

Conversion of

legacy linguistic

transcription data

to Unicode 4.0

∫
S

Richard S. COOK
Linguistics Department
STEDT Project
University of California, Berkeley
<rscook@socrates.berkeley.edu>
<http://stedt.berkeley.edu/>

 Linguistic Society of America (LSA)

 2005, Oakland, CA

 Title: "Conversion of legacy linguistic

 transcription data to Unicode 4.0"

 Speaker: Dr. Richard S. Cook

 Workshop: Unicode for Linguists: How To Type, Send, and Archive

 Linguistic Texts by Computer

 Time: Sunday, 9 January 9:00 AM - 12:00 PM

 Place: Simmons 3/4, Oakland Convention Center

 Slot: 10:30-11:00

 Organizer: Deborah Anderson (UC-Berkeley)

 Participants: Charles A. Bigelow (Bigelow & Holmes), William Bright,

 Peter Constable (Microsoft), Richard Cook (UC Berkeley),

 Kenneth Whistler (Sybase, Inc.)

CONVERSION OF LEGACY LINGUISTIC
TRANSCRIPTION DATA TO UNICODE 4.0
Richard Cook <rscook@unicode.org>
LSA Workshop 2005/01/09

Re-representing (in Unicode) a legacy (non-Unicode) representation

TERMINOLOGY:
 LEGACY DATA, CODE POINT (CODEPOINT), PLAIN TEXT,
 ENCODING, CUSTOM ENCODING, STANDARD ENCODING,
 ENCODING MODEL, UNICODE SCALAR VALUE, USV, MAPPING,
 CHARACTER SET (CHARACTERSET), ENCODING FORM,
 NORMALIZATION

LEGACY DATA
 Most broadly: anything written, or a representation of
 anything written, from inscriptional or epigraphic
 material, to clay or silk or paper books, to graphical
 images, to pre-Unicode 4.X computer data.
 Strictly: pre-Unicode 4.X computer data.

CODE POINT (CODEPOINT, CODE POSITION)
 Any integer numeric value in the range 0 to 10FFFF_16 (i.e.
 0 to 1,114,111) in the Unicode codespace.
 See The Unicode Standard 4.0, "D4b, Section 3.4,
 Characters and Encoding"

ENCODING
 A system for associating specific symbols each with
 specific numbers. The "abstract character" together with
 its associated USV (code point) constitutes an "Encoded
 Character".

CUSTOM ENCODING
 A relatively non-standard encoding.

STANDARD ENCODING
 A wide-spread encoding system, in general or universal use
 among users in a particular community.

ENCODING MODEL
 The design principles behind a given encoding. This
 includes, for example, such things as the criteria for

 distinguishing encoded entities, and the ordering of base
 character and diacritic.

MAPPING (MAPPING TABLE)
 (1) Association of abstract character and code point.
 (2) Association between code points (within a single encoding,
 or between different encodings).

CHARACTER SET (CHARACTERSET)
 A collection of text elements, often within a particular
 encoding.

ENCODING FORM (CHARACTER ENCODING FORM)
 Mapping from a character set definition to the actual CODE
 UNITS used to represent the data.

CODE UNIT
 The minimal bit combination that can represent a unit of
 encoded text. The Unicode Standard uses 8-bit code units
 in the UTF-8 encoding form, 16-bit code units in the
 UTF-16 encoding form, and 32-bit code units in the UTF-32

 encoding form. (See definition D28a in Section 3.9,
 Unicode Encoding Forms.)

STRING
 Sequence of code points in computerized text.
 Non-Unicode-aware software may confuse code point with
 code unit.

PLAIN TEXT
 Computer-encoded text that consists *only* of a sequence
 of code points from a given encoding standard, with no
 other formatting or structural information. Plain text
 interchange is commonly used between computer systems that
 do not share higher-level protocols.

RICH TEXT (STYLED TEXT, FANCY TEXT, FORMATTED TEXT)
 The opposite of plain text. The result of adding
 information to plain text. Applying specific font face,
 color, formatting information, etc. to plain text, one
 gets rich text. Converting rich text to plain text,
 information may be lost.

UNICODE SCALAR VALUE (USV)
 Any Unicode code point except high-surrogate and
 low-surrogate code points. As a result of this definition,
 the set of Unicode scalar values consists of the ranges 0
 to D7FF_16 and E000_16 to 10FFFF_16, inclusive.
 From The Unicode Standard 4.0, "D28, Section 3.9, Unicode
 Encoding Forms" <http://www.unicode.org/versions/Unicode4.0.0/ch03.pdf>

USV
 A "U+" prefixed upper- or lower-case hexadecimal
 representation of *any* UCS code point (not necessarily
 excluding surrogates). Matches the regex /^U\+[0-9A-Fa-f]{4,6}$/
 With bracketing, e.g. [U+7329][U+9be8], a fall-back
 encoding form (in the WenLin text editor).

SCALAR
 1. <mathematics> A single number, as opposed to a vector
 or matrix of numbers. Thus, for example, "scalar
 multiplication" refers to the operation of multiplying
 one number (one scalar) by another and is used to
 contrast this with "matrix multiplication" etc.

 2. <architecture> In a parallel processor or vector
 processor, the "scalar processor" handles all the
 sequential operations - those which cannot be
 parallelised or vectorised. See also superscalar (uniprocessor).

 3. <programming> Any data type that stores a single
 value (e.g. a number or Boolean), as opposed to an
 aggregate data type that has many elements. A string is
 regarded as a scalar in some languages (e.g. Perl) and a
 vector of characters in others (e.g. {C}).
 From <http://dictionary.reference.com/search?q=scalar>.

NORMALIZATION
 A process of removing alternate representations of
 equivalent sequences from textual data, to convert the
 data into a form that can be binary-compared for
 equivalence.

CONVERSION PROCESS:

 (0) Realizing that it needed to be done, learning how to
 do it, and that it could only be done in stages;

 (1) Mapping to Unicode 3.0;

 (2) Formal proposal of unencoded characters for inclusion
 in Unicode/ISO 10646;

 (3) Mapping to Unicode 4.0;

 (4) Creation of tools for conversion of the custom-encoded
 data;

 (5) Creation of tools for use of the new Unicode data.

 Complete standard mapping of this character set became
 possible only with the advent of Unicode 4.0, with the

 encoding of certain characters peculiar to ST usage that
 had previously escaped the notice of standardization
 bodies.

 Dictating aspects of actions taken in step 4, step 5 is
 ongoing, and addresses a whole set of

RELATED ISSUES:

 (A) relative primacy and maintenance of the data in
 original and converted forms;

 (B) database application data requirements;

 (C) font support.

CONCLUSION

 Unicode now serves as the standard interface to STEDT's
 lexical data, and with application and font support coming
 soon to a computer near you, Unicode will provide linguists
 worldwide with access to this valuable data for years to
 come.

See also:

Unicode Technical Note 19 (Deborah Anderson et al.)
<http://www.unicode.org/notes/tn19/> (forthcoming)

 Linguists who are interested in establishing a standard
 way to transcribe a language, whether anyone has
 transcribed it before or not, whether it has an
 orthography of its own already or not, and whether this
 transcription is relatively narrow or broad, could benefit
 from reading this.

Notes on the next two slides:

These tables relate to the work presented in the following:

 • "On the status of the curly-tail alveolo-palatal symbols." (PDF)
 <http://stedt.berkeley.edu/pdf/curly-tailed-tdnlcz.pdf>

 • "Proposal to add five phonetic characters to the UCS" [with Everson]. (PDF)
 <http://linguistics.berkeley.edu/~rscook/pdf/UniProp-Final/n2366r-curly-tail.pdf>

Both available at <http://socrates.berkeley.edu/~rscook/html/writing.html>. See those
documents for detailed discussion.

Briefly:

The first table derives from Wu Zongji (1992), exhibiting transcription symbols
missing from Unicode 3.x.

The second table shows in the "A-P" column a more complete set of alveolo-palatal
("culry-tail") symbols, some of which were added to Unicode 4.0 through the
document proposal "n2366r" (second item above).

CONSONANTS (PULMONIC AND GLOTTALIC)

L L-D I-D D(A) R P-A A-P P V U Ph G
p b t d ˇ Í † ∂ c Ô k g q G /

m M n ˜ ≤ ¯ N ≤

ı r {

R } r
∏ B f v T D s z ß Ω S Z ˚  C ∆ x ƒ X “  ÷ h ˙

¬ L

V ® ” R j Â

l Ò ‚ ¥ ;

p' t' ˇ' †' c' k' q'

π ∫ † Î T D Ç ◊ ˚ © œ ˝

Key: L=labio-/labial, D=dental, I=inter-, A=alveolo-/alveolar, R=retroflex, P=palato-/palatal, V=velar, U=uvular, Ph=Pharyngeal, G=glottal.
Consonants arranged according to place of articulation (left-to-right = front-to-back), with inclusion of alveolo-palatal (A-P) place series.
After WU Zongji (1992), with additional A-P place series symbols: [r] A-P flap or tap, [R] A-P approximant, [‚] A-P lateral, and [T D] A-P implosives.
For a discussion this notation please see the most recent draft of the paper at <http://stedt.berkeley.edu/pdf/curly-tailed-tdnlcz.pdf>.

VOWELS

i y ˆ ¨ µ u

I Y U

e O F o

´ P

E ø √ ç

Q å

a Ø A Å
Richard S. Cook, UC Berkeley Linguistics

<rscook@socrates.berkeley.edu>

#!/usr/bin/perl -w
BEGIN { $^W = 1 }
use strict;

##
This program converts Mac STEDTFont 5.1
text files to UTF-8. Run it in a directory
of files and convert each file.txt in that
directory to file.u8, silently overwriting
any pre-existing file.u8 in that directory
(you might want to be careful about that).
##
The STEDT Project and the author make no
expressed or implied warranty of any kind,
and assume no liability for errors or
omissions. No liability is assumed for
incidental and consequential damages in
connection with or arising out of the use
of the information or programs contained
in or accompanying this file. Caveat Utor!
##
Richard Cook rscook@socrates.berkeley.edu
##
Written with MacPerl 5.6.1r2 (2003-09-09)
Updated for Perl 5.8.1 (2004-09-17)
##

warn "x"x64,"\n";
warn "Started: ", scalar localtime(), " ...\n";
warn sprintf "Perl %vd\n", $^V;
warn "-"x64,"\n";
warn "Remapping Mac STEDT Font 5.1 text files to Unicode 4.0 ...\n";

##################################
###GET LIST OF FILES TO CONVERT###
#opendir(DIR, ':')
opendir(DIR, '.')
 or die 'cannot open : $!';
my @files = sort grep /\.txt$/, readdir(DIR);
closedir(DIR);
die "Died: No file.txt in current directory to convert! (why not add some?)\n"
 unless @files;
my %files;
warn "-"x64,"\n";
my $tif = @files;
warn "The following $tif infiles in the current directory will be converted\n";
warn "to UTF-8 (INFILE => OUTFILE):\n";
warn "-"x64,"\n";
my $n;
for my $infile (@files){
 $n++;
 my $outfile = $infile;
 $outfile =~ s/\.txt/.u8/
 or die "Died!: Infiles must be named with a `.txt' extension\n";
 $files{$infile}=$outfile;
 warn "$n: $infile => $outfile\n";
}

##
###LOAD THE MAPS FROM THE DATA LIST BELOW###

warn "-"x64,"\n";
warn "Building the maps ...\n";

my (%char, %diac, %skip, %hash, %all, $linecount, $seq);
while (<DATA>){
 next if /^#|^$/;
 $linecount++;
 chomp;
 my @t = split(/\t/,$_,-1);
 @t == 5
 or die "Died! corrupt STED2U-map, line: $.\n";

 $seq = $t[0]
 unless defined $seq;
 $t[0] == $seq
 or die "Died! $t[0] == $seq ??\n";

 $t[1] = chr hex $t[1];

 chr $t[0] eq $t[1]
 or die "Died! $t[0] eq $t[1] ??\n";

 exists $all{$t[1]}
 or
 exists $hash{$t[1]}
 or
 exists $char{$t[1]}
 or
 exists $diac{$t[1]}
 and die "Non-unique keys! $_\n";

$all{$t[1]}=$t[2];

 if($t[4] == 0){# these base chars *don't* remap
 $skip{$t[1]}=$t[2];
 }
 elsif($t[4] == 1){# diacritics
 $diac{$t[1]}=$t[2];
 $hash{$t[1]}=$t[2];
 }
 elsif($t[4] == 2){# these base chars *do* remap
 $char{$t[1]}=$t[2];
 $hash{$t[1]}=$t[2];
 }
 else{
 die "bad `Combining' value $t[4]: $_\n";
 }
 $seq++;
}
my $all = scalar keys %all;

warn "STEDTFont 5.1 Unicode 4.0 Scalar Values all loaded.\n";
warn "Total of $all characters in the comprehensive Map.\n";

###############
###MAP STATS###
warn "-"x64,"\n";
warn "Verifying map counts ...\n\n";

my %warn = (

 Char => scalar keys %char,
 Diac => scalar keys %diac,
 Skip => scalar keys %skip,
 Hash => scalar keys %hash,
);

my $z;
for my $w (sort keys %warn){
 my $warn = sprintf "Total of %03d Keys in the %s hash", $warn{$w}, $w;
 $warn = $warn . " (sum of above, these all get remapped)"
 if $w eq "Hash";
 $warn = $warn . " (these don't get remapped)"
 if $w eq "Skip";
 warn "$warn.\n";
 $z += $warn{$w}
 unless $w eq "Hash";
}

if($linecount == $z && $linecount == $all){
 warn "Total of $linecount Map DATA lines is all of Char, Diac, & Skip.\n\n";
}
else{
 die "ebod?! linecount=>$linecount, z=>$z, all=>$all\n";
}

my $c = join("", sort keys %char);
my $d = join("", sort keys %diac);
my $s = join("", sort keys %skip);
my $h = join("", sort keys %hash);

my $cx = join("", map {sprintf "0x%X ", ord $_} sort keys %char);
my $dx = join("", map {sprintf "0x%X ", ord $_} sort keys %diac);
my $hx = join("", map {sprintf "0x%X ", ord $_} sort keys %hash);

warn "STEDTFont 5.1 characters to remap:\n\n";
warn " Total of $warn{Char} base characters:\n[$cx].\n\n";
warn " Total of $warn{Diac} prestruck diacritics:\n[$dx].\n\n";
warn " Total of $warn{Hash} characters (base+diacritic) get remapped:\n[$hx].\n\n";
warn "STEDTFont 5.1 base characters unchanged:\n\n";
warn " Total of $warn{Skip} chars in STEDTFont skipclass:\n[$s].\n\n";

warn "All map counts verified.\n";

#########################
###MAKE THE CONVERSION###
warn "-"x64,"\n";
warn "Beginning file conversion to UTF-8 ...\n\n";

Some 7-bit control characters < 0x20 <SPACE> should probably
not be in a Mac STEDTFont text file, and might be stripped
if they occur, except for 0x09 <TAB>, 0x0A <LF>, 0x0D <CR>.
Some applications might export other 7-bit controls in
plain text to preserve certain info, e.g. FileMaker uses
0x0B <VT> for line breaks within a cell. Also, (the one
control > 0x20 <SPACE>) 0x7F <DELETE> is unused in STEDTFont.
We leave these controls in the data if they occur, but warn you
in case they are evidence of some problem with the infile.

my $ctrl = '[\x00-\x08\x0B\x0C\x0E-\x1F\x7F]';

for my $f (sort keys %files){
 open IF, "< $f"
 or die "cannot open `$f': $!";
 warn "Reading text file `$f' ...\n";
 open OF, "> $files{$f}"
 or die "cannot create `$files{$f}': $!";
 warn "Writing text file `$files{$f}' ...\n";

 my %frq; my $warned=0;
 while (<IF>){

 if (/$ctrl/ && $warned < 1){
 warn "Check for improper controls in file `$f':\n $_";
 $warned++;
 }
 # mark controls (see above)
 #$_ =~ s/($ctrl)/"{".sprintf("%0#4X",ord $1)."}"/ego;

 for my $c (split(//,$_)){
 next if $c =~ /^$|\t|\n/;
 $frq{$c}++;
 }

 #my @t = split(/\t/,$_,-1);
 # if your infile is tab-separated with mixed encodings
 # then you'll want to specify the field to convert ...

 # interpose a space between diac and line-end or tab
 $_ =~ s/([\Q$d\E])(\t|$)/$1 $2/go;

 # then, any post-diac non-diac is base; reorder them
 $_ =~ s/([\Q$d\E]+)([^\Q$d\E])/$2$1/go;

 # remap to USV('s) to UTF-8
 $_ =~ s/([\Q$h\E])/ul($hash{$1})/ego;

 # note that 0x84 and 0x96 both have 1-to-2 mappings which
 # could be handled with 0x84 => U+0221, 0x96 => U+0236 instead ...

 print OF;

 }
 warn "line count for `$f': $. .\n";

 close IF
 or die "trouble closing `$f': $!";
 close OF
 or die "trouble closing `$files{$f}': $!";

 warn "Finished converting `$f'.\n\n";

 my $types = scalar keys %frq;
 warn "Frequencies for $types character types occurring in `$f':\n";
 for my $f (sort {$frq{$b} <=> $frq{$a}
 or
 $a cmp $b} keys %frq){

next if $f =~ /^$/;
 my $g = $f;
 $g = "" if $g =~ /$ctrl/o;

$g = $all{$f} if exists $all{$f};

 printf "%#X\t% 6d\t=> %s\n", ord $f, $frq{$f}, $g;
 }
 warn "-"x64,"\n";
}
my $pl = $tif == 1 ? "" : "s";
my $ar = "no";
$ar = "the" if $tif > 0;
$ar = "all" if $tif > 2;
my $time = time() - $^T;
my $sex = $time == 1 ? "" : "s";
warn "Finished converting $ar $tif file$pl in a total of $time second$sex.\n";

#################
###SUBROUTINES###

##################################
############# SUB UL #############
##################################
sends SUB U8 a list
of bracketed USV's
##################################

sub ul {
 my $x = shift @_;
 my $h = '[0-9A-Fa-f]';
 my (@l) = $x =~ /(\[U\+$h{1,6}\])/g;
 die "Yikes? no \@l ???\n"
 unless @l;
 my $u = "";
 for my $l (@l){
 $u .= u8($l);
 }
 return $u;
} # sub ul

##################################
######### SUB U8 bit ops #########
##################################
accepts both bracketed
and unbracketed USV
##################################

sub u8 {
 my $x = shift @_;
 my $h = '[0-9A-Fa-f]';

 #return $x unless
 # ($x =~ s/^\[U\+($h{1,6})\]$/$1/ == 1);

 $x =~ s/^\[U\+($h{1,6})\]$/$1/;
 $x = hex($x);

 my $u8;
 if($x <= 0x0000007F){
 $u8=
 pack ("C", $x);
 }
 elsif($x <= 0x000007FF){
 $u8=
 pack ("C", 0xC0|(($x>>6))) .

 pack ("C", 0x80|($x&((1<<6)-1)));
 }
 elsif($x <= 0x0000FFFF){
 $u8=
 pack ("C", 0xE0|(($x>>12))) .
 pack ("C", 0x80|(($x>>6)&((1<<6)-1))) .
 pack ("C", 0x80|($x&((1<<6)-1)));
 }
 elsif($x <= 0x001FFFFF){
 $u8=
 pack ("C", 0xF0|(($x>>18))) .
 pack ("C", 0x80|(($x>>12)&((1<<6)-1))) .
 pack ("C", 0x80|(($x>>6)&((1<<6)-1))) .
 pack ("C", 0x80|($x&((1<<6)-1)));
 }
 elsif($x <= 0x03FFFFFF){
 $u8=
 pack ("C", 0xF8|(($x>>24))) .
 pack ("C", 0x80|(($x>>18)&((1<<6)-1))) .
 pack ("C", 0x80|(($x>>12)&((1<<6)-1))) .
 pack ("C", 0x80|(($x>>6)&((1<<6)-1))) .
 pack ("C", 0x80|($x&((1<<6)-1)));
 }
 elsif($x <= 0x7FFFFFFF){
 $u8=
 pack ("C", 0xFC|(($x>>30))) .
 pack ("C", 0x80|(($x>>24)&((1<<6)-1))) .
 pack ("C", 0x80|(($x>>18)&((1<<6)-1))) .
 pack ("C", 0x80|(($x>>12)&((1<<6)-1))) .
 pack ("C", 0x80|(($x>>6)&((1<<6)-1))) .
 pack ("C", 0x80|($x&((1<<6)-1)));
 }
 return $u8;
}# sub u8

#####################################
#MAPPING DATA STEDTFONT5 <=> UNICODE4

__DATA__
#DEC HEX USV UNAME COMB
032 20 [U+0020] SPACE 0
033 21 [U+0021] EXCLAMATION MARK 0
034 22 [U+0022] QUOTATION MARK 0
035 23 [U+0023] NUMBER SIGN 0
036 24 [U+1D4A] MODIFIER LETTER SMALL SCHWA 2
037 25 [U+0279] LATIN SMALL LETTER TURNED R 2
038 26 [U+2AA4] GREATER-THAN OVERLAPPING LESS-THAN 2
039 27 [U+0027] APOSTROPHE 0
040 28 [U+0028] LEFT PARENTHESIS 0
041 29 [U+0029] RIGHT PARENTHESIS 0
042 2A [U+002A] ASTERISK 0
043 2B [U+002B] PLUS SIGN 0
044 2C [U+002C] COMMA 0
045 2D [U+002D] HYPHEN-MINUS 0
046 2E [U+002E] FULL STOP 0
047 2F [U+002F] SOLIDUS 0
048 30 [U+0030] DIGIT ZERO 0
049 31 [U+0031] DIGIT ONE 0
050 32 [U+0032] DIGIT TWO 0
051 33 [U+0033] DIGIT THREE 0

052 34 [U+0034] DIGIT FOUR 0
053 35 [U+0035] DIGIT FIVE 0
054 36 [U+0036] DIGIT SIX 0
055 37 [U+0037] DIGIT SEVEN 0
056 38 [U+0038] DIGIT EIGHT 0
057 39 [U+0039] DIGIT NINE 0
058 3A [U+003A] COLON 0
059 3B [U+003B] SEMICOLON 0
060 3C [U+003C] LESS-THAN SIGN 0
061 3D [U+003D] EQUALS SIGN 0
062 3E [U+003E] GREATER-THAN SIGN 0
063 3F [U+003F] QUESTION MARK 0
064 40 [U+032A] COMBINING BRIDGE BELOW 1
065 41 [U+0041] LATIN CAPITAL LETTER A 0
066 42 [U+0042] LATIN CAPITAL LETTER B 0
067 43 [U+0043] LATIN CAPITAL LETTER C 0
068 44 [U+0044] LATIN CAPITAL LETTER D 0
069 45 [U+0045] LATIN CAPITAL LETTER E 0
070 46 [U+0046] LATIN CAPITAL LETTER F 0
071 47 [U+0047] LATIN CAPITAL LETTER G 0
072 48 [U+0048] LATIN CAPITAL LETTER H 0
073 49 [U+0049] LATIN CAPITAL LETTER I 0
074 4A [U+004A] LATIN CAPITAL LETTER J 0
075 4B [U+004B] LATIN CAPITAL LETTER K 0
076 4C [U+004C] LATIN CAPITAL LETTER L 0
077 4D [U+004D] LATIN CAPITAL LETTER M 0
078 4E [U+004E] LATIN CAPITAL LETTER N 0
079 4F [U+004F] LATIN CAPITAL LETTER O 0
080 50 [U+0050] LATIN CAPITAL LETTER P 0
081 51 [U+0051] LATIN CAPITAL LETTER Q 0
082 52 [U+0052] LATIN CAPITAL LETTER R 0
083 53 [U+0053] LATIN CAPITAL LETTER S 0
084 54 [U+0054] LATIN CAPITAL LETTER T 0
085 55 [U+0055] LATIN CAPITAL LETTER U 0
086 56 [U+0056] LATIN CAPITAL LETTER V 0
087 57 [U+0057] LATIN CAPITAL LETTER W 0
088 58 [U+0058] LATIN CAPITAL LETTER X 0
089 59 [U+0059] LATIN CAPITAL LETTER Y 0
090 5A [U+005A] LATIN CAPITAL LETTER Z 0
091 5B [U+005B] LEFT SQUARE BRACKET 0
092 5C [U+0300] COMBINING GRAVE ACCENT 1
093 5D [U+005D] RIGHT SQUARE BRACKET 0
094 5E [U+027E] LATIN SMALL LETTER R WITH FISHHOOK 2
095 5F [U+0331] COMBINING MACRON BELOW 1
096 60 [U+00D0] LATIN CAPITAL LETTER ETH 2
097 61 [U+0061] LATIN SMALL LETTER A 0
098 62 [U+0062] LATIN SMALL LETTER B 0
099 63 [U+0063] LATIN SMALL LETTER C 0
100 64 [U+0064] LATIN SMALL LETTER D 0
101 65 [U+0065] LATIN SMALL LETTER E 0
102 66 [U+0066] LATIN SMALL LETTER F 0
103 67 [U+0067] LATIN SMALL LETTER G 0
104 68 [U+0068] LATIN SMALL LETTER H 0
105 69 [U+0069] LATIN SMALL LETTER I 0
106 6A [U+006A] LATIN SMALL LETTER J 0
107 6B [U+006B] LATIN SMALL LETTER K 0
108 6C [U+006C] LATIN SMALL LETTER L 0
109 6D [U+006D] LATIN SMALL LETTER M 0
110 6E [U+006E] LATIN SMALL LETTER N 0
111 6F [U+006F] LATIN SMALL LETTER O 0

112 70 [U+0070] LATIN SMALL LETTER P 0
113 71 [U+0071] LATIN SMALL LETTER Q 0
114 72 [U+0072] LATIN SMALL LETTER R 0
115 73 [U+0073] LATIN SMALL LETTER S 0
116 74 [U+0074] LATIN SMALL LETTER T 0
117 75 [U+0075] LATIN SMALL LETTER U 0
118 76 [U+0076] LATIN SMALL LETTER V 0
119 77 [U+0077] LATIN SMALL LETTER W 0
120 78 [U+0078] LATIN SMALL LETTER X 0
121 79 [U+0079] LATIN SMALL LETTER Y 0
122 7A [U+007A] LATIN SMALL LETTER Z 0
123 7B [U+007B] LEFT CURLY BRACKET 0
124 7C [U+0301] COMBINING ACUTE ACCENT 1
125 7D [U+007D] RIGHT CURLY BRACKET 0
126 7E [U+0303] COMBINING TILDE 1
127 7F [U+007F] DELETE 0
128 80 [U+00BB] RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK 2
129 81 [U+0252] LATIN SMALL LETTER TURNED ALPHA 2
130 82 [U+025F] LATIN SMALL LETTER DOTLESS J WITH STROKE 2
131 83 [U+0307] COMBINING DOT ABOVE 1
132 84 [U+0064][U+0311] <LATIN SMALL LETTER D, COMBINING INVERTED BREVE> 2
133 85 [U+02B7] MODIFIER LETTER SMALL W 2
134 86 [U+0335] COMBINING SHORT STROKE OVERLAY 1
135 87 [U+00E6] LATIN SMALL LETTER AE 2
136 88 [U+02C7] CARON 2
137 89 [U+02C6] MODIFIER LETTER CIRCUMFLEX ACCENT 2
138 8A [U+00AB] LEFT-POINTING DOUBLE ANGLE QUOTATION MARK 2
139 8B [U+033E] COMBINING VERTICAL TILDE 1
140 8C [U+0251] LATIN SMALL LETTER ALPHA 2
141 8D [U+00E7] LATIN SMALL LETTER C WITH CEDILLA 2
142 8E [U+0323] COMBINING DOT BELOW 1
143 8F [U+1D07] LATIN LETTER SMALL CAPITAL E 2
144 90 [U+24D2] CIRCLED LATIN SMALL LETTER C 2
145 91 [U+0250] LATIN SMALL LETTER TURNED A 2
146 92 [U+031B] COMBINING HORN 1
147 93 [U+1D2E] MODIFIER LETTER CAPITAL B 2
148 94 [U+0131] LATIN SMALL LETTER DOTLESS I 2
149 95 [U+0268] LATIN SMALL LETTER I WITH STROKE 2
150 96 [U+0074][U+0311] <LATIN SMALL LETTER T, COMBINING INVERTED BREVE> 2
151 97 [U+0153] LATIN SMALL LIGATURE OE 2
152 98 [U+0275] LATIN SMALL LETTER BARRED O 2
153 99 [U+00B7] MIDDLE DOT 2
154 9A [U+00F8] LATIN SMALL LETTER O WITH STROKE 2
155 9B [U+00D8] LATIN CAPITAL LETTER O WITH STROKE 2
156 9C [U+24B8] CIRCLED LATIN CAPITAL LETTER C 2
157 9D [U+1D2C] MODIFIER LETTER CAPITAL A 2
158 9E [U+24C8] CIRCLED LATIN CAPITAL LETTER S 2
159 9F [U+0303] COMBINING TILDE 1
160 A0 [U+0236] LATIN SMALL LETTER T WITH CURL 2
161 A1 [U+02F0] MODIFIER LETTER LOW UP ARROWHEAD 2
162 A2 [U+2074] SUPERSCRIPT FOUR 2
163 A3 [U+00B3] SUPERSCRIPT THREE 2
164 A4 [U+2076] SUPERSCRIPT SIX 2
165 A5 [U+2078] SUPERSCRIPT EIGHT 2
166 A6 [U+2077] SUPERSCRIPT SEVEN 2
167 A7 [U+0329] COMBINING VERTICAL LINE BELOW 1
168 A8 [U+0282] LATIN SMALL LETTER S WITH HOOK 2
169 A9 [U+0263] LATIN SMALL LETTER GAMMA 2
170 AA [U+00B2] SUPERSCRIPT TWO 2
171 AB [U+0309] COMBINING HOOK ABOVE 1

172 AC [U+02EF] MODIFIER LETTER LOW DOWN ARROWHEAD 2
173 AD [U+25E6] WHITE BULLET 2
174 AE [U+02BB] MODIFIER LETTER TURNED COMMA 2
175 AF [U+028C] LATIN SMALL LETTER TURNED V 2
176 B0 [U+2075] SUPERSCRIPT FIVE 2
177 B1 [U+007E] TILDE 2
178 B2 [U+0235] LATIN SMALL LETTER N WITH CURL 2
179 B3 [U+014B] LATIN SMALL LETTER ENG 2
180 B4 [U+0285] LATIN SMALL LETTER SQUAT REVERSED ESH 2
181 B5 [U+0271] LATIN SMALL LETTER M WITH HOOK 2
182 B6 [U+0221] LATIN SMALL LETTER D WITH CURL 2
183 B7 [U+026F] LATIN SMALL LETTER TURNED M 2
184 B8 [U+03B2] GREEK SMALL LETTER BETA 2
185 B9 [U+0278] LATIN SMALL LETTER PHI 2
186 BA [U+0253] LATIN SMALL LETTER B WITH HOOK 2
187 BB [U+2079] SUPERSCRIPT NINE 2
188 BC [U+2070] SUPERSCRIPT ZERO 2
189 BD [U+027F] LATIN SMALL LETTER REVERSED R WITH FISHHOOK 2
190 BE [U+02B0] MODIFIER LETTER SMALL H 2
191 BF [U+0254] LATIN SMALL LETTER OPEN O 2
192 C0 [U+0266] LATIN SMALL LETTER H WITH HOOK 2
193 C1 [U+00B9] SUPERSCRIPT ONE 2
194 C2 [U+026C] LATIN SMALL LETTER L WITH BELT 2
195 C3 [U+24C1] CIRCLED LATIN CAPITAL LETTER L 2
196 C4 [U+03B8] GREEK SMALL LETTER THETA 2
197 C5 [U+03C7] GREEK SMALL LETTER CHI 2
198 C6 [U+0283] LATIN SMALL LETTER ESH 2
199 C7 [U+030C] COMBINING CARON 1
200 C8 [U+0302] COMBINING CIRCUMFLEX ACCENT 1
201 C9 [U+221A] SQUARE ROOT 2
202 CA [U+00A0] NO-BREAK SPACE 2
203 CB [U+1D00] LATIN LETTER SMALL CAPITAL A 2
204 CC [U+026E] LATIN SMALL LETTER LEZH 2
205 CD [U+007C] VERTICAL LINE 2
206 CE [U+0300] COMBINING GRAVE ACCENT 1
207 CF [U+0309] COMBINING HOOK ABOVE 1
208 D0 [U+0328] COMBINING OGONEK 1
209 D1 [U+0304] COMBINING MACRON 1
210 D2 [U+032F] COMBINING INVERTED BREVE BELOW 1
211 D3 [U+0306] COMBINING BREVE 1
212 D4 [U+0325] COMBINING RING BELOW 1
213 D5 [U+030A] COMBINING RING ABOVE 1
214 D6 [U+0294] LATIN LETTER GLOTTAL STOP 2
215 D7 [U+24CB] CIRCLED LATIN CAPITAL LETTER V 2
216 D8 [U+028F] LATIN LETTER SMALL CAPITAL Y 2
217 D9 [U+0308] COMBINING DIAERESIS 1
218 DA [U+02B1] MODIFIER LETTER SMALL H WITH HOOK 2
219 DB [U+0346] COMBINING BRIDGE ABOVE 1
220 DC [U+027D] LATIN SMALL LETTER R WITH TAIL 2
221 DD [U+025A] LATIN SMALL LETTER SCHWA WITH HOOK 2
222 DE [U+02B4] MODIFIER LETTER SMALL TURNED R 2
223 DF [U+02BC] MODIFIER LETTER APOSTROPHE 2
224 E0 [U+0280] LATIN LETTER SMALL CAPITAL R 2
225 E1 [U+0301] COMBINING ACUTE ACCENT 1
226 E2 [U+0234] LATIN SMALL LETTER L WITH CURL 2
227 E3 [U+028B] LATIN SMALL LETTER V WITH HOOK 2
228 E4 [U+025B] LATIN SMALL LETTER OPEN E 2
229 E5 [U+0290] LATIN SMALL LETTER Z WITH RETROFLEX HOOK 2
230 E6 [U+0288] LATIN SMALL LETTER T WITH RETROFLEX HOOK 2
231 E7 [U+0309] COMBINING HOOK ABOVE 1

232 E8 [U+1D1C] LATIN LETTER SMALL CAPITAL U 2
233 E9 [U+026A] LATIN LETTER SMALL CAPITAL I 2
234 EA [U+02CC] MODIFIER LETTER LOW VERTICAL LINE 2
235 EB [U+0256] LATIN SMALL LETTER D WITH TAIL 2
236 EC [U+00F0] LATIN SMALL LETTER ETH 2
237 ED [U+0264] LATIN SMALL LETTER RAMS HORN 2
238 EE [U+1D34] MODIFIER LETTER CAPITAL H 2
239 EF [U+0292] LATIN SMALL LETTER EZH 2
240 F0 [U+0291] LATIN SMALL LETTER Z WITH CURL 2
241 F1 [U+1D38] MODIFIER LETTER CAPITAL L 2
242 F2 [U+02D0] MODIFIER LETTER TRIANGULAR COLON 2
243 F3 [U+0265] LATIN SMALL LETTER TURNED H 2
244 F4 [U+0281] LATIN LETTER SMALL CAPITAL INVERTED R 2
245 F5 [U+0111] LATIN SMALL LETTER D WITH STROKE 2
246 F6 [U+0274] LATIN LETTER SMALL CAPITAL N 2
247 F7 [U+1D39] MODIFIER LETTER CAPITAL M 2
248 F8 [U+0272] LATIN SMALL LETTER N WITH LEFT HOOK 2
249 F9 [U+0273] LATIN SMALL LETTER N WITH RETROFLEX HOOK 2
250 FA [U+0259] LATIN SMALL LETTER SCHWA 2
251 FB [U+0255] LATIN SMALL LETTER C WITH CURL 2
252 FC [U+0300] COMBINING GRAVE ACCENT 1
253 FD [U+21AD] LEFT RIGHT WAVE ARROW 2
254 FE [U+21AE] LEFT RIGHT ARROW WITH STROKE 2
255 FF [U+0301] COMBINING ACUTE ACCENT 1
#END

BEGIN ABSTRACT

Linguistic Society of America (LSA) 2005, Oakland, CA

 http://www.lsadc.org/annmeet/sessions.html#sunmorn

 Workshop: Unicode for Linguists: How To Type, Send, and Archive

 Linguistic Texts by Computer

 Sunday, 9 January 9:00 AM - 12:00 PM

 Room: Simmons 3/4, Oakland Convention Center.

 Organizer: Deborah Anderson (UC-Berkeley)

 Participants: Charles A. Bigelow (Bigelow & Holmes), William Bright,

 Peter Constable (Microsoft), Richard Cook (UC-Berkeley), Kenneth

 Whistler (Sybase, Inc.)

--- Workshop Schedule ---

 9:00 - 9:05 Introductory remarks by William Bright

 9:05 - 9:50 "Introduction to Unicode for Linguists"

 by Peter Constable

 9:55 - 10:25 "Unicode Fonts for Linguists (with a demonstration)"

 by Charles Bigelow

 10:30 - 11:00 "Conversion of Legacy Linguistic Transcription data to

 Unicode 4.0" by Richard Cook

 11:05 - 11:20 "Developing Tools with IPA-encoded Unicode: Towards a

 Phonologically-Based Search Engine" by Edward Garrett

 11:25 - 11:40 "The Future of Unicode"

 by Deborah Anderson and Ken Whistler

 11:40 - 12:00 Discussion and Q & A period with panel participants.

COOK

 Dr. Richard Cook (Project Manager and Systems Administrator, the

 Sino-Tibetan Etymological Dictionary and Thesaurus at UC Berkeley

 <http://stedt.berkeley.edu>; Unicode <http://www.unicode.org/>

 editorial committee member, representative to ISO/IEC

 JTC1/SC2/WG2/IRG <http://www.cse.cuhk.edu.hk/~irg/>; co-author of the

 CDL specification <http://www.wenlin.com/cdl/>; Post-Doctoral

 Researcher and programmer for the World Color Survey

 <http://www.icsi.berkeley.edu/wcs/>.)

 Richard Cook will discuss Unicode 4.0 linguistic transcription

 support, and conversion of legacy data to Unicode 4.0. The use of

 custom(izable) tools for converting legacy data to Unicode 4.0 will

 be demonstrated.

Title:

Conversion of legacy linguistic transcription data to Unicode 4.0

Abstract:

 This presentation describes the process of converting legacy data to

 Unicode encoding, including character set mapping, encoding unencoded

 characters, and demonstration of conversion tool use. Terminology is

 introduced in context, including the following: legacy data, code

 point, encoding, custom encoding, standard encoding, USV, mapping,

 character set, encoding form.

 Unicode conversion of the STEDT Project's legacy data serves as a

 specific example. The STEDT Project (federally funded at UC Berkeley

 since 1987) began migrating its million-record Sino-Tibetan (ST)

 lexical relational database system to Unicode in earnest in the late

 90's. The justification for this conversion hinges on attaining

 universal permanent data access. STEDT data was originally input and

 archived using a custom-encoded Apple Macintosh character set refined

 over the years on the basis of the transcription characters appearing

 in specific lexical print (and handwritten) sources. Data input using

 other encodings was migrated to this custom encoding. Source

 transcriptions would sometimes be normalized in order to render them

 in the custom encoding, though in general the character set was

 well-suited to capturing ST transcriptional conventions. The

 custom-encoding was not, however, well-suited to smooth data

 interchange and archiving.

 The conversion process involved the following steps: (0) Realizing

 that it needed to be done, learning how to do it, and that it could

 only be done in stages; (1) Mapping to Unicode 3.0; (2) Formal

 proposal of unencoded characters for inclusion in Unicode/ISO 10646;

 (3) Mapping to Unicode 4.0; (4) Creation of tools for conversion of

 the custom-encoded data; (5) Creation of tools for use of the new

 Unicode data. Complete standard mapping of this character set became

 possible only with the advent of Unicode 4.0, with the encoding of

 certain characters peculiar to ST usage that had previously escaped

 the notice of standardization bodies.

 Dictating aspects of actions taken in step 4, step 5 is ongoing, and

 addresses a whole set of related issues, including: (A) relative

 primacy and maintenance of the data in original and converted forms;

 (B) database application data requirements; (C) font support.

 Unicode now serves as the standard interface to STEDT's lexical

 data, and with application and font support coming soon to a computer

 near you, Unicode will provide linguists worldwide with access to this

 valuable data for years to come.

Dr. Richard S. Cook

STEDT Project

Linguistics Dept.

UC Berkeley

http://stedt.berkeley.edu

END

