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The Streaming Model

– high-speed online data
– limited storage

1 7 9 1 7 3 2

RAM

CPU

Model of computation

E.g., what is the number
of distinct elements?

• o(m) space

• logO(1)(m) update
time

• o(m) query time

m: stream length.
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=M

x

Mx

linear mapping sketching vector

Problem: For a data vector x ∈ Rd , want to compute f (x)

Can do this using linear sketches

Linear sketches – a standard technique

g(Mx) ≈ f (x)
recover
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x

Mx

linear mapping sketching vector

Problem: For a data vector x ∈ Rd , want to compute f (x)

Can do this using linear sketches

Linear sketches – a standard technique

g(Mx) ≈ f (x)
recover

Simple and useful: used in many statistical/graph/algebraic
problems in streaming, compressive sensing, . . .
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Linear sketches in the streaming model

View each incoming element i as updating
x ← x + ei

Can update the sketching vector incrementally

M(x + ei ) = Mx + Mei

= Mx + M i

sublinear space.:
size of sketch Mx

RAM

1 7 9 1 7 3 2
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Real-world data is often noisy

Music, Images, ...
After compressions, resize,
reformat, etc.
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Real-world data is often noisy

Music, Images, ...
After compressions, resize,
reformat, etc.

“multi-d workshop maryland”

“proximity problems workshop”

“Rasmus Pagh workshop maryland”

(unfortunately when I typed Dave’s
name the workshop didn’t show up)

Queries of the same meaning sent to Google
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RAM

CPU

We (have to) consider similar items as
one element. Then how to compute f (x)?

Robust streaming algorithms
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Linear sketches do not work

Linear sketches do not work. Why?

Items representing the same entity may be mapped
into different coordinates of the sketching vector
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Magic hash functions?

Answer: NO. #mappings is exponentially large.

Does there exist a magic hash function that can
(1) map (only) items in same group into same bucket

and
(2) can be described succinctly?
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Magic hash functions?

Answer: NO. #mappings is exponentially large.

Does there exist a magic hash function that can
(1) map (only) items in same group into same bucket

and
(2) can be described succinctly?

Locality sensitive hashing may help (will talk more later)
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Clustering?

Clustering will help?

Answer: NO. #clusters can be linear
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Clustering?

Clustering will help?

Answer: NO. #clusters can be linear

Related to Entity Resolution: Identify and group different

manifestations of the same real world object.

Very important in data cleaning / integration. Have been

studied for 40 years in DB, also in AI, NT.

Use at least linear space in the RAM model, detect
items rep. the same entity, output all distinct entities.

E.g. [Gill& Goldacre’03, Koudas et al.’06, Elmagarmid et al.’07, Herzog et
al.’07, Dong& Naumann’09, Willinger et al.’09, Christen’12] for
introductions, and [Getoor and Machanavajjhala’12] for a toturial.
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• Problem: compute # robust distinct elements (F0)
(Useful in: traffic monitoring, query optimization, . . .)

Given a threshold α, partition the input item set S
into a minimum set of groups G = {G1, . . . ,Gn} so
that ∀p, q ∈ Gi , d(p, q) ≤ α.

• Data: points in the Euclidean space and beyond

• Model of Computation: the streaming model

This talk
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For a fixed α, we say the point set S is (α, β)-sparse
(with separation ratio β/α) if for ∀u, v ∈ S :

either d(u, v) ≤ α or d(u, v) ≥ β.

We call the dataset is well-shaped if maxβ β ≥ 2α.

Well-shaped dataset
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For a fixed α, we say the point set S is (α, β)-sparse
(with separation ratio β/α) if for ∀u, v ∈ S :

either d(u, v) ≤ α or d(u, v) ≥ β.

We call the dataset is well-shaped if maxβ β ≥ 2α.

Well-shaped dataset

A natural partition exists for a well-shaped dataset

For general datasets, we introduce F0-ambiguity:

The F0-ambiguity of S is the minimum δ s.t. there
exists T ⊆ S such that
• S\T is well-shaped
• F0(S\T ) ≥ (1− δ)F0(S)
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Algorithm for well-shaped

datasets in 2D

G1

G2

G3

A random grid
G of side length
α/
√

2
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Simple sampling (needs two passes)

1. Sample η ∈ Õ(1/ε2) non-empty cells C

2. Use another pass to compute for each sampled cell C ,

w(C) = 1/w(GC ),

where GC is the (only) group intersecting C , and w(GC ) is #cells
GC intersects

3. Output z
η
·
∑

C∈C w(C), where z is the #non-empty cells in G

Theorem

Simple-Sampling gives a (1 + ε)-approximation of F0 with probability
2/3 using Õ(1/ε2) bits and 2 passes.

Algorithm Simple Sampling
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A dilemma and bucket sampling

• Cannot sample cell early: Most sampled cell
will be empty thus useless for the estimation.

• Cannot sample late: Cannot obtain the
“neighborhood” information to compute
w(C ) for a sampled C

What to do?
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A dilemma and bucket sampling

• Cannot sample cell early: Most sampled cell
will be empty thus useless for the estimation.

• Cannot sample late: Cannot obtain the
“neighborhood” information to compute
w(C ) for a sampled C

What to do?

We propose bucket sampling: sample a collection
of cells, but only maintain the neighborhood
information for non-empty sampled cells.

Maintain the collection using a hash function:
That is, all cells with h(C ) = 1
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Bucket sampling

Bucket sampling (cont.)

Γ: the set of points we store, to recover w(C ) for
each sampled cell C at the end

h: updated so that at at any point
|{C |h(C ) = 1}| = O(1/ε2)
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G1

G2

G3

Bucket sampling (cont.)

sampled cell

stored centers
in Γ

Theorem

For a well-shaped dataset, exists an algorithm that gives a
(1 + ε)-approximation of robust F0 w.pr. 2/3 using Õ(1/ε2) bits and
O(1) processing time per item
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For general datasets, we introduce F0-ambiguity:

The F0-ambiguity of S is the minimum δ s.t. there
exists T ⊆ S such that
• S\T is well-shaped
• F0(S\T ) ≥ (1− δ)F0(S)

Dealing with ambiguity

Unfortunately approximate δ is hard – we cannot
differetiate whether δ = 0 or 1/2 without an Ω(m)
space, by reducing it to the Diameter problem
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For general datasets, we introduce F0-ambiguity:

The F0-ambiguity of S is the minimum δ s.t. there
exists T ⊆ S such that
• S\T is well-shaped
• F0(S\T ) ≥ (1− δ)F0(S)

Dealing with ambiguity

Unfortunately approximate δ is hard – we cannot
differetiate whether δ = 0 or 1/2 without an Ω(m)
space, by reducing it to the Diameter problem

However, we can still guarantee the following even
without knowing the value δ



17-3

For general datasets, we introduce F0-ambiguity:

The F0-ambiguity of S is the minimum δ s.t. there
exists T ⊆ S such that
• S\T is well-shaped
• F0(S\T ) ≥ (1− δ)F0(S)

Dealing with ambiguity

Unfortunately approximate δ is hard – we cannot
differetiate whether δ = 0 or 1/2 without an Ω(m)
space, by reducing it to the Diameter problem

Theorem

For a dataset with F0-ambiguity δ, exists an algorithm that gives a
(1 + O(ε+ δ)) approximation of robust F0 w.pr. 2/3 using Õ(1/ε2)
bits and O(1) processing time per item
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Proof ideas (high level)

• We can think
OPT ≈ natural grouping for S\T + balls of
diameter α covering rest points in T .

• In 2D Euclidean space, a ball of diameter 2α can
be covered by O(1) balls of diameter α

• In OPT balls covering T are almost evenly spread
w.r.t. the (natural) groups formed by S\T

• SOL uses near-uniform group samplings ⇒
if δ is small, then outliers T will not affect
much of our estimation of F0(S\T ), which is
close to F0(S) by the definition of T .
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We generalized to high-D, but

need larger separation ratios to

avoid exp. dependence on d

Theorem

For a dataset with separation ratio at least d3/2 in d-dim, exists an
algorithm that outputs a (1 + ε)-approximation to robust F0 w.pr. 2/3,
using O(d/ε2) space and amortized O(d) processing time per item.
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Random grid partition is a

locality sensitive hashing

(LSH). Can use bucket

sampling with other LSHs.
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Smart hash function

We say a hash function h is ρ-smart on an (α, β)-sparse
(β ≥ 2α) dataset S and its natural minimum-cardinality
group partition if it satisfies:

• Small “imaging radius”. Each group is adjacent to ρ
cells on average.
– we say a group G is adjacent to a hash bucket C
if there exists a pair of items p, q ∈ S such that
p ∈ G , h(q) = C and d(p, q) ≤ α.

• No false-positive. Items from different groups will be
hashed into disjoint buckets.
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Smart hash function

We say a hash function h is ρ-smart on an (α, β)-sparse
(β ≥ 2α) dataset S and its natural minimum-cardinality
group partition if it satisfies:

• Small “imaging radius”. Each group is adjacent to ρ
cells on average.
– we say a group G is adjacent to a hash bucket C
if there exists a pair of items p, q ∈ S such that
p ∈ G , h(q) = C and d(p, q) ≤ α.

• No false-positive. Items from different groups will be
hashed into disjoint buckets.

This is what we really need in the analysis for
Grid + 2D Euclidean space
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Locality sensitive hashing

We say a hash family H is (`, u, p1, p2)-sensitive if
for any two items p, q,

1. if d(p, q) ≤ ` then Prh∈rH[h(p) = h(q)] ≥ p1,

2. if d(p, q) ≥ u then Prh∈rH[h(p) = h(q)] ≤ p2
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Locality sensitive hashing

We say a hash family H is (`, u, p1, p2)-sensitive if
for any two items p, q,

1. if d(p, q) ≤ ` then Prh∈rH[h(p) = h(q)] ≥ p1,

2. if d(p, q) ≥ u then Prh∈rH[h(p) = h(q)] ≤ p2

A hash function h is called η-concentrated on S if
for any G ∈ G,

|{h(x) | ∃y ∈ G s.t. d(x , y) ≤ α}| ≤ η.

We say an LSH family that is η-concentrated on S
if for any h ∈ H, h is η-concentrated on S .
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The connections

S : an (α, β)-sparse (β ≥ 2α) dataset, |S | = m.

H: a (2α, β, p1, p2)-sensitive LSH family that is
η-concentrated on S .

F : a k-fold hash family of H and let f ∈r F .

Then f is 100(η(1− p1) + p1)k -smart on S w.pr.
(0.99−m2pk2 ).

Gaussian LSH for Euclidean Metric
is (α, β, p(α), p(β))-sensitive and O(1)-concentrated;
can be made O(1)-smart when β/α ≥ logm

Random Projection LSH for Cosine Metric
is (α, β, 1− α/π, 1− β/π)-sensitive and
O(1)-concentrated; can be made O(1)-smart when
α ≤ 1/ logm and Ω(1) ≤ β < π.
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Experiments

Dataset: 4,000,000 images from ImageNet

Experiments on a desktop PC with 8GB of RAM
and a 4-core 3.40GHz Intel i7 CPU

I500k100x5d means the dataset consists of 500k
images, each has 100 near-duplicates on avarage, and is
mapped into a 5-dim Euclidean space (feature space)
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Correnctness (known α)
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Baseline

(greedy algo.)

Θ(n) space

Sketch

(our algo.)

Õ(1/ε2) space

CellCount:
(streaming
algo. for
comparison)

Õ(1/ε2) space

Correnctness (unknown α)

Dataset: I500k100x5d
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Running time

Running time
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Open problems

• Theoretical analysis for high dimension
Euclidean space is not complete yet.
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Open problems

• Theoretical analysis for high dimension
Euclidean space is not complete yet.

• Extending the analysis and experiments to
other metrics
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Open problems

• Theoretical analysis for high dimension
Euclidean space is not complete yet.

• Extending the analysis and experiments to
other metrics

• Other statistical aggregate problems
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Thank you!
Questions?


