
�

Multi-Lingual Computing

 31C 31D 31E

0 ㇀ ㇐ ㇠

1 ㇁ ㇑ ㇡

2 ㇂ ㇒ ㇢

3 ㇃ ㇓ ㇣

4 ㇄ ㇔

5 ㇅ ㇕

6 ㇆ ㇖

7 ㇇ ㇗

8 ㇈ ㇘

9 ㇉ ㇙

A ㇊ ㇚

B ㇋ ㇛

C ㇌ ㇜

D ㇍ ㇝

E ㇎ ㇞

F ㇏ ㇟

The CJK Strokes Block
U+31C0..U+31CF : Unicode 5.0
U+31D0..U+31E3 : Unicode 5.1?

Wenlin CDL:
Character
Description
Language
by Tom Bishop & Richard Cook

The roughly 72,000 encoded CJK (“Chi-
nese, Japanese, Korean, and Vietnam-
ese”, a.k.a. “Han”) characters constitute
by far the largest chunk of Unicode. And
even that many code points isn’t enough,
since many thousands of CJK characters
remain unencoded. Most of them are
rare variants, but nevertheless impor-
tant for certain purposes. Scholars fre-
quently encounter strange characters in
ancient texts, and government workers
may need to write the names of people
and places that use unusual characters.

This problem can never be solved once
and for all by simply assigning a number
to each character, since the set of CJK
characters is open-ended.

In this article we introduce Wenlin’s
Character Description Language (CDL), an
XML application that solves the unen-
coded CJK character problem once and
for all. CDL is here shown to provide
methods for handling all CJK characters,
encoded and unencoded. And CDL meth-
ods will be seen as more generally appli-
cable to other complex writing systems.

An Infinite Set of Characters

Historically, the most common way of
creating new CJK characters has been to
combine two or more existing characters
and squeeze them into a square. Here is
an unencoded character combining 車
‘chariot’ on the left, and 鳥 ‘bird’ on the
right:

Characters that can serve as pieces of
more complex characters are called com-
ponents. In the days when most writing
was done by brush (or woodblock print-
ing), it was easy and common for writers
to invent new characters this way.

Usually one component serves to sug-
gest the meaning, and the other to ap-
proximate the pronunciation. The com-
bination of ‘chariot’ and ‘bird’ might
represent a word for a kind of chariot
whose name sounded similar to the word
for ‘bird’, or vice-versa; or maybe a flying
wagon. The truth is, we don’t know! This
character doesn’t have a Unicode num-
ber yet, but it comes from the Adobe-
Japan1 collection and was recently pro-
posed (by Ken Lunde and Eric Muller) for
future Unicode encoding.

In principle, any character, no matter
how complex, can be used as a compo-
nent in another (more complex) charac-
ter. Likewise, any recurrent pattern of
strokes can be identified and reused as a
component.

Describing Characters, Not Just
Numbering Them

The basic idea of CDL is that a charac-
ter can be represented (described) as a
sequence of what we call basic script ele-
ments. For CJK these basic script elements
are not the characters themselves, but
rather, the kinds of strokes used to write
the characters. While components aren’t
basic in this sense, they often play a use-
ful intermediate role in CDL, between in-
dividual strokes and entire characters.

A CDL description simultaneously
identifies the character and also gives
instructions for displaying it. The idea
is similar to how the spelling of a word
in an alphabetical script is described as a
sequence of letters — for example, “cat”
is simply described as “c”, “a”, “t”.

Similarly, the character 呆 can be de-
scribed as a sequence of the two com-
ponents “口”, “木”; and those, in turn,
can be described as sequences of strokes.
That’s not enough information to display
or identify 呆, however, since the same
components can be arranged differently,
forming distinct characters such as 㕲
and 困 (with completely different pro-
nunciations and meanings). For this rea-
son, CDL descriptions specify the two-di-
mensional positions of the components
and strokes, as we’ll explain below.

�

Multi-Lingual Computing

An Alphabet of Stroke Types

Since the set of components is unlim-
ited, the components themselves need
to have descriptions, and we don’t stop
describing until we’ve described (either
directly or by reference) the individual
strokes of each character.

Fortunately, we find that an “alphabet”
of just 36 stroke types is enough for a
very large class of CJK characters.

Wenlin Institute’s CDL specification
defines a set of stroke types, which has
been translated into the block of 36 CJK
Strokes, shown in the CJK Strokes table
above. The strokes in the first column are
already encoded in Unicode 5.0, while
the rest will become a formal part of the
standard presumably in version 5.1.

From Pictures To Strokes

One of the unique features of CJK char-
acters is their high degree of dependence
on norms determining stroke type,
stroke order, and stroke count. These
handwriting norms began to take form
in the earliest known periods of Chinese
writing more than 3,000 years ago, and
underwent various changes and refine-
ments in subsequent periods, as the re-
sult of changes in writing implement,
writing media, writing method (print-
ing), and language changes (vocabulary
development).

A major script reform took place in
the 秦 Qín Dynasty (c. 200 BCE). In the 東
漢 Eastern Hàn period (c. 121 AD) an in-
fluential analysis codified the elements
of the script. There were 9,353 Chinese
characters at that time, and 1,163 vari-
ants, according to the most important 清
Qīng Dynasty recension of the《 說文解
字》Shuō Wén Jiě Zì text (that of 段玉裁
Duàn Yùcái, d. 1815).

As written texts grew in complexity, as
libraries collected more and more books,
and as the inventories of Chinese charac-
ters became larger and larger, it became
urgent to define methods for organizing
and indexing the elements of the com-
plex character set.

Through refinements climaxing in the
宋 Sòng period (c. 1,000 AD), coinciding
with the widespread use of woodblock
printing, the Han glyphs attained the
style evident in Unicode’s code charts.
Glyphs in the Sòng style are highly con-
strained in many ways, but most impor-

tantly in terms of the types of strokes
which may occur.

Below is an archaic pictograph for the
word meaning ‘chariot’ (such as is seen
in oracle bone inscriptions [OBI = 甲骨文]
from more than 3,000 years ago):

Compare the above with the Eastern
Hàn Small Seal form (小篆, shown below),
more than 1,000 years later, but having
the relatively simple form attested much
earlier (in middle and late 周 Zhōu Dy-
nasty inscriptions):

􂠴
In the Sòng printed style (below) many

old curves are now sharp angles and the
strokes are very regular and stylized:

車
The Sòng-style ‘chariot’ character above

has exactly seven strokes (we’ll count
them later); it is the standard form in
Japan, Taiwan, and Korea. In PRC and
Singapore, the standard simple form (be-
low) has only four strokes:

车
Like many simple forms, 车 is based

on cursive forms in use for many centu-
ries. Nevertheless, its strokes are all Sòng
style. CDL is equally well suited to de-
scribing the simpler and more complex
CJK variants that are preferred in differ-
ent locales.

On the left below is an archaic pic-
tograph for ‘bird’ (again, an early OBI
form), and on the right is the Eastern Hàn
Seal form:

 􀨤
Below are the modern Sòng-style de-

scendants, full form (left, 11 strokes) and
simple form (right, 5 strokes):

鳥 鸟
Han characters were not originally

composed of a limited set of strokes, but
only gradually came to be written that
way. If the characters were still just pic-
tures rather than being made up of stan-
dard strokes, maybe the best that could
be done would be to assign a number
to each picture. Fortunately, the set of
stroke types evident in a Sòng-style type-
face can be regarded in a very real sense
as the alphabet of CJK writing.

The Origins of CDL
CDL was developed by Wenlin Institute

as part of its software package for learn-
ing Chinese, to teach the fundamentals of
traditional Chinese writing. The software
provides animated stroke-by-stroke dis-
play of more than 50,000 CJK characters.

In the published versions of Wenlin,
the CDL language itself is a hidden fea-
ture of the software implementation.
The special abilities to view, create and
modify CDL descriptions have so far only
been included in unpublished versions
of the software. The authors are work-
ing towards making these features, and
the database of over 50,000 descriptions,
available to a wider audience.

Stroke and Comp(onent)
The most important keywords in Char-

acter Description Language are stroke
and comp (an abbreviation for compo-
nent). We’ve called strokes the basic CJK
“alphabet”, and CDL can describe any
Han character purely in terms of strokes.
Nevertheless, the majority of characters
can be described more briefly and more
meaningfully in terms of components.
Components then have their own de-
scriptions, sometimes in terms of sim-
pler components, until finally the sim-

�

Multi-Lingual Computing

plest components are described purely
in terms of strokes.

Since that is the usual situation, we’ll
demonstrate the usage of comp first, and
stroke later.

A Bird in the Chariot (is worth ...)

A CDL description for our “flying chari-
ot” (or “wheeled bird”?) character might
look almost like this:

 <cdl>
 <comp char='車'
 position='left' />
 <comp char='鳥'
 position='right' />
 </cdl>

Just looking at the code, it isn’t hard to
see that the character being described is
built from two components: 車 ‘chariot’
on the left, and 鳥 ‘bird’ on the right.

However, we generally want more pre-
cise control over the positions of com-
ponents and (especially) strokes. (Oth-
erwise, CDL would be similar to an older
technology known as Ideographic Descrip-
tions Sequences, which is useful but lacks
many of the capabilities of CDL.)

Most often when we create descrip-
tions, we use a graphical interface to po-
sition the elements visually, by dragging
on “control points” with the mouse. We
usually don’t need to read or type any
numbers; the CDL description is auto-
matically updated to contain the exact
coordinates.

Therefore, the form of CDL that we
actually use doesn’t have a position
attribute. Instead, it has a points attri-
bute with numerical (x, y) coordinates,
and looks like this:

<cdl>
 <comp char='車'
 points='0,0 64,128' />
 <comp char='鳥'
 points='68,0 128,128' />
</cdl>

[Technical note: Any coordinate system
could be used. In the current implementation,
we have found it convenient and efficient
to use coordinates from 0 to 128, where (0,0)
is the (left, top) corner and (128,128) is the
(right, bottom) corner. Decimal points are
allowed for fractional coordinates (such as
3.14159), so the precision is practically un-
limited and does not depend on the number

(such as 128) that is chosen for the maximum
coordinate value.]

The Wenlin Stroking Box

The illustrations below are screenshots
from the Stroking Box in an unpublished
CDL-development version of the Wenlin
software. The interface looks like this:

It’s the same interface that the pub-
lished educational version uses when
displaying stroke-by-stroke animation,
but with two additional capabilities: one
for displaying the CDL code, and one
for modifying the positions by pointing
with the mouse and dragging on “control
points”. The illustration below shows
the control points at the corners of the
bounding boxes:

Here’s what it looks like if we drag
some points around to make the chariot
smaller and the bird bigger:

It’s possible to convert automatically
any description that uses comp ele-
ments into one that uses only stroke
elements (eighteen of them in this case).
When this is done, all control points are

at the stroke level, as in the following il-
lustration:

The all-strokes description allows us to
adjust the position of any stroke, add or
remove strokes, and so forth, perhaps to
describe a peculiar variant like this one:

Seven-Stroke Chariot

To demonstrate the stroke element,
here’s a description of 車:

 <cdl>
 <stroke type=’h’ />
 <comp char=’日’ />
 <stroke type=’h’ />
 <stroke type=’s’ />
 </cdl>

That’s pretty simple. In fact, it’s too
simple for some purposes, and we’ll add
some important details shortly, but first
let’s explain what we have so far.

The character 車 is described as a se-
quence of four elements: a stroke, a com-
ponent, and two more strokes. (This is
the order in which the character is tra-
ditionally written: basically from top to
bottom, but with the long vertical stroke
last.)

The component 日 needs to have its
own description, which we’ll supply fur-
ther below. As we’ll see, 日 itself has four
strokes, so 車 has a total of seven strokes.
Now, what do h and s stand for?

�

Multi-Lingual Computing

H = Heng = Horizontal
Each of the stroke elements has a

stroke type attribute, specifying one of
the 36 types, represented by the ASCII
abbreviation that is used in the Unicode
CJK Stroke name. 車 starts with an h and
ends with an s.

The first stroke in 車, h, goes horizon-
tally from left to right. Its name is an
abbreviation for Mandarin héng 横 ‘hori-
zontal’, which is the traditional name for
this stroke type. (It’s a coincidence that
héng and horizontal both start with the
letter h.)

The last stroke in 車, s, starts at the
top center and goes straight down. The
letter s is an abbreviation for shù 竖
‘vertical stroke’.

(The 36 members of Unicode’s new CJK
Strokes block [see the table above] make
it possible to use the Unicode characters
or numbers as alternatives to the Manda-
rin-ASCII stroke-name abbreviations.)

Here Comes The Sun

We promised to show the description
of 日, which is needed for a complete in-
terpretation of the description we gave
for 車. The character 日 by itself means
‘sun’ or ‘day’; however, as a component
in 車, it’s simply a reusable arrangement
of four strokes.

 <cdl>
 <stroke type=’s’ />
 <stroke type=’hz’ />
 <stroke type=’h’ />
 <stroke type=’h’ />
 </cdl>

The only new stroke type here is hz,
which stands for Mandarin héng-zhé 横
折 ‘horizontal-turning’. This is a stroke
that turns a corner; in this case, the top-
right corner of 日.

We could choose to describe 車 direct-
ly in terms of seven strokes, and avoid
using 日, but it would be a longer de-
scription (with seven elements instead of
four). The reuse of components makes a
collection of descriptions not only more
efficient in terms of space, but also more
internally consistent and easier to devel-
op and maintain.

Getting To The Points
To enable the full power of CDL to de-

scribe exactly how to display a character,
each stroke element has a points at-

tribute specifying placement of its con-
trol points.

Just as with components, a graphical
interface enables us to move the control
points around visibly on the screen, by
dragging on them with a mouse. There-
fore, it’s often unnecessary for the per-
son who creates, edits, or uses a CDL de-
scription to be concerned with the actual
numerical coordinates.

This is how the control points are dis-
played in the Stroking Box:

By dragging them apart, we can see the
four individual strokes:

The number of control points depends
on the stroke type. The simple h and s
types each require only a starting point
and an ending point. The more intri-
cate hz uses three points: the start, the
corner, and the end. (The most intricate
stroke type is named hzzzg and uses six
points. It occurs in the character 乃.)

For those of you who are interested,
here is a description of 日 with points
included:

<cdl>
 <stroke type=’s’
 points=’0,0 0,128’ />
 <stroke type=’hz’
 points=’0,0 128,0
 128,128’ />
 <stroke type=’h’
 points=’0,60 128,60’ />
 <stroke type=’h’
 points=’0,128 128,128’ />
 </cdl>

Information Overload?
Before your eyes start to glaze over,

we recommend that you skip this sec-
tion and move on to the next one, unless
you’re really wanting more technical de-
tails right now! This is the last chunk of
code we’ll show in this article.

Here is our most complete description
of 日 ‘sun’:

<cdl char=’日’ uni=’65e5’
 variant=’0’
 points=’24,8 104,120’>
 <stroke type=’s’
 points=’0,0 0,128’
 tail=’long’ />
 <stroke type=’hz’
 points=’0,0 128,0
 128,128’
 head=’cut’ tail=’long’ />
 <stroke type=’h’
 points=’0,60 128,60’
 head=’cut’ tail=’cut’ />
 <stroke type=’h’
 points=’0,128 128,128’
 head=’cut’ tail=’cut’ />
 </cdl>

The first line opens the cdl element,
and the last line ends it with </cdl>.
This time we’ve included four optional
attributes for the cdl element: char
and uni, which simply say this is a de-
scription of 日 (U+65e5); also vari-
ant, which assigns the description to
a particular variant identifier, in case
we have multiple descriptions for the
“same” character. (We discuss variation
and unification further below.)

The fourth optional attribute is the
points for the character as a whole.
(That is, the first points attribute,
before the two stroke elements.) As
we’ve used it in 日, it has the effect of
making 日 slightly narrower and shorter
than the regular square, and this im-
proves its appearance, partly by avoiding
having strokes running along the outer
edges of the square. (By the way, this
first points attribute only affects the
display of 日 as a standalone character.
When 日 is used as a comp in another
character, such as 車, the points at-
tribute of the comp tag in that character
overrides this one.)

Finally, the strokes have optional attri-
butes such as tail=’long’, which af-
fect subtle decorative features of the Sòng
style outlines, especially where strokes
meet. CDL descriptions can be displayed

�

Multi-Lingual Computing

in a “plain” style without decorations, in
which case these decorative attributes
are superfluous.

Applications

CDL began as a way to implement a
learning tool, yet applications of CDL
technology are more general and far-
reaching, and provide solutions to dif-
ficult problems facing the international
encoding community. Some of the most
important applications for CDL include:

(1) Teaching stroke order
(2) Representing unencoded characters
(3) Distinguishing unified variants
(4) A font format with built-in indexing
(5) Handwriting recognition
(6) Indexing by strokes & components
(7) Maintaining & Building Unicode
(8) Optical Character Recognition (OCR)

CDL has already been put to all of these
uses, in varying degrees. Most of the re-
mainder of this article will discuss these
applications.

• Application 1: Teaching Stroke
Order

We’ve already shown pictures of the
Stroking Box, an educational software
feature which was (and still is) the
original application for CDL. It displays
animation of a character being written
stroke-by-stroke. Each stroke is writ-
ten gradually so that the learner can see
where it begins and ends. There are con-
trols for setting the speed, colors, style,
and stroke thickness. Thousands of stu-
dents have used the Stroking Box since
Wenlin Software for Learning Chinese, ver-
sion 1.0, was published in 1997.

In addition to the dynamic Stroking
Box, Wenlin displays static stroke-order
diagrams like the following.

日 ‘sun/day’ (4 strokes):

车 ‘car’ (simple form, 4 strokes):

 車 ‘car’ (full form, 7 strokes):

鸟 ‘bird’ (simple form, 5 strokes):

鳥 ‘bird’ (full form, 11 strokes):

Our primary reference for stroke order
and other orthographic questions is a
PRC national standard published under
the title of 现代汉语通用字笔顺规范
(ISBN 7-80126-201-8).

Of course, CDL descriptions can and
should be created as needed to represent
orthography in other locales, whenever
there is variation between the standards.
(Cf. the variant attribute mentioned
above under “too much information”;
and the discussion below of “unification
and variation”.)

• Application 2: Representing
Unencoded Characters

We’ve already demonstrated how CDL
can represent any combination and ar-
rangement of Sòng-style strokes and
components, regardless of whether there
is a Unicode number assigned to it.

Such a CDL description can be included
directly in a text file, interspersed with
ordinary text (perhaps including other
XML-based markup). CDL-enabled soft-
ware will display the character simply by
interpreting the CDL, without needing a
customized font, a Private-Use Area code
point, or an embedded graphical image.
Users won’t see codes, they’ll just see
characters.

So far, Wenlin is the only software with
this ability to display embedded CDL
(and its CDL features are mostly unpub-
lished or undocumented), but we expect
this ability eventually to be included

by the mainstream web browsers, word
processors, operating systems, and other
software.

When end-users are able to create CDL
descriptions of characters, encoded or
not, and can embed these in online docu-
ments, web spiders crawling the internet
will be able to collect them automatical-
ly, and use associated metadata to feed
these descriptions into encoding and
variant-mapping processes.

CDL: the Elements of CJK(V)
Imagine that instead of typing the let-

ters of the alphabet on your computer
keyboard to write English words, you
needed a keyboard with one key for each
word. This would be a big keyboard in-
deed! Even if the size were not a problem,
no matter how may words it included,
there would always be missing words
that couldn’t be typed.

Another way to think about it is to
imagine an inflexible spell-checker that
absolutely refuses to let you write any
word not in its dictionary. The situa-
tion in CJK encoding is rather similar to
this, to the extent that the Han character
(comprised of strokes) is like the English
word (comprised of letters).

CJK input methods, as a rule, only al-
low inputting a limited set of charac-
ters. They don’t allow constructing new
(missing or unencoded) characters by
combining strokes or components. In
this way, they really are like the absurdly
enormous English keyboard we were
imagining that has no letters, or like a
mad(dening) spell-checker that won’t al-
low exceptions and can’t be turned off.

We should clarify that for many pur-
poses the situation isn’t really quite as
bad as these analogies suggest, because
most CJK “words” are in fact written
as strings of two or more characters.
Thus, ten thousand or so characters are
enough to write hundreds of thousands
of words. New words are created all the
time, but, partly due to technical limi-
tations for typesetting, new Han char-
acters are rarely created anymore. The
current Unicode CJK set is sufficient for
most ordinary modern vocabulary used
in newspapers, etc.

Nevertheless, these analogies do ac-
curately portray the difficulties people
are up against when they wish to go be-
yond the limitations of a finite set of Han

�

Multi-Lingual Computing

characters and represent, on a computer,
the characters that were so freely and
frequently created in the past with hand-
writing and woodblock printing.

Jabberwocky Unencoded?
If English writers were encumbered by

the restrictions currently afflicting CJK
writers, the situation would be obviously
intolerable. For example, in production
of editions of Shakespeare, or Chaucer,
or Lewis Carroll, it would be impossible
to use the original spellings, unless they
happened to be in a dictionary used as a
source for a computer encoding.

When the famous linguist Y. R. Chao
(趙元任) translated Lewis Carroll’s poem
Jabberwocky into Chinese, he invented
some new Han characters and words to
match the invented English words. Some
modern avant-garde artists have pro-
duced beautiful calligraphy using made-
up or nonsense Han characters. When
such creative people start using CDL, for
better or worse, they’re going to have a
lot of fun breaking the Unicode barrier.
CJK Finnegans Wake here we come!

• Application 3: Distinguishing
Encoded Variants

By design (and by necessity), Unicode
unifies (i.e. lumps together under a single
code point) many variants of CJK charac-
ters that differ in small (and presumably,
mostly non-distinctive) ways, such as the
presence or absence of a dot, or whether
stroke segments are joined or separated.

Such variations can be very important
for some purposes. For example, differ-
ent national standards sometimes assign
different official stroke counts to the
“same” character, and the stroke counts
determine the organization of dictionar-
ies, etc.

For another example, historical Chi-
nese texts can often be dated on the ba-
sis of a single stroke being intentionally
omitted in taboo avoidance of the name
of the reigning emperor.

Shakspere, Shaksper, Shaxper:
Unified Variants?

The Bard himself reportedly spelled his
name variously in his own day as Shak-
spere, Shaksper, Shaxper, and Shake-
speare. If English words needed to be
encoded like CJK characters, and the vari-
ant spellings were unified, then we’d be
unable to write the preceding sentence

(without resorting to some non-standard
text representation practice). The digiti-
zation of original editions of important
historical texts would be hindered by the
lack of prior lexicographic and encoding
work. This is the status quo for CJK texts,
and it presents an unacceptable and un-
necessary bottleneck.

Given that a goal of Unicode is to pro-
vide an international CJK character en-
coding, transcending temporal and po-
litical boundaries, Unicode doesn’t have
the luxury of narrow scope. In fact the
problems faced in Unicode’s CJK encod-
ing are greatly compounded, requiring
in effect innovative and comprehensive
lexicographic work to be the gating con-
straint on the digitization of texts.

Clearly, an adequate system needs to
be developed and promoted for wide
adoption, to make possible the short-
term progress and long-term success of
CJK digitization projects. CDL enables
computerized encoding and structured
combination of the minimally distinctive
features that are lost in Unicode unifica-
tion.

Unicode has recognized the need for
identifying variants that share a code
point, and for this purpose has estab-
lished the “variant selector” mechanism.
The need remains, however, to assign a
precise meaning to each combination
of code point and variant selector (see
Hiura & Muller 2006: UTS #37, <http://
www.unicode.org/reports/tr37/>). CDL
is ideal for this purpose. Each code point
can have multiple CDL descriptions, one
description for each variant, uniquely
identified by a selector.

• Application 4: CDL Fonts

A database of CDL descriptions serves
as a font that can be used by a CDL-aware
application to display any CJK text. A CDL
font has some valuable characteristics.

A CDL font can be compressed to an
extremely small size, much smaller than
any other format with comparable qual-
ity. This is because the vast majority of
characters can be described with just two
comp tags each, and for such a character
all that needs to be stored is two Unicode
numbers and a few coordinates. The re-
use of component descriptions means
that each component only needs to be
described once in the font. Wenlin’s CDL
font file of over CJK 50,000 characters oc-

cupies less than one megabyte of storage
(about 18 bytes per character).

A CDL font displays very quickly, at a
speed comparable to conventional font
formats (TrueType, etc.).

We have implemented utilities for
converting CDL descriptions into other
font/graphics formats including Post-
script, Scalable Vector Graphics (SVG),
and METAFONT.

Since the descriptions are standards-
based, and components are reused, the
CDL font is inherently very consistent.
Contrast the CJK fonts that have been
used, for example, to print editions of
The Unicode Standard, which by necessity
have been combinations of fonts that
don’t really go together and therefore
are inconsistent in the ways that par-
ticular components and strokes are dis-
played in different characters.

Adding a new glyph to a CDL font is
generally just a matter of combining a
few elements and adjusting a few coordi-
nates. That’s much easier than adding a
new glyph to an ordinary font, especially
if you are trying to match the style.

A single CDL font can be displayed in
different styles and weights. Thus it re-
ally serves as a font family. (In this re-
spect, CDL has something in common
with the METAFONT language, and with
Multiple Master fonts.) The CDL descrip-
tions themselves determine the essential
shape or “skeleton” of a character in a
general way. The CDL interpreter is re-
sponsible for deciding stroke thickness,
and whether to include optional decora-
tions. Here are two examples of the same
text, displayed using the same CDL de-
scriptions, but different choices of style:

• Application 5: Handwriting
Recognition

Since CDL describes the way each CJK
character is actually written by hand,
stroke by stroke, it naturally has applica-
tions for handwriting recognition. This
capability of CDL is demonstrated by the
brush tool input method of the published
Wenlin software. When the user selects

�

Multi-Lingual Computing

the brush tool, a window is displayed
containing a square region in which the
user can write a character by hand, us-
ing a mouse or a pen input device. If the
handwritten character is similar enough
to any of the 50,000 characters in the CDL
database, then the character is inserted
(as Unicode) into the text which the user
is editing. The recognition accuracy rate
is high, provided that characters are
written with standard stroke count and
stroke order. There is an option to ignore
stroke order, but accuracy is higher if
that option is turned off and the standard
order is used. There is another option for
showing a list of characters similar to the
handwritten character, from which the
user can choose.

The recognition algorithm currently
employed is essentially simple. It counts
the strokes in the handwritten character,
then compares it with all the characters
in the CDL database with the same num-
ber of strokes, and finds the most similar
character(s), based on the distance (sum
squared difference) between the cor-
responding stroke coordinates. Perhaps
surprisingly, this is not only very fast (a
fraction of a second), but also accurate.

Currently only the beginning and end-
ing coordinates of each stroke are used.
Even higher accuracy could be achieved
by taking into account intermediate
points along the path of a stroke, rath-
er than only the beginning and ending
points. The algorithm could be extended
to handle cursive handwriting, in which
strokes are not necessarily separated by
lifting the pen. We have experimented
with using the CDL database for train-
ing a neural network to recognize stroke
types.

Theoretically, it should be possible to
implement a recognizer which would
create a complete CDL description based
on a handwritten character, even if there
were no matching description in the CDL
database. In that situation, the recog-
nizer could insert the CDL description
itself (as XML), rather than a Unicode
character code, directly into the text.
In this way one could input unencoded
characters such as our first example of
the “chariot plus bird” combination.

• Application 6: Indexing by
Strokes and/or Components

Many CJK dictionaries and other refer-
ence works include indexes for locating

characters according to their strokes
and/or components. (Pronunciation is
another popular key to organizing CJK
dictionaries, but of course it requires
knowledge of the pronunciation, which
for someone consulting a dictionary is
sometimes like putting the cart before
the horse.)

Components used for organizing dic-
tionaries and indexes are known in Eng-
lish as radicals. A conventional set of 214
radicals has been used to organize many
dictionaries, starting with Zihui in the
15th century, and including the famous
Kangxi Dictionary published in 1716. Our
“chariot plus bird” character might be
listed under either the chariot radical or
the bird radical. (You would have to guess
which of the two, and generally try both;
but don't bother since this character
probably isn't in your dictionary!)

Thousands of characters may share the
same radical, just as thousands of words
written alphabetically may start with
the same letter. For alphabetical index-
ing, the order depends on the non-initial
letters in a word. Early radical-based dic-
tionaries listed same-radical characters
in essentially random order, but even-
tually it became common to sub-group
using residual stroke count, which is the
number of strokes a character would
have if its radical were removed. Char-
acters with the same radical and same
residual stroke count were still listed in
random order, and this practice survives
in the Unicode standard. Some 20th-
century dictionaries, however, started
using a third organizing principle to de-
termine the order of characters with the
same radical and same residual stroke
count. This principle takes into account
the types of the residual strokes, using
classification systems related to what
are now the CDL stroke types h, s, etc.
The system which has become standard
in PRC distinguishes five categories of
stroke types with a conventional order-
ing. The CDL specification includes the
mapping of the 36 CDL stroke types to
the five stroke categories.

Owing to the difficulties with radi-
cals, many reference works employ an
alternative method instead of (or in ad-
dition to) radicals. This method simply
orders characters by their total stroke
counts, and orders characters with the
same stroke count by the type of the
first stroke. If the stroke count and first

stroke type are the same, the type of the
second stroke is taken into account, and
so forth.

The Wenlin software uses its CDL da-
tabase to provide lists of characters or-
dered by radical, residual stroke count,
and residual stroke type; and also lists
ordered by total stroke count and stroke
types.

We used CDL to prepare the radical and
stroke indexes for the ABC Chinese-English
Comprehensive Dictionary, edited by John
DeFrancis, published in book form by the
University of Hawaii Press, 2003 (ISBN
0-8248-2766-X). Wenlin Insitute also pro-
vided the Unicode Consortium with CDL-
based data to assist in the construction
of a radical index for a subset of the Han
characters in the Unicode Standard 5.0.

• Application 7: Maintaining
and Extending Unicode

Organizing the more than 70,000 CJK
characters already in Unicode, and the
thousands more destined for future en-
coding, is an extremely challenging task.
This is especially true since the main
method of organization used so far has
been the venerable Kangxi Dictionary sys-
tem just described. Characters are first
grouped by radicals, but different lexi-
cographers classify the same character
under different radicals (like chariot
versus bird). Then characters are sub-
grouped by residual stroke count, but
different lexicographers often count
slightly different numbers of strokes in
the same character. Finally, the order
of characters with the same radical and
same residual stroke count is random.
(Unicode follows the random order of
Kangxi Dictionary for characters that are
included in that dictionary.)

Under these circumstances, it would
be unfair and pointless to blame anybody
for the fact that some characters have
accidentally been encoded twice. (That
is, sometimes two different Unicode
numbers have been assigned to the same
character.) Such mistakes were bound
to occur when it is so easy not to find a
character which is in a different location
from where one expects to find it. When
an obscure character isn't found among
the already encoded characters, after
searching several times, the conclusion
is naturally reached that the character
hasn't been encoded yet. This problem
has been greatly exacerbated by the fact

�

Multi-Lingual Computing

of variation. Two forms of the “same”
character may be different enough that
they are not easily recognized as the
same character in spite of unification
guidelines.

If the process continues without bet-
ter methods, we can only expect the fre-
quency of mistakes to increase, since the
larger the haystack, the harder it will be
to find any particular needle.

Another problem with the never-end-
ing addition of thousands of Han charac-
ters to Unicode, is that each new version
of Unicode causes existing fonts and in-
put methods to become out of date.

CDL can help to solve these problems,
or at least alleviate them. First of all,
when CDL technology becomes widely
available, there will be less need or ur-
gency for encoding obscure Han char-
acters. Digitization of ancient Buddhist
manuscripts, for example, will be able
to proceed using CDL to represent unen-
coded or rare variant characters, rather
than waiting years for those characters
to become part of Unicode, or creating
incompatible, temporary fonts and doc-
uments using private-use code points.

When addition of rare Han characters
to Unicode does continue, a complete
CDL database of the already-encoded
Han characters can be searched exhaus-
tively to make sure that each candidate
character really is unencoded, and not
just hiding under a non-obvious radical.
To facilitate this kind of searching, each
encoded character should have not only
one CDL description in the database, but
multiple descriptions corresponding to
different ways of writing or analyzing the
“same” character. The search algorithm
should use robust and "fuzzy" matching
to find similar or identical descriptions.
Similarity can be based on either com-
ponents or strokes, or both. CDL’s ability
to automatically convert a component-
based description into a strokes-only de-
scription can be exploited, to avoid the
problem of variant component-analysis.
For example, 章 can be described as 音
over 十, or as 立 over 早, or as 立 over 日
over 十: when converted to a sequence of
strokes, the descriptions are identical.

The problem of fonts becoming out of
date can be alleviated in two ways: by
using CDL to display a character that is
missing from a font; and by using CDL de-
scriptions to assist in font creation. Simi-

larly, input methods based on strokes
could be updated much more easily us-
ing CDL.

All these solutions will be greatly fa-
cilitated if publication of at least one CDL
description for a character is made a pre-
requisite for adding it to Unicode.

• Application 8: Optical Charac-
ter Recognition

Another exciting (and still experimen-
tal) application of CDL is to the problem
of CJK optical character recognition (OCR).
Current OCR technologies, when applied
to CJK text, yield largely binary results:
either a printed character is identified
with an encoded character, or it is not.
Where matching fails or is imperfect,
either a completely wrong character is
selected, or else OCR fails completely.
Using CDL, the results of partial or failed
OCR matches become meaningful. Just as
the inability to recognize a single letter
in OCR of English text might not result
in failure to recognize the word, and just
as the absence of an English word from a
spell-checker’s dictionary needn’t signal
complete OCR failure, so too OCR of un-
encoded or damaged CJK characters can
succeed where current CJK OCR fails, by
including CDL in the OCR output.

Even with a well-developed system for
semi-automatically converting highly
constrained bitmaps to CDL, the exact
stroke-order information may be miss-
ing, and the resulting description will
need human checking anyway. And ini-
tial creation of the highly constrained
bitmaps is a real bottleneck: with uncon-
strained bitmaps (i.e., scans of variable-
quality printed examples), automatic
CDL creation is going to be difficult at
best. But if the writer/inputter can
stroke over a bitmap template of what-
ever quality, build the description stroke
by stroke with reference to an original
(and optionally convert the strokes to
components somewhere down the line),
this would be ideal, a very natural CDL
creation process for CJK writers.

Other Scripts: Cuneiform, Etc.
The applications of CDL technology for

scripts beyond the CJK world are just as
important. We have discussed this with
researchers working on other scripts,
contributing to the on-going develop-
ment of Unicode to handle digital text
representation of the scripts of the world.

For example, there has been growing in-
terest in developing CDL schemes for Cu-
neiform scripts, Tangut (西夏 Xīxià, an
extinct CJK offshoot recently proposed to
Unicode), Egyptian Hieroglyphs, Mayan,
and other complex scripts with compo-
nential basis and special component and
character positioning requirements.

Such scripts are similarly limited by
the open-endedness of their character
sets due to historical and local variation,
and due to the ill-defined nature of the
bounds of the higher-level units of writ-
ing. There are, nevertheless, basic script
elements identifiable in each of these
scripts, that can be employed in con-
junction with CDL to structure text, to
remove the encoding bottleneck, and to
empower the paleographers, lexicogra-
phers and linguists who must ultimately
seek to resolve these problems.

In the End ...
CDL is a core infrastructure technol-

ogy, providing a rock-solid framework
for data structure, data storage and data
interchange, and CDL should be adopted
internationally in work to digitize and
preserve humanities collections and pa-
per and archeological archives.

Because CDL is pure Unicode and pure
XML, and because its applications for CJK
are clearly based on traditional orthograph-
ic standards active across CJK scripts, CDL
is completely standards-based. CDL tech-
nology bridges an important gap, put-
ting real intelligence into fonts, and giv-
ing CJK digitization projects the freedom
which roman-based orthographies take
for granted. The returns from this tech-
nology will be large indeed, and shared
globally, as improvements are made to
data stability, content, and access.

We are working to bring the CJK part
of the CDL database online, so that ev-
eryone can use this technology. And we
are working to promote and refine CDL
methods to make them more flexible,
more generally applicable.

... CDL Unlimited!
To learn more about the CDL project,

please visit us online:

<http://wenlin.com/cdl/>

