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Model of computation

The Streaming Model

— high-speed online data

— limited storage
e o(m) space

o log®®(m) update
time

RAM |
OICHORONGIOIO) ! e o(m) query time
|

: st length.
E.g., what is the number w m. stream leng

of distinct elements? CPU
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Linear sketches — a standard technique

Problem: For a data vector x € RY, want to compute f(x)

Can do this using linear sketches

v

linear mapping
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Linear sketches — a standard technique

Problem: For a data vector x € RY, want to compute f(x)

Can do this using linear sketches

linear mapping sketching vector

Simple and useful: used in many statistical /graph/algebraic
problems in streaming, compressive sensing, ...
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Linear sketches in the streaming model

ONOMORONGIOIO)

~ \V/

View each incoming element / as updating

X — X + €;

Can update the sketching vector incrementally

o)
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Real-world data is often noisy

Music, Images, ...
After compressions, resize,
reformat, etc.
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Real-world data is often noisy

Music, Images, ...
After compressions, resize,
reformat, etc.

“multi-d workshop maryland”

“proximity problems workshop”

“Rasmus Pagh workshop maryland”

Cosuan | rmren ity (unfortunately when | typed Dave's
name the workshop didn't show up)

Queries of the same meaning sent to Google
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Robust streaming algorithms

RAM
17 9 12 3 2 I

>

We (have to) consider similar items as w

?
one element. Then how to compute f(x) CPU
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| inear sketches do not work

Linear sketches do not work. Why?

ltems representing the same entity may be mapped
into different coordinates of the sketching vector
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Magic hash functions?

®  Does there exist a magic hash function that can
(1) map (only) items in same group into same bucket
and
(2) can be described succinctly?

Answer: NO. #mappings is exponentially large.
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Magic hash functions?

®  Does there exist a magic hash function that can
(1) map (only) items in same group into same bucket
and
(2) can be described succinctly?

Answer: NO. #mappings is exponentially large.

® [ocality sensitive hashing may help (will talk more later)
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Clustering?

®  (Clustering will help?

Answer: NO. #clusters can be linear
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Clustering?

®  (Clustering will help?

Answer: NO. #clusters can be linear

®  Related to Entity Resolution: Identify and group different
manifestations of the same real world object.

Very important in data cleaning / integration. Have been
studied for 40 years in DB, also in Al, NT.

E.g. [Gill& Goldacre’03, Koudas et al.’06, ElImagarmid et al.’07, Herzog et
al.’07, Dong& Naumann’'09, Willinger et al.’09, Christen'12] for
introductions, and [Getoor and Machanavajjhala’12] for a toturial.

Use at least linear space in the RAM model, detect
items rep. the same entity, output all distinct entities.
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This talk

e Problem: compute # robust distinct elements ()
(Useful in: traffic monitoring, query optimization, ...)

Given a threshold «, partition the input item set S
into a minimum set of groups G = {Gy,..., Gy} so
that \V/P, q cC Gl'a d(p7 q) < «.

e Data: points in the Euclidean space and beyond

e Model of Computation: the streaming model
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Well-shaped dataset

" For a fixed «, we say the point set S is («a, 3)-sparse
(with separation ratio 3/«a) if for Vu,v € S:

either d(u,v) < a or d(u,v) > g.

We call the dataset is well-shaped if maxg 8 > 2a.
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Well-shaped dataset

" For a fixed «, we say the point set S is («a, 3)-sparse
(with separation ratio 3/«a) if for Vu,v € S:

either d(u,v) < a or d(u,v) > g.

We call the dataset is well-shaped if maxg 8 > 2a.

® A natural partition exists for a well-shaped dataset
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Well-shaped dataset

" For a fixed «, we say the point set S is («a, 3)-sparse
(with separation ratio 3/«a) if for Vu,v € S:

either d(u,v) < a or d(u,v) > g.

We call the dataset is well-shaped if maxg 8 > 2a.

® A natural partition exists for a well-shaped dataset

® For general datasets, we introduce Fp-ambiguity:

The Fp-ambiguity of S is the minimum ¢ s.t. there
exists T C S such that

e S\ T is well-shaped

o Fo(S\T) > (1 - 6)Fo(S)
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Algorithm for well-shaped
datasets in 2D

SPLEE S
vl’ \\ .
Gl-j o ° ! A random grid

el 22 X . c G of side length

.' 1 G2

J ll Oé 2

\9 /, /\/—

\~~_.‘,'




Simple sampling (needs two passes)

Algorithm Simple Sampling

1. Sample n € O(1/€®) non-empty cells C
2. Use another pass to compute for each sampled cell C,
w(C) =1/w(Gc),

where Gc is the (only) group intersecting C, and w(Gc¢) is #cells
Gc intersects

3. Output Z - . w(C), where z is the #non-empty cells in G

Simple-Sampling gives a (1 + ¢)-approximation of Fo with probability
2/3 using O(1/¢€*) bits and 2 passes.
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A dilemma and bucket sampling

e Cannot sample cell early: Most sampled cell
will be empty thus useless for the estimation.

e Cannot sample late: Cannot obtain the

“neighborhood” information to compute
w(C) for a sampled C

What to do?
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A dilemma and bucket sampling

14-2

e Cannot sample cell early: Most sampled cell
will be empty thus useless for the estimation.

e Cannot sample late: Cannot obtain the

“neighborhood” information to compute
w(C) for a sampled C

What to do?

We propose bucket sampling: sample a collection
of cells, but only maintain the neighborhood
information for non-empty sampled cells.

Maintain the collection using a hash function:
That is, all cells with h(C) =1



Bucket sampling (cont.)

Algorithm 2 Store Point Centers for Sampled Cells C’

1: procedure STORECENTER(p)

2 if 3C e G st. h(C)=1 A d(p,C) <1 then

3 if (Agq e s.t. cell(p) = cell(q)) then

4: insert p to I > Keep a new center
5: end if

6 end if

I

end procedure

[: the set of points we store, to recover w(C) for
each sampled cell C at the end

h: updated so that at at any point
{C |h(C) =1} = O(1/¢*)
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Bucket sampling (cont.)

,‘i—- AY
' @ ‘
Kk D
‘\‘. I' S S
\\N--.", I’I'2
\‘, ,
T e sampled cell
[
- stored centers
¢ in [
Phe G3

For a well-shaped dataset, exists an algorithm that gives a
(1 + €)-approximation of robust Fo w.pr. 2/3 using O(1/€”) bits and
O(1) processing time per item
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Dealing with ambiguity

For general datasets, we introduce Fp-ambiguity:

The Fo-ambiguity of S is the minimum J s.t. there
exists T C S such that

e S\ T is well-shaped

o Fo(S\T) > (1 0)Fo(S)

Unfortunately approximate 0 is hard — we cannot
differetiate whether 6 = 0 or 1/2 without an Q(m)
space, by reducing it to the Diameter problem
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Dealing with ambiguity

17-2

For general datasets, we introduce Fp-ambiguity:

The Fo-ambiguity of S is the minimum J s.t. there
exists T C S such that

e S\ T is well-shaped

o Fo(S\T) > (1—0)Fo(S)

Unfortunately approximate 0 is hard — we cannot
differetiate whether 6 = 0 or 1/2 without an Q(m)
space, by reducing it to the Diameter problem

However, we can still guarantee the following even
without knowing the value 9



Dealing with ambiguity

For general datasets, we introduce Fp-ambiguity:

The Fo-ambiguity of S is the minimum J s.t. there
exists T C S such that

e S\ T is well-shaped

o Fo(S\T) > (1—0)Fo(S)

Unfortunately approximate 0 is hard — we cannot
differetiate whether 6 = 0 or 1/2 without an Q(m)
space, by reducing it to the Diameter problem

For a dataset with Fo-ambiguity 0, exists an algorithm that gives a
(1 + O(e + 6)) approximation of robust Fy w.pr. 2/3 using O(1/¢%)
bits and O(1) processing time per item
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Proof ideas (high level)

e \We can think

OPT = natural grouping for S\ T + balls of
diameter o covering rest points in T.

e In 2D Euclidean space, a ball of diameter 2a can
be covered by O(1) balls of diameter «

e In OPT balls covering T are almost evenly spread
w.r.t. the (natural) groups formed by S\ T

e SOL uses near-uniform group samplings =
If 0 1s small, then outliers T will not affect
much of our estimation of Fo(S\ T), which is
close to Fy(S) by the definition of T.
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We generalized to high-D, but
need larger separation ratios to
avoid exp. dependence on d

For a dataset with separation ratio at least d®/? in d-dim, exists an

algorithm that outputs a (1 + €)-approximation to robust Fo w.pr. 2/3,
using O(d/€*) space and amortized O(d) processing time per item.
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Random grid partition is a
locality sensitive hashing

(LSH). Can use bucket
sampling with other LSHs.



Smart hash function

We say a hash function h is p-smart on an («, 3)-sparse
(8 > 2a) dataset S and its natural minimum-cardinality
group partition if it satisfies:

e Small “imaging radius”’. Each group is adjacent to p
cells on average.
— we say a group G is adjacent to a hash bucket C
if there exists a pair of items p, g € S such that
pe€ G,h(q) =C and d(p,q) < a.

e No false-positive. Items from different groups will be
hashed into disjoint buckets.
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Smart hash function

We say a hash function h is p-smart on an («, 3)-sparse
(8 > 2a) dataset S and its natural minimum-cardinality
group partition if it satisfies:

e Small “imaging radius”’. Each group is adjacent to p
cells on average.
— we say a group G is adjacent to a hash bucket C
if there exists a pair of items p, g € S such that
pe€ G,h(q) =C and d(p,q) < a.

e No false-positive. Items from different groups will be
hashed into disjoint buckets.

This is what we really need in the analysis for
Grid + 2D Euclidean space
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Locality sensitive hashing

" We say a hash family H is (¢, u, p1, p2)-sensitive if
for any two items p, q,

1. if d(p,q) < £ then Pryec 4[h(p) = h(q)] > p1,
2. if d(p,q) > u then Pryc 4[h(p) = h(q)] < p>
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Locality sensitive hashing

" We say a hash family H is (¢, u, p1, p2)-sensitive if
for any two items p, q,

1. if d(p,q) < £ then Pryec 4[h(p) = h(q)] > p1,
2. if d(p,q) > u then Pryc 4[h(p) = h(q)] < p>

® A hash function h is called n-concentrated on S if
for any G € G,

{h(x) | dy € G s.t. d(x,y) < a}| <n.

We say an LSH family that is n-concentrated on S
if for any h € H, h is n-concentrated on S.
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The connections

S: an (a, B)-sparse (8 > 2«) dataset, |S| = m.

H: a (2a, B, p1, p2)-sensitive LSH family that is
n-concentrated on S.

F: a k-fold hash family of H and let f €, F.

Then f is 100(7(1 — p1) + p1)“-smart on S w.pr.
(0.99 — m?p%).

® Gaussian LSH for Euclidean Metric
is (a, B, p(a), p(B))-sensitive and O(1)-concentrated;
can be made O(1)-smart when 3/a > log m

® Random Projection LSH for Cosine Metric
is (o, 8,1 — «/mw,1 — B/m)-sensitive and
O(1)-concentrated; can be made O(1)-smart when
a<1/logmand Q(1) < g < .
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Experiments

Dataset: 4,000,000 images from ImageNet

1500k100x5d means the dataset consists of 500k
images, each has 100 near-duplicates on avarage, and is
mapped into a 5-dim Euclidean space (feature space)

Experiments on a desktop PC with 8GB of RAM
and a 4-core 3.40GHz Intel i7 CPU



Correnctness (known «)

No. pts | 9,000 18.000 36,000 72,000
I500k100x5d | 22.8% 10.6%  8.3%  6.6%
I500k10x5d | 15.8%  9.2%  6.7%  5.7%
I500k2x5d | 5.2%  3.0%  2.8%  2.2%
I4m2x5d | 6.0%  3.5%  3.3% 24%

Table 6: Vary duplication ratio; average error over 20 runs;
median output of 6 sketches; known «a.

No. pts | 9,000 18,000 36,000 72,000 144,000
I4m2x5d | 6.0% 3.5%  3.3% 2.4% 1.7%

I4m2x10d | 5.8% 4.2% 3.4% 2.6% 1.5%
I4m2x20d | 6.4% 4.4% 3.6% 2.0% 1.3%

Table 7: Vary dimensionality; average error over 20 runs:
median output of 6 sketches; known a.
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Correnctness (unknown «)
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FO, Number of Groups

921054

631297
515168
486638

370218

154586

o Sketch
*  CellCount

RPN ap Base“ne I

252 356 504 713 1010 1430

a’, Group Diameter

Dataset: 1500k100x5d

Baseline
(greedy algo.)
©(n) space

Sketch
(our algo.)

O(1/€2) space

CellCount:
(streaming
algo. for
comparison)

O(1/€2) space



Samples: 200 400 800 1,600
Space (pts): | 1,500 3,000 6,000 12,000 || Baseline
I500k100x6d | 0.45 047  0.49 0.46 1.45
I500k10x5d4 | 0.42  0.50  0.52 0.46 1.42
I100k100x5d | 0.48 0.44  0.48 0.53 1.38
I10k100x5d | 0.42  0.48  0.51 0.50 1.35

Table 5: Average processing time (seconds) per 10,000 pts
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Open problems

e Theoretical analysis for high dimension
Euclidean space is not complete yet.
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Open problems

e Theoretical analysis for high dimension
Euclidean space is not complete yet.

e Extending the analysis and experiments to
other metrics
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Open problems

e Theoretical analysis for high dimension
Euclidean space is not complete yet.

e Extending the analysis and experiments to
other metrics

e Other statistical aggregate problems
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Thank youl

Questions?




