1. The classical Eulerian polvnomials

The classical Eulerian polynomials Ay(t) nav be

defined by
; I'lkt",r,l = ——Ak—(;z—:-_-r . (1)
n=0 . (1-t)

More generally, if pi(n) is any polynomial in n of
degree k, we may define a polvnomial A{t) of degree at
most k by

-]

r p{n)tn = Alt)

. (2)
n=0 (1-t)~F

The Eulerian polynomials (1) have a simple combina-
torial interpretation: the coeffiéient of t3 in A, (£)
is the number of permutations of [k] with 4 runs. 1In
this chapter we discuss conditions under which the
polynomial A(t) defined by (2} has an analogous inter-

pretation.

We note that the coefficients of A(t) are easilv

computed from the values of pi(n):
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k

7.1. Lemma. Let A(t) = AO + Alt + ... + Akt and
let
-]
- A(%)
I pm)th = . (2)
n=0 (1-t) 7L
. ok + 1
Then A = I (-1)3( . )p(m-j).
j=0 j

"Proof. Multiply both sides of (2) by (l-t)k+l

o m
and eguate coefficients of t .

2, C=descents

et S be a linear system., If o is an element
of 8, with prime factorization TyTose e, we define the
S-spaces of o to be those spaces lying between adjaceht
primes, together with the zeroth and last spaces. For
example, if S 1is the set of sequences of even length, the
~S-spaces of an element of S are the even spaces, In
general a sequence of rank m has m+l S-spaces. The

empty sequence has one S-space.

Let C be a linked set in S. With o as above,
we define the C-descents of a to be those spaces lying
between i and Fi+l for which “i“i+1 ¥ C, together
with space 0 if a #_l. {The empty seguence has no

C-descents.) We define the C-runs of o +to be the
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maximal subsequences of a in C of the form

.M. . veaaT.. Thus the number of C=descents of a is
i'i+l 3

equal to the number of C-runs,

?.2. Theorem., Let € be a linked set in &, For

each o e S8 let dla) be the number of C-descents of a.

Then

td(a)
r{ay+1io"

(1 -¢r@©)1™t= 2
- aesS (l=t)

(Here 1r(a) is the rank of a,)
Proof. Working in S & #, we consider the set D

of elements of the form #81#62...#Bn with Bi £ C., {Here

Bi may be empty.) It is clear that
-1
rm) = [1 - #r(C)} .
Applying the homomorphism determined bv # » t vields
-1
T{D) » [1 - tT(C)] ~.

Mow an element of D can be ¥iewed as an element
of S with bars inserted in some of its S~spaces. In
fact, every element of D is obtained exactly once from
some a € S by the following construction: given o e S,

first insert a bar in each C-descent, then insert an
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arbitrary number of bars in each S-space. Mapping # = t,

we obtain td(a)(l +t + t2 + ...)r(a)+1

= td(a)/(l - t]r(a)+l as the coefficient of a in

1 - tr(c)1”t,

The basic idea of this proof goes back to MacMahon,
in his investigations of the "Lattice Function" and
“permutation Function® [64]. The idea was systematically
applied by Stanley [77] in his study of P-partiticns,
(MacMahon and Stanley actually considered a more general

situation that we discuss in the next chapter.)}

We remark that Theorem 7.2 enables us to count
elements of S in which every S-space is a C-descent;
thus Theorem 4.1 can be derived from Theorem 7.2. Con-
versely, Theorem 7.2 can easily be derived from Theorem 4.1.
{Consider the linked set whose primes are of the form #a
with a € C and whose links are of the form #a#f with

af £ C.)

As a simple example, we use Theorem 7.2 to solve
Simon Newcomb's problem., Here S = P* and C is the
set. of nondecreasing sequences. Then

o o

-1
rec) = £ H. = T (1 - X,)
n=0 % j=1 - 17
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so

(1~ tr@1™h = (1 -t n - x) 7t

§=1 .
td(a) _ 3
= I o
aep* (lat) I+l

where d(ec) is the number of falls of ., Thus if

Ay +es{t) is the enumerator for permutations of the
1,72
1 72
k k

multiset {1 1,2 2

pess) by falls, with k = L k;, then
, i

m —

[1 -+ 00 {l=-x.)
. i
i=1l

1,-1

]

AL, . ...(t)
'iklzkz ky Ky
= Z --1 xz Y (4)

Kyrkyreeo (Lmt)<Pt

From (4) an explicit formula for the coefficients of

A ess{t) can easily be obtained. We derive a
;Kkl kz
1 "2

generalization of this explicit formula in the next

section.

Passing to the algebra of Eulerian counting series,

we obtain from (3)
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o A Pl(t) n

-1 n 2
(1 - te(z)] ~ = I .
n=0 (1*t)n+1 n!p
: Z (p)
where e(z) = ET— and A_ P’ (t) is the enumerator
n=0 Mp n

for permutations of ([n] by falls and inversions,

Changing z to (l-t)z vields

00 () ,zn__ 1 - ¢
I Anp(t)m-;—r—-—-—mte ~vsT

n=0
as obtained in Chapter 5,
3. Chromatic polynomials

We now discuss a generalization of Simon Hewcomb's
problem that can be described most easily in the language

of graph theory.

Let G be a graph with vertex set [m], where we

allow loops, but not multiple edges. We say that a multi-

set M on [m] is independent (with respect to G) if M

contains no two adjacent vertices of G, and contains no

vertex with a loop more than once,

A coloring of the multiset M in n colors (with
respect to G) is a sequence Nl, Nyy ensy Nn of inde~
pendent multisets whose multiset sum is M, Intuitively,

we think of N, as the multiset of vertices assigned
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color i. It is easily seen that our definition is
_ equivalent to the usual one when M is a set and G

has no loops.

Now let pM(n) be the number of colorings of M

with n colors. We call pM(n) the chromatic polvnomial

of M (with respect to G}.

For the rest of this section we assume that G satis-

fies the following condition:

(*y 1f {i,2} is an edge of G, then so is

{j,kx} whenever i < j <k < 2.

(Here a loop at i 1is the edge {i,il}.)

7.3. Lemma. Let

k X
M=% 22, ...,n™

r

let E be the set of edges of G, and let

z ki if {j,5} e E
i<3
{i,3}cE
f. =
]
-kj + 1 it {4,3) £ E.
m /D f-j
Then p,(n}) = I .
M .
i=1 k
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Proof. A coloring of M in n colors is constructed
by successively assigning kl l's, k2 2's, ete., to the
multisets Nl' N2' seey N SO that at every stage each
N; is independent. Let us assume that this has been

done for i = 1' 2' es ey j-lo

First assume {j,j} ¢ E and let s be the least
integer such that {s,j} ¢ E. Then by (*), the fj elements
of the multiset {s %, ..., (i-1) i-l} have been assigned
to fj different multisets N

i thus there remain n-fj

multisets N, from which we can pick k. in

n~- £,
J
(\ ) ways. If {j,3} £ E, then by (*) there

k.
J
are no edges of G incident to j, so we may pick kj
Ni's arbitrarily, with repetition allowed, which can be

n + kj -1
done in ( ways.

K.
J

Now let S be the set of sequences of elements of
[m]. We define the linked set C in S to be the set
of sequences b1b2"'bn such that bi < bi+1 apd bi
and bi+1 are not adjacent as vertices of G,
Equivalently, by (*), byby...b, is in € iff

by € by Ldea £ b and {bl, bos eees bn} is an




87.
independent multiset.

7.4. Theorem., Let M be a multiset on [m] and
let AM(t) be the enumerator for permutations of M by

C-descents, Then

. (n)t" Pu ()
Z p,fn}t" =
n=0 M (1-t) BIFL *

where |M| = card M.

Proof, For any multiset

kl k2 km
M=1{1",2% ..., m "} on I[m],
kl k2 km
let w({M} = Xy "Xy eelx Then by THeorem 7.2,
_ (t)
[1 - ¢ % w(N)} 1. "y TR w{M), {5)
N M (1-t)

where the sum on the left is over all independent multisets
N on [m] and the sum on the right is over all multisets M

on [{m]. But the left side of7(33 is

)X w(Nl)w(Nz)...m(Nn),

0 Ny ,Ny,eus,N

where the sum is over all n-tuples of independent multi-

sets, hence is equal to
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I t7 I pylneim = I w) T t"p (m),
n=0 M M n=0 M

where the sum . is over all multisets M on ([ml.

We note that Theorem 7.4, together with Lemma 7.1
and Lemma 7.3, yields an explicit formula for the
coefficients of AM(t). The special case of Theorem 7.4
in which M is a set is due to Stanley ({unpublished).
An analog of the theorem for arbitrary graphs can be

obtained using the methods of [34].

The simplest case of Theorem 7.4 is that in which
G has no edges (or loops). Then C-descents are just

falls and the coefficients of AM(t) give the solution

k1 k2 km
to Simon Newcomb's problem, If M = {1 2 }

’ I} ...,m

£n+kj-l).

j=1 X,
j

then by Lemma 7.3 we have py(n) =

L=

Then applying Lemma 7.1, we have explicitly:

7.5. Proposition. The number of perrmutations of
k X k

r r -..,m

the multiset {1 my

with 4 falls is

d .tk +1y m fd-1+%k, -1 '
z (-1)1'(. ) n ( 3 , where k = I ki.
i=0 i j= i

k.
]

This formula was first given by MacMahon [62] in

1908. He had earlier [61] given a less explicit expression
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for these numbers.

As another application of Theorem 7.4, fix an integer

r > 1 and let the edges of G be those pairs {i,5}

with |i-j] < r. Then from Theorem 7.4 and Lemma 7.1

and 7.3 we can write down an explicit formula for the
number of permutations ble"'bk of the multiset M
with a given number of occurrences of bi+l - bi < r,

This problem has been considered in [21, (4}, [43), and
[71, p. 235]1; however, our explicit formula for the

general case seems to he new,

Other work on Simon Mewcomb's problem and its
generalizations can be found in [3], [8], [13], (16],
[24), (371, (381, (53], [55]1, [58, pp. 34-48},{60],
[70]), and [74].

4, Peaks

We define a peak (or maximum) of the sequence

blbz"'bn to be an index i such that

(i) i 1 or b, >Db

i i-1

and (ii} i =n or bi > bi+1'

,'By-defiﬁifion, the empty sequence has no peaks.,

In this section we count sequences of even length
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by number of peaks, Let S5 he the linear system of
sequences in P* of even length. Then the primes of

S have length two and the links of S have length four.

Now let C be the subset of S of all seguences

of the form

(*) blbzooobzm CIC2CCQC2m' Where blbzoocbzm

is nondecreasing and Cy1CheeeCqhp is decreasing,

Here m, n, or both may be zero., It is easily verified

that C is a linked set.

7.6, Lemma., For o € 5, the number of peaks of a

is equal to the number of C-runs of a.

Proof, If p is a C-run of & written in the
form (*), then there is a peak corresponding to either

b oX Cyp. but not both, and there are no other peaks

2m
of o in p. Thus there is exactly one peak in each

C=run of o,

To count sequences by peaks using Theorem 7.2, we
need only evaluate TI'(C). It is easy to see that the

representation (*) of an element of C is unique; thus

T{C) = ( &
n=0

J(Z A

). {6)
n=0 2n

H2n
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Then Theorem 7.2 yields:

7.7. Theorem. Let g(a) be the number of peaks

of the sequence o, Then

tg(a)

L rio}+l

aesS (1-%t)

a=(1-trt,

where T(C) is given by (6). Note that here r(a) = %E(a}.

7.8. Corollary. Let B, , ...(t) be the
1 l2 2

k k
enumerator for permutations of the multiset {1

by number of peaks. Let k = I ki. Then
i

B L x eeo ()

. 1 12 2 . klx k2
13 1 %2 e
k 'k Feee 1
1452 (1-t)?+
k even

7.9. Corollary., Let Bm(t) be the enumerator for
permutations of [m] by number of peaks. Then
o BZm(t) 2m

z _ . 2 .1
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7.10. Corcllary. Let Bm(p)(t) be the enumerator
for permutations of [m] by peaks and inversions. Then

o (p)
By (t) zzm

m*O (1- t)m+I )t

[ . 2!1
S [l - £(1 + T (1+p) (1#p?)... (Qep? ™ H 2 7L,

=1 2n)!
n {(2n) p

Proof. All weineed is the identity

2n
o 2n e ( ) 2n
(I <% 30 P 2 75y )
n=0 ‘' n=0 'p
oo . 2n
=1+ 1 () (LepP)e.. LN B
n=1 ‘P

which follows easily from the "p-binomial theorem"”

= _ n
e(az)S(bz) = 1 + I (a+b) (a+bp)...(a+bp" l)ﬁ$_ ,
n=1 p
n
v 1 ot (2) z"
where e(z) = L Y and e(z) = =TT = I p Y
n=0 P n=0 o)

Analogous results can be obtained for sequences of
odd length {e.g., using the methods of Chapter 6).
The basic result, which we state without proof, is the

following.
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7.11. Proposition., Let T be the set of seguences

in P* of odd length. Then

g{a)
L = XIS
aeT .
(1-t)

- -}

- -1
{Z & £( L HZn)( T A2n+l).

= [l ~t{( I H,)) )]
- - 2n 2n n=0 n=0

0 n=0
There has been a significant amount of work on the

enumeration of sequences by peaks {20}, (28], [29}, [33],

[41], [43],.[44], [46], [54]}, 156]. However, the fact

that the counting series takes an especially simple form
when sequences of even and odd length are considered

separately seems not to have been noticed before.




94,
CHAPTER 8
THE GREATER INDEX
1., C-indices

In this chapter:we develop a "g-analog" of the

subject of Chapter 7.

Let C be a linked set in the linear system S.
For simplicity we assume that the primes of 8 have
length one. (The general case requires only minor

notational changes,)

83l. Definition. The C-index i{a) of o e § is

the sum of the C-degcents of a.

For example, if S =P* and C is the set of

nondecreasing sequences, the C-index is the greater index,

first studied by MacMahon [63), [64].

Now let W be any subset of S. We define Pn(W)

to be L qnl(a} a, and we define P[n}(W) to be
aeW

Tpoy (T, (0. ..T 0, with T = 3,

Let (t:q)n = (l-t)(l-tq)...(l-tqn—l), and let

(q}n = (q:q)n = {l"‘q’) (l—qzl... (l_qn) = (l—q)nn!q.
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8.2. Theorem. let C be a linked set in S,

Then

d(a) _i(a) ©
I e o= 1 thrinl,
aES 97 0 (@) +1 n=0

where d{(a) is the number of C-descents of o and i{a)

is the C=index of a.

Proof. As in the proof of Theorem 7.2 we work in
S ® # and consider the set D of elements of the form

#81#62...#Bm, vhere B, € C. As before,

Mo = 1 LT (@)]R. (1)
n=0
Now consider the R-algebra A = R[[S]]1[Q) where ©
satisfies the commutativity relationship =Q = gOr for
all primes ® of S. Let u be the homomorphism
R{[s ® #1] - A that takes # to tQ. Then we have

2(8,)
18,48, % t2q L o® 8,8,

28.(8)142(8,) 4
#8 48,88, » tlq 1 0> 88,85 , etc. so

rp) » ¢ thr™ (.
n=0_

Now every monomial in A can be expressed uniquely

in the form Q"a for some & € S. Thus we may define a




96,

linear transformation (which is not a homomorphism)
vt A~+RI[[S]) by v(0"a) = a. Let & be the composite
map Vv+u : R{[s ® #]] » R[{S]]. Then

srm] = 1 " ).
n=0

As in the proof of Theorem 7.2, we observe that every
element of D is obtained uniquelv from some o £ § by
first inserting a bar in every C-descent and then inserting
an arbitrary number of bars in each space. A bar inserted

in space j corresponds to a factor of tqJ after ©

is applied. Thus the coefficient of o in @8[T(D)] is

td(a)gi.(a) :
(L-t) {1-£q) ... (L=tq® %} °

This completes the proof.

8.3. Corollagz.

i(a)
. fn]
I TET_—_" o= lim I (c).
aes ‘Ve(a) = nrw -

Proof. By {Théorem 8.2,

aeS (1-tqg)...{l-tq

a= (1-t) £ eoplnl g
E(G)) m=0

=1+ 1 "™ o)pim1lg,
=1
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Setting t = 1, we have
: q1(:1) n

2 a=1+1n £ (r™-rime,
aeS L{a) n+e m=1

=1+ lin r®le)-11 = 1in 1,

11+ n-ree
2., The Greater Index

We now apply the theory of the last section to the
case in which S = P* and C is the linked set of
nondecreasing sequences, Thus C-descents are falls and

the C-index is the greater index.

Here we have

o0 o

- _ S |
r(c) = I H = I (l-Xx;)7".

n=0 j=1
Passing to RI{{x]], we have
o n_]_ -
rindey w1 1 (1-x.gS)7l.
j=1 s=0 J
Then from the well-known identity {a special case of

Theorem 2.1, p. 17 of [9])

n-1 © /n+ k -1
n (l—xqs)-l = I ( ) xk, we get -
s=0 k=0 k a
w w nt ko= 1\
riflgyw 1 5 (FPF T k.
j=1 k,=0" : x, 3
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where the last sum is over all kl’k2"" of which only
finitely many are nonzero, Now let

AM(t,q) = I td(a)ql(u), where the sum is over all permu-
]

k k k

tations a of the multiset {1 1,2 2 T}

« Then it

,.."m
i

~Byy(t,q) o /n+ k) -1 fn +ky = 1 m+k -1
Ay = 5 0 K\
® D41 n=0 k q q q
1 m

follows from Theorem 8,2 that (with k = I k.)
i

as first shown by MacMahon [64, Vol. 2, p. 211]. See alsc

n+3ij-=1
[14] and [22]. Now 1lim ( )
qa

n-+e j
: — '
n+e  (l-q) (1-q )...(1-q3) ()
AM(l,q) m T
Corollary 8.3, _TET;- TET;_ . thus
i
kb o

A,{l,q) = 1= 4? 71— ¢+ as first shown by MacMahon

1.qk2lq--- mlq
[63), [64, Vol. 2, p. 2061, See also [42].

Now let us see what happens in the algebra of

.}

Eulerian counting series. Let e(z) = E '%T" and let
n=0 P

A (t,q,p) = T td(a)ql(a)pI(a)

us@ll

. Then Theorem 8.2
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vields the following.

8.4 h . 2o ltepra) on
s % Theorem. -
= ga=0 1@,y Bl

P

= I tne(z)e(qz)...e(qn-lz)

To apply Corollary 8.3, we observe that
o n o
2z z m, -1
- = I - g 2.2 . 9 .
S nio 1 m=0(l zp ) [9, Corollary , p. 192]

Thus changing 2z to Téﬁ and applying Corollary 8.2

we obtain:

8.5. Theorem,

© B (1,q,p) P maang
I wrmr— = 1 e
n=0 ‘4'n'P/y m,n=0 1-szqn

It follows from Theorem 8.5 that An(l,q,p) = An(l,p,q).
This fact was conjectured by Alter, Curtz, and Wang [6}],
and was first proved by Foata and Schutzenberger [45],
using a combinatorial correspondence, If we let Bn(q,p)
1y

i(a)pi(a-

= ¥ q , where a”) is the inverse

aE @

permutation of a {in the group-theoretic sense), then
Foata and Schiitzenberger's correspondence shows that

A (1,q9,p) = B, lq,p).
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The infinite product n 1
m,n=0 l-zp g

has been studied

by several authors, and B, Gordon [51] first showed that

the polynomials Cn(q,p) defined by

have nonnegative coefficients. In fact, Gordon's

procf shows that Cn(q,p) = Bn(q,p) as defined above,
but Gordon did not state thié-éxplicitly. This combina-
torial interpretation for the coefficients of C, (a,p)

was first stated explicitly (in a slightly different form)

by Roselle [75].

We remark that Gordon's proof implies the following:

. ifeq) ifa,) ifay)
1 2
Let Br(lj) (qqu2v---rq3') = z q; a4 “'qj 3

al'azftct'aj

where the sum is over all permutations al,az,...,aj in

G;n whose product alaz...aj (in the group-theoretic

sense) is the identity permutation. Then

o Bn(ql,qz....,qj)

L z"
n=0 qu)n(qz}n...(qj)n

m . P . . .
i ml m m
1 M2 5

|

My My pea.,Me=0 o '
172 j 1 zq, g, ...zj

’
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We hope to show elsewhere how Gordon's method can be
extended to count these permutations by greater index

and number of falls.
3. P-partitions

In this section we indicate briefly how R. Stanley’'s

theory of P-partitions can be developed in the framework

we have presented. For an exposition of the theory of

P-partitions, with examples and applications, see [77].

Let P be a partial ordering on [m]l. We use the

symbol ”jp" to denote the partial ordering of P and

"<" to denote the usual total order on &.

Let S be the set of sequences blbz"’b of

k

elements of [m] such that if i < j then bi fp bj.

Now let M be a multiset on [m], and let n and s

be nonnegative integers,

8.6. Definition. For n > 0, an (M;n)-partition

cf s 1is a seguence Nn-l'Nn-z""'NO of multisets on

[m] such that

{i) N + Nn

o1 gt eee t Ny = M (multiset sum).

(ii) If b e N and c ¢ Nj with i > j, then b 7p C.

(iii) = iINiI = s.
i
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For n = 0, the only (M;n) partition is the empty

sequence,

To see the intuitive meaning of our definition,
consider the case in which M = [m)]. Then an (M;n)-
partition can be identified with a map
¢ ;: [ml] -+ {0,1,..,,n=-1} such that b‘jp ¢ implies
o (b) 2 g(c). (If b e N, we define o(b) = i.) Then

) ilNi = L[ of{b). Our definition is a convenient

i be [m}
way of generalizing the concept of an order-reversing
map to multisets; moreover, its form makes the application

of Theorem 8.2 easy and points out the similarity to

colorings of graphs.

Remark. We note that our definition differs slightly
from Stanley's: our ([m];n)-partition corresponds to
his (P;n-1) partition, and for simplicity we have omitted
condition (ii) on page 5 of [77]. (Thus we consider only

the case in which P is "naturally labeled.")

Now let £ (M) be the set of elements of S which

are permutations of the multiset M. Let

_ s .
VM(n) = I a”, where the sum is over all

R Y A

(M;n)-partitions and s = I i|n,].
i
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8.7. Proposition. (Analogous to Proposition 8.3,

p. 24, of [77].)

; v oo td(a) i(a)

Zo mmE aEOZ(M) Tf'q)IM|+1

, where |M| = card M,

d(a) is the number of falls of a, and i(a) is the

greater index of «.

Proof. Let C be the linked set of nondecreasing
sequences in S. By THeorem 8.2,

td(a)qi(a)

b 5 a = E t F[n](C). Now any nonzero term
aes T p(a)+1 n=0

on the right is of the form

(n=1)2(By)+(n=2) 2 (B, ) +.. . +2(B

L - -

n-l)

n
81820 L] -Bn}

thag
where Blﬁz...sn is an element of S. Each such term
corresponds to an (M;n)-partition of (n—1}2(81)+...+£(8n_1).
where 8182...Bn is a permutation of the multiset M,
Then the proposition follows by collecting all terms

corresponding to permutations of M.
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